电力电子技术论文范文
- 格式:docx
- 大小:23.57 KB
- 文档页数:8
浅议电力电子技术论文【摘要】本文简单阐述了电力电子技术的发展,主要介绍了电力电子技术在电力系统、汽车工业、光伏发电领域等方面的应用。
【关键词】电力电子技术;应用0.引言电力电子技术是一个以功率半导体器件、电路技术、计算机技术、现代控制技术为支撑的技术平台。
经过50年的发展历程,电力电子技术已迅速发展成为一门独立的技术、学科领域。
它的应用领域几乎涉及到国民经济的每个工业。
尤其是进入21世纪,随着新的理论、器件、技术的不断涌现,特别是与微电子技术的日益融合,电力电子技术的应用领域也必将不断地得以拓展,它将成为新世纪的关键支撑技术之一。
电力电子技术拥有许多微电子技术所具有的特征,比如发展迅速、渗透力强、生命力旺盛,并且能与其它学科相互融合和相互发展。
1.电力电子技术在电力系统中的应用自20世纪80年代,柔性交流输电FACTS概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。
已有不少文献介绍和总结了相关设备的基本原理和应用现状。
以下按照电力系统的发电、输电和配电以及节电环节,列举电力电子技术的应用研究和现状。
1.1在发电环节中的应用电力系统的发电环节涉及发电机组的多种设备,电力电子技术的应用以改善这些设备的运行特性为主要目的。
静止励磁采用晶闸管整流自并励方式,具有结构简单、可靠性高及造价低等优点,被世界各大电力系统广泛采用。
由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控制规律提供了充分发挥作用并产生良好控制效果的有利条件。
变速恒频励磁广泛应用于水力、风力发电机。
在水力和风力发电过程中,为了获得最大有效功率,使水力和风力发电机组变速运行,主要通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。
此项应用的技术核心是变频电源。
发电厂风机水泵的变频调速。
风机水泵耗电量约占火电设备总耗电量的65%,且运行效率较低。
使用低压或高压变频器,实施风机水泵的变频调速,可以达到节能的目的。
电力电子技术论文我国电力电子技术的现状及应用摘要:电力电子技术在国民经济与人民日常生活中正发挥越来越重要的作用。
本文通过对电力电子技术的描述,阐述了电力电子技术在我国的发展现状;对我国电力电子技术在大气污染治理、节能环保、电力系统及国民生活等等中的应用做了较详细的研究;对我国电力电子系统的发展进行了展望,得出电力电子技术不仅是国民经济支柱产业的重要组成部分,也是未来技术的发展趋势之一。
一、电力电子技术概述1、电力电子技术的含义电力电子技术是利用电力电子器件对电能进行变换和控制且应用于电力领域的电子技术,它是一门新兴学科。
电力电子技术功率强大、可供诸如电力系统那样大的电流以及高电压场合应用,它与传统的电子技术相比,其特殊之处是因为它能够通过大电流和承受高电压,而且还有在大功率情况下,器件发热、运行效率的问题。
电力电子技术分为两个分支:电力电子器件制造技术和交流技术。
2、电力电子技术的地位和作用电力电子技术至今诞生近50年,特别是近年来更是取得了突飞猛进的发展,已经形成十分完整的科学体系和理论。
信息技术的发展造就了信息时代“弱电控制强电”电力电子技术的实现是人类社会的第二次电子革命。
由于将来工业高度自动化,计算技术、电力电子技术以及自动控制技术将会成为三种最重要的技术。
二、电力电子技术的发展1、整流器时代大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解,牵引,和直流传动三大领域。
大功率硅整流器能够高效率地把工频交流电转变为直流电。
2、逆变器时代世界范围的能源危机出现在七十年代,由于交流电机变频调速节能效果显著而迅速得到发展。
将直流电逆变为0-100Hz的交流电是变频调速的关键技术。
