2019-2020年秋浙教版数学九年级上册期末综合达标测试卷(有答案)
- 格式:doc
- 大小:438.41 KB
- 文档页数:7
第一学期期末质量检测试卷初三数学考生须知:本试卷满分120分,考试时间为120分钟.请同学们按规定将所有试题的答案写答题卷上,不能使用计算器. 参考公式:二次函数y=ax 2+bx+c的顶点坐标是)44,2(2ab ac a b --.一、选择题(本大题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项填在相应的答案栏内,不选、多选、错选均不给分.) 1.下列各数中属于正整数的是( ) A. 1 B. 0 C.122.二次函数23(2)1y x =--+的图象的顶点坐标是( )A.(2-,1)B.(2,1)C.(2-,1-)D.(2,1-) 3.下列计算正确的是( )A .236a a a ∙= B .224a a a += C .224326a a a ⨯= D .54a a -= 4.小芳从正面(图示“主视方向”)观察左边的热水瓶时,得到的主视图是( )5.某反比例函数的图象过点(1,3-),则此反比例函数解析式为( ) A .3y x =B .3y x =-C .13y x =D .13y x=-6.已知:⊙1O 和⊙2O 的半径分别为10cm 和4cm ,圆心距为6cm ,则⊙1O 和⊙2O 的位置关系是( )A. B. C. D. 主视方向A.外切B.相离C.相交D.内切 7.方程(2)0x x +=的解是( )A.2x =B.2x =-C.0x =或2D.0x =或2- 8.已知函数22y x x =-++,则当0y <时,自变量x 的取值范围是( ) A .1x <-或2x > B .12x -<< C .2x <-或1x >D .21x -<<9. 下列四个三角形,与左图中的三角形相似的是( )10.如图,AC 是菱形ABCD 的对角线,AE EF FC ==, 则S △BMN :S 菱形ABCD =( ) A.34 B.37 C.38 D.310二、填空题(本大题有6小题,每小题4分,共24分.)11.当x ________时,分式12x -有意义. 12.已知32a b =,则算式a bb+=________.13.如图:AB 是⊙O 的直径,C 、D 在圆上,已知∠D =30ο,BC =2,则AB 长为________.14.如图是小李设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD的顶端第9题 (A ). (B ). (C ). (D ).第14题BA 第13题B D第10题C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB =1.1米,BP =1.9米,PD =19米, 那么该古城 墙CD 的高度是 _米. 15.已知:2441x x =-,则y x =__________.16.如图,等边三角形ABO 放在平面直角坐标系中,其中点O 为坐标原点,点B 的坐标为(8-,0),点A 位于第二象限.已知点P 、点Q 同时从坐标原点出发,点P 以每秒4个单位长度的速度沿O B A B O →→→→来回运动一次,点Q 以每秒1个单位长度的速度从O 往A 运动,当点Q 到达点A 时,P 、Q 两点都停止运动.在点P 、点Q 的运动过程中,存在某个时刻,使得P 、Q 两点与点O 或点A 构成的三角形为直角三角形,那么点P 的坐标为__________.三、解答题(本大题有8小题,共66分.请将答案写在答题纸上,务必写出解答过程.) 17.(8分)(1(2)2sin 45π0ο-+;(2)化简:()()(2)a b a b a b a +-+-.18.(6分)学校组织初三数学备课组全体教师去外校听课,安排了两辆车,按1~2编号,程、李两位教师可任意选