随着变频调速装置的普及,当时电力电子器件的主角是大功率逆变用的晶闸管、巨型功率晶体管和门极可关断晶闸管,类似的应用还包括高压直流输出,静止式无功功率动态补偿等。
3、变频器时代进入八十年代,出现了一批全新的全控型功率器件、首先是功率MOSFET的问世,致使中小功率电源向高频化发展,而后又出现了绝缘门极双极晶体管,又为大中型功率电源向高频发展提供了机遇。
电力电子技术论文电力电子技术日趋广泛地应用于能源、工业、信息、家电消费品等领域。
下面是店铺为大家整理的电力电子技术论文,供大家参考。
电力电子技术论文范文一:大功率电力电子技术可靠供电系统研究【摘要】随着电力行业不断发展,对于大功率电力电子技术可靠供电系统进行研究,是电力行业发展中的重要内容。
电网的运行规模越来越大,电力用户的需求逐年增加,提升电力系统的可靠性是电力企业所面临的重要任务。
在科技发展背景下,大量的电力电子装置被应用到电力系统中,为电力系统可靠性提升带来诸多帮助。
基于此,本文就大功率的电力电子技术进行分析,研究该技术下的可靠供电系统。
【关键词】大功率;电力电子技术;可靠供电系统;研究1前言大功率电力电子技术在电力系统中发挥着重要的作用,主要涉及到了电力系统的发电、输电、配电以及用电等方面。
实现大功率电力电子技术供电可靠性,在本文中从两方面进行分析,第一,提升大功率电力电子技术的供电可靠性,可以通过提高工业敏感负荷的供电可靠性来实现;第二,将大功率的电子技术应用于发电机励磁系统中,以提升发电机的阻尼转矩,来实现系统的动态可靠性提升。
2大功率电力系统可靠性供电概述从敏感负荷角度对电力系统供电可靠性进行分析。
实现供电的可靠性不仅要求电力系统中不能长时间断电,还需要对电力供电系统的动态电压质量提出更高的要求。
对系统中的电压跌落以及电压短时中断的时间进行限定,在实际供电中,不同的电压跌落中,其敏感负荷所能够承受的电压跌落时间存在着差异性。
在一般规律下,跌落幅度越大,其敏感负荷所能够才承受的时间越短。
传统的供电可靠性统计统计,只能以停电时间超过1分钟或者5分钟实际依据。
在我国,对于自动重合闸成功或者备用电源投入成功的现象不能视为用户停电,而此时敏感负荷用户有可能遭受到一定的电力损失。
那么在实际的电力系统供电中,提升供电的可靠性,需要从电网方面进行综合考虑,以优化的配电网结构,改善动态带电压质量[1]。
我国大容量电力电子技术应用论文关于我国大容量电力电子技术应用论文随着我国科学技术的不断发展,我国在电子技术方面的水平也得到了很大的提升,如今,电子技术的应用已经涉及到我们生活的方方面面,任何电器的使用都离不开电力的支持,小到一个开关,大到国家科研技术的研究,正是电力电子技术的广泛应用才使电子技术不断发展电力电子技术的发展如此之快主要是其应用广,电子技术的开发对人类来说意义重大,首先离我们最近的是灯的使用,电的出现直接让人类的生活从原始的昏暗环境进入到现代光明的社会,再到如今生活处处离不开电的支持。
电的出现给我们的生活带来了光明,从此,电被人们进行更深入的开发。
在高中物理当中涉及到电力方面的理论知识,主要有电流与电阻,电磁学及电势能等内容,其中,电磁学中的重要内容电磁感应的原理是:变化的磁场能够产生感应电流,当有一个导体放置在变化的磁场当中时,该导体就会自行产生电流,如将导体闭合,即形成一个闭合的回路。
这项理论知识在生活中的应用很常见,如许多发电机就是根据这项原理发明出来的,还有家里的电磁炉等也是同样的道理。
所以说,很多高中的物理内容虽然大部分是纯理论,但其在生活中的应用只要用心观察,会发现其实它无处不在。
1大容量电力电子技术在电学当中,大容量电力电子技术的实质是采用一种大功率的半导体材料将電能进行变化和传输,这是一项新型的电子技术,应用于大多数电力领域内。
这一项技术最早是出现在上世纪60年代的美国,当时认为,电力电子是由三个学科组合而成的技术,这三个学科分别是:电子学,电力学,控制理论。
在我国的生活生产中,涉及到多种能源的利用,不仅仅是电能的使用,大容量电力电子技术的出现能将这种可开发的电能转换成其他能量,从而达到使用功能,如生活中常用到的太阳能热水器就是利用这项原理,将空气中投射过来的太阳辐射能通过这种转换器转换成热能,从而供给人们生活使用,这种加热方式比通过消耗电能来加热更加环保。
除此之外,电力电子技术在生产中还有很多其他的作用:(1)将电能使用最佳化,经电力电子技术的处理后,电能使用将更加高效合理,达到节能的效果。
现代电力电子技术范例关键词:电力电子;电源技术;发展现代电力电子技术经过不断的发展以后,已经实现了多种功能,如节能、自动化和智能化、机电一体化等,电力电子正在朝更高端的技术、绿色化的性能方向发展。
电源技术则是充分利用用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。
电源技术是电力电子技术内容的具体延伸,在电源中起到了关键作用,为电源的质量、效率和可靠性提供了良好的保障。
1电力电子技术的发展电力电子技术起始于上个世纪50年代末,80年代末则逐步向现代电力电子技术发展。
电力电子的发展是从低频技术处理到高频技术处理问题的逐步转变,实现了从传统电力电子学到现代电力电子学的过渡。
无论是最初的硅整流器件,还是如今的大功率半导体复合器件,都充分表明了现代电力电子技术正在以蓬勃向上的姿态发展。
1.1整流器时代20世纪60年代至70年代,电解、牵引、直流传动是整流器时代衍生的领域。
大功率硅整流器把工频电流转为直流电,这三大领域就是通过直流电进行消费的。
大功率硅整流管和晶闸管在当时非常流行,备受重视,电力电子技术已经开始受到人们的关注。
1.2逆变器时代由于能源危机,整流器时代逐渐不再适合20世纪70年代的发展现状,此时变频调速技术开始进入人们的视线,人们利用此技术来进一步缓解当年的能源危机。
80年代以后,变频调速装置开始普及,各种电力电子器件成为当时非常普遍的器件,如大功率逆变用的晶闸管、巨型功率晶体管等。
此时的电力电子技术还并没有达到先进的状态,可以实现整流和逆变。
1.3变频器时代80年代以后,大规模和超大规模集成电路技术闪亮登场,这些技术与高压大电流技术经过有效的融合后,就诞生了各种全控型功率器件,从功率M0SFET到绝缘门极双极晶体管的相继问世,颠覆了传统电力电子技术的领域,为现代电力电子技术的发展奠定了良好的基础,实现并推动了高频化的发展。
2现代电力电子的应用领域2.1计算机高效率绿色电源计算机技术的发展促进了电源技术的发展,也促使这个时代转变为信息化时代。
电力系统中电力电子技术的应用的论文1.1电力电子技术在发电过程的应用在我国发电厂中,发电多是静止励磁系统。
使用过程中,励磁机繁重且耗能巨大,电力电子技术的开展便可大大缓解这个问题,可以代替励磁机中的励磁环节,使发电过程变得更便捷且耗能少,易操作,方便控制。
同时,电力电子技术在变频控制上同样起到很大作用。
发电厂中发出的电能频率多为波动的,而民用的交流电频率要在220V为峰值进行使用,传统的变压方式多为变电站的中转,而电力电子技术可以简化这个环节,使电流更适合民用电的使用。
电力电子技术在发电过程中的优势对一些新能源发电同样适用,如广泛使用的风力发电、水利发电等,都离不开电力电子技术来正常运行。
1.2电力电子技术在电力传输过程中的应用电力电子技术在传输线路上的应用有很多,其中主要以柔性交流电技术、高压直流电技术以及静止无功补偿器技术上,以线路传输过程中的高压直流电技术为例,说明在电力传输过程中电力电子技术的重要作用。
在没有这种技术的时候,对于高压直流电的传送,在传送过程中需加有假设干变压器来完成,这不仅增加了传送电过程中的本钱,还使工作的程序变得复杂,而电力电子技术的广泛使用,尤其是晶管换流阀在高压直流电传送过程中的使用,使电压变得可以自动化控制,节约本钱,减少了传送过程中的工序,而且准确性、平安性和可控性都比传统的传送方法高得多。
1.3电力电子技术在电力使用过程中的应用电力电子技术不仅能在电力产生、传送过程中有广泛的应用,还能保证在使用过程中带给使用者的便捷。
回想我们家中的电力配备,保证平安的是一个全自动的电表,其实在这其中便应用到电力电子技术,它可以增强对电流、电压的可控性,自动感应到电力的强度,进行调控,保证了家庭用电的平安性。
同时,在一些大型工厂、单位等,用电量较大,对电力的稳定性要求很高,配有电力电子技术可以使在配电过程中,电流变得更加稳定,防止各种不稳定的波动带来的不良影响。
2.1节约能源通过电力电子技术的应用,可以对电能进行综合处理,使电能能够最大限度的发挥出来,并且能够应用得更加合理、高效,真正做到节约能源。
现代电力电子技术论文六篇现代电力电子技术论文范文1现代电力电子技术的进展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。
电力电子技术起始于五十年月末六十年月初的硅整流器件,其进展先后经受了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在很多新领域的应用。
八十年月末期和九十年月初期进展起来的、以功率MOSFET 和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。
1、整流器时代大功率的工业用电由工频(50Hz)沟通发电机供应,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。
大功率硅整流器能够高效率地把工频沟通电转变为直流电,因此在六十年月和七十年月,大功率硅整流管和晶闸管的开发与应用得以很大进展。
当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。
2、逆变器时代七十年月消失了世界范围的能源危机,沟通电机变频惆速因节能效果显著而快速进展。
变频调速的关键技术是将直流电逆变为0~100Hz的沟通电。
在七十年月到八十年月,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。
类似的应用还包括高压直流输出,静止式无功功率动态补偿等。
这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。
3、变频器时代进入八十年月,大规模和超大规模集成电路技术的迅猛进展,为现代电力电子技术的进展奠定了基础。
将集成电路技术的精细加工技术和高压大电流技术有机结合,消失了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化进展,而后绝缘门极双极晶体管(IGBT)的消失,又为大中型功率电源向高频进展带来机遇。
电子电力技术是应用于电力领域、以电力为对象的电子的技术。
他横跨电力、电子和控制的边沿学科,是利用电力电子器件对电能进行交换和控制的一门技术。
它主要研究以普通晶闸管为代表的大功率半导体器件及由它们组成的可控整流、逆流、交流调压、直流斩波、变频器和无节点开关等内容,在实际生活中有着广泛的应用的前景。
(一)电力电子技术的发展回顾传统的电力器件主要是晶闸管及由它派生的器件。
随着微电子技术的与电子电力技术的结合,又产生许多新型器件。
如:可关断晶闸管、电力晶体管、大功率场效应晶体管等。
总的发展趋势:大容量、高频化、模块化、功率集成化。
电力电子电路是以电力电子器件为核心,通过不同电路和各种控制实现对电能的转换和控制。
电子电力电路主要有;(1)交流—直流变换电路:把交流电能转换为可调的直流电能的电路,又称可控整流电路。
(2)直流—交流变换电路:把直流电能转换为交流电能的电路,又称逆变电路。
(3)直流—直流变换电路:把固定的直流电能转换成可调的直流电能的电路,亦称直流斩波电路。
( 4 ) 交流—交流变换电路:把某一频率的交流电能转换成幅值、频率或相位可调的交流电能的电路。
(1)整流器时代大功率的工业用电由工频交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解、牵引和直流传动三大领域。
大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。
2. 逆变器时代七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显著而迅速发展。
变频调速的关键技术是将直流电逆变为0~100Hz的交流电。
在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管和门极可关断晶闸管成为当时电力电子器件的主角。
类似的应用还包括高压直流输出,静止式无功功率动态补偿等。
这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。
电力电子毕业论文范文2篇qqq范文一:电力电子技术在智能电网中的应用摘要:随着社会科学事业的不断发展,我国的现代化技术越来越成熟,这对我国智能电网的发展起到了一定的促进作用。
但目前,智能电网的相关技术还不够完善。
因此,分析了智能电网对电力电子技术的要求及其应用。
关键词:电力电子技术;智能电网;资源利用率;变压器目前,我国的科学技术正在逐渐向时代化、信息化、数字化、科学化、自动化、多元化的方向发展,而智能电网也应以此为发展方向。
因此,在智能电网的建设中,要运用先进的电力电子技术,这影响着我国智能电网的进一步发展和进步。
但近年来,我国智能电网行业的发展受到了社会、环境等方面的限制。
因此,我们要不断地从实践中积累经验和汲取教训,进一步健全和完善智能电网行业的各项机制。
1智能电网对电力电子技术的要求1.1安全要求目前,智能电网对电力电子技术的安全要求不断提高。
在电力生产中,安全是最重要的问题,没有安全一切要求都是空谈。
1.2质量要求目前,社会各界十分关注电力电子技术的应用。
因此,相关单位应在注重安全问题的同时,兼顾电力电子技术的质量水平。
1.3资源和环境要求智能电网对电力电子技术在资源和环境方面的要求也是社会关注的焦点。
该要求不仅对资源的优化配置和环境保护有积极意义,还可以提高资源利用率,这对智能电网的发展起着重要的促进作用。
2电力电子技术在智能电网中的应用2.1在大型能源基地中的应用大型能源基地输送电力的特点为距离远、容量大,进而导致智能电网在输送大型能源基地生产的电力时更加困难。
因此,在智能电网的运行中,应采用新一代的电力电子技术与常规技术相结合的方案。
无功率经典变压器和可控制分流电阻对整个电力系统的无功功率起着一定的补偿作用,可保证电力系统在减少电路和无功电流的过程中不损失电能。
2.2在转化能源和储存能源中的应用光能和风能具有不稳定性,因此,我们要注重协调负载与电力生产的关系,实现光能和风能的大规模存取自适。
2024浅谈电力电子技术论文第一篇:电力电子技术的发展及其应用一、智能电网对电力电子技术的要求目前,电力电子技术虽然取得一定的进步但是仍然存在诸多的问题。
例如如何让它实现最大的优化控制改善电能的质量、减小对电网的污染,这都是需要解决的问题。
安全使用电力电子器件是另一个急需解决的问题,在安全的前提下才可以实现其他的应用。
我国的电网建设和电网结构虽然相对稳定但是仍存在很多问题,需要提高电网建设的要求和利用先进电力电子器件提高电网输出电能的质量。
而随着经济的不断发展,电力需求量也越来越大,大电网的建设必然是今后电力事业发展的方向,这也就意味着电网的结构也会越来越复杂,我国地理地狱辽阔气候复杂,因此电网所面临的条件很复杂,这就需要利用先进的电力电子技术,采用先进的电子装置来调控电力系统,以增强电网的构架,避免电网故障的扩散,并增强电网的故障抵抗和故障恢复能力,这些问题都是可以通过先进电力电子技术的应用得到改善。
社会的进步对电能的需求量变大同时对电能的质量要求也是越来越高,输出电能质量如果达不到要求会对整个电网产生重大影响,带来的损失也是不可估量的。
先进电力电子设备可以改善电网电能质量,大大的提高输电效率和经济发展。
能源是整个人类社会存在与发展的物质基础,更是经济快速稳定增长的根本驱动力。
随着常规化石能源的不断消耗以及生态平衡、环境污染等能源安全问题的日益突出,以清洁无污染、循环可再生为特点的太阳能、风能、生物质能等新能源的开发利用越来越受到世界各国的高度重视。
我国虽然是当今世界上最大的发展中国家,能源资源总量丰富,但是资源分布不均衡,开发利用难度较大,且人均拥有量较低。
当前正值经济飞速发展、能源高消耗时期,以常规化石能源为主要能源造成的环境污染问题与经济快速发展之间的矛盾较为突出。
为了从根本上解决我国的能源问题,满足经济稳定增长和社会和谐发展的需要,必须保护生态环境,实行能源的可持续发展战略。
一方面要大力提高能源利用效率,另一方面则是加快风能、太阳能等新能源的开发利用进度。
电力电子技术论文范文电力电子技术是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。
店铺为大家整理的电力电子技术论文范文,希望你们喜欢。
电力电子技术论文范文篇一浅议电力电子技术摘要:电力电子技术是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。
电力电子技术所变换的“电力”功率可大到数百MW甚至GW,也可以小到数W甚至1W以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。
关键词:电力;电子技术;电力电子电力电子技术分为电力电子器件制造技术和交流技术(整流,逆变,斩波,变频,变相等)两个分支。
现已成为现代电气工程与自动化专业不可缺少的一部分。
一、电力电子学电力电子学(Power Electronics)这一名称是在上世纪60年代出现的。
1974年,美国的W.Newell用一个倒三角形(如图)对电力电子学进行了描述,认为它是由电力学、电子学和控制理论三个学科交叉而形成的。
这一观点被全世界普遍接受。
“电力电子学”和“电力电子技术”是分别从学术和工程技术2个不同的角度来称呼的。
利用电力电子器件实现工业规模电能变换的技术,有时也称为功率电子技术。
一般情况下,它是将一种形式的工业电能转换成另一种形式的工业电能。
例如,将交流电能变换成直流电能或将直流电能变换成交流电能;将工频电源变换为设备所需频率的电源;在正常交流电源中断时,用逆变器(见电力变流器)将蓄电池的直流电能变换成工频交流电能。
应用电力电子技术还能实现非电能与电能之间的转换。
例如,利用太阳电池将太阳辐射能转换成电能。
与电子技术不同,电力电子技术变换的电能是作为能源而不是作为信息传感的载体。
因此人们关注的是所能转换的电功率。
电力电子技术是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。
电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。
电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。
近代新型电力电子器件中大量应用了微电子学的技术。
电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。
这些电路中还包括各种控制、触发、保护、显示、信息处理、继电接触等二次回路及外围电路。
利用这些电路,根据应用对象的不同,组成了各种用途的整机,称为电力电子装置。
这些装置常与负载、配套设备等组成一个系统。
电子学、电工学、自动控制、信号检测处理等技术常在这些装置及其系统中大量应用。
二、电力电子技术的应用作用1、优化电能使用。
通过电力电子技术对电能的处理,使电能的使用达到合理、高效和节约,实现了电能使用最佳化。
例如,在节电方面,针对风机水泵、电力牵引、轧机冶炼、轻工造纸、工业窑炉、感应加热、电焊、化工、电解等14个方面的调查,潜在节电总量相当于1990年全国发电量的16%,所以推广应用电力电子技术是节能的一项战略措施,一般节能效果可达10%-40%,我国已将许多装置列入节能的推广应用项目。
2、改造传统产业和发展机电一体化等新兴产业。
据发达国家预测,今后将有95%的电能要经电力电子技术处理后再使用,即工业和民用的各种机电设备中,有95%与电力电子产业有关,特别是,电力电子技术是弱电控制强电的媒体,是机电设备与计算机之间的重要接口,它为传统产业和新兴产业采用微电子技术创造了条件,成为发挥计算机作用的保证和基础。
3、电力电子技术高频化和变频技术的发展,将使机电设备突破工频传统,向高频化方向发展。
实现最佳工作效率,将使机电设备的体积减小几倍、几十倍,响应速度达到高速化,并能适应任何基准信号,实现无噪音且具有全新的功能和用途。
4、电力电子智能化的进展,在一定程度上将信息处理与功率处理合一,使微电子技术与电力电子技术一体化,其发展有可能引起电子技术的重大改革。
有人甚至提出,电子学的下一项革命将发生在以工业设备和电网为对象的电子技术应用领域,电力电子技术将把人们带到第二次电子革命的边缘。
三、电力电子技术器件02年出现了第一个玻璃的汞弧整流器。
1910年出现了铁壳汞弧整流器。
用汞弧整流器代替机械式开关和换流器,这是电力电子技术的发端。
1920年试制出氧化铜整流器,1923年出现了硒整流器。
30年代,这些整流器开始大量用于电力整流装置中。
20世纪40年代末出现了晶体管。
20世纪50年代初,晶体管向大功率化发展,同时用半导体单晶材料制成的大功率二极管也得到发展。
1954年,瑞典通用电机公司(ASEA公司)首先将汞弧管用于高压整流和逆变,并在±100千伏直流输电线路上应用,传输20兆瓦的电力。
1956年,美国人J.莫尔制成晶闸管雏型。
1957年,美国人R.A.约克制成实用的晶闸管。
50年代末晶闸管被用于电力电子装置,60年代以来得到迅速推广,并开发出一系列派生器件,拓展了电力电子技术的应用领域。
电力电子电路随着晶闸管应用的推广,开发出许多电力电子电路。
四、电力电子电路器件类别1、将交流电能转换成直流电能的整流电路;2、将直流电能转换成交流电能的逆变电路;3、将一种形式的交流电能转换成另一种形式的交流电能的交流变换电路;4、将一种形式的直流电能转换成另一种形式的直流电能的直流变换电路。
这些电路都包含晶闸管,而每个晶闸管都需要相应的触发器。
于是配合这些电力电子电路出现了许多的触发控制电路。
五、电子电路器件分类1、控制电路主要由分立的电子元件(如晶体管、二极管)组成。
直到80年代后期,还用得不少。
2、由集成电路组成。
自从1958年美国出现了世界上第一个集成电路以来,发展异常迅速。
它应用到电力电子装置的控制电路中,使其结构紧凑,功能和可靠性得到提高。
3、由微机进行控制。
70年代以来,由于微机的发展使电力电子装置进一步朝实现智能化的方向进步。
电力电子装置随着电力电子电路的发展和完善,由晶闸管组成的许多类型的电力电子装置不断出现。
如大功率的电解电源、焊接电源、电镀用的直流电源;直流和交流牵引、直流传动、交流串级调速、变频调速等传动用电源;励磁、无功静止补偿、谐波补偿等电力系统用的电力电子装置;低频、中频、高频电源等各种非工频电源,尤其是感应加热的中高频电源;不停电电源、交流稳压电源等各种工业用电力电子电源;各种调压器等等。
这些电力电子装置,与传统的电动机-发电机组比,有较高的电效率(以容量10千瓦至数百千瓦、频率为1000赫的电动机-发电机组为例,在额定负载下,效率η=80%,并随负载减小而显著降低,若用晶闸管电源,η≥92%,且随负载变化不大),因此,有明显的节能效果。
电力电子装置是静止式装置,占地面积小,重量轻,安装方便(以焊接电源为例,与旋转焊机相比,重量减轻80%,节能15%)。
同时,电力电子装置往往对频率、电压等的调节比较容易,响应快,功能多,自动化程度高,因此用于工业上不但明显节能,还往往能提高生产率和产品质量,节省原材料,并常能改善工作环境。
但电力电子装置大多为电子开关式装置,它往往对电网和负载产生谐波干扰,有时还对周围环境引起一定的高频干扰,这是在设计这些装置和系统时必须妥善解决的。
电力电子技术论文范文篇二电力电子技术的应用【摘要】本文简单阐述了电力电子技术的发展,主要介绍了电力电子技术在电力系统、汽车工业、光伏发电领域等方面的应用。
【关键词】电力电子技术;应用0.引言电力电子技术是一个以功率半导体器件、电路技术、计算机技术、现代控制技术为支撑的技术平台。
经过50年的发展历程,电力电子技术已迅速发展成为一门独立的技术、学科领域。
它的应用领域几乎涉及到国民经济的每个工业。
尤其是进入21世纪,随着新的理论、器件、技术的不断涌现,特别是与微电子技术的日益融合,电力电子技术的应用领域也必将不断地得以拓展,它将成为新世纪的关键支撑技术之一。
电力电子技术拥有许多微电子技术所具有的特征,比如发展迅速、渗透力强、生命力旺盛,并且能与其它学科相互融合和相互发展。
1.电力电子技术在电力系统中的应用自20世纪80年代,柔性交流输电(FACTS)概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。
已有不少文献介绍和总结了相关设备的基本原理和应用现状。
以下按照电力系统的发电、输电和配电以及节电环节,列举电力电子技术的应用研究和现状。
1.1在发电环节中的应用电力系统的发电环节涉及发电机组的多种设备,电力电子技术的应用以改善这些设备的运行特性为主要目的。
静止励磁采用晶闸管整流自并励方式,具有结构简单、可靠性高及造价低等优点,被世界各大电力系统广泛采用。
由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控制规律提供了充分发挥作用并产生良好控制效果的有利条件。
变速恒频励磁广泛应用于水力、风力发电机。
在水力和风力发电过程中,为了获得最大有效功率,使水力和风力发电机组变速运行,主要通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。
此项应用的技术核心是变频电源。
发电厂风机水泵的变频调速。
风机水泵耗电量约占火电设备总耗电量的65%,且运行效率较低。
使用低压或高压变频器,实施风机水泵的变频调速,可以达到节能的目的。
低压变频器技术已非常成熟,国内外有许多的生产厂家,无完整的系列产品,但具备高压大容量变频器设计和生产能力的企业较少,目前,国内不少院校和企业正在抓紧时间搞联合研发。
1.2在输电环节的应用电力电子元器件应用于高压输电系统被称为“硅片引起的第二次革命”,大幅度改善了电力网的稳定运行特性。
在输电环节中应用的技术主要有直流输电(HVDC)和轻犁直流输电(HVDC Light)技术以及柔性交流输电(FACTS)技术,其中柔性交流输电技术应用尤为重要。
FACTS技术的概念问世于20世纪80年代,它是一项基于电力电子技术与现代控制技术对交流输电系统的阻抗、电压及相位实施灵活快速调节的输电技术,可实现对交流输电功率潮流的灵活控制,从而大幅度提高电力系统的稳定水平。
近年来柔性交流输电技术在世界上发展迅速,并将FACTS技术用于实际电力系统工程。
1.3在配电环节中的应用配电系统亟待需要解决的问题是如何加强供电可靠性和提高电能质量。
电能质量控制不仅要满足对电压、频率、谐波和不对称度的要求,还要抑制各种瞬态的波动和干扰。
电力电子技术和现代控制技术在配电系统中的应用,即为用户电力技术或称DFACTS技术,是在FACTS各项成熟技术的基础上发展起来的电能质量控制新技术。
可以将DFACTS设备理解为FACTS设备的压缩版,其原理、结构均相同,功能也相似。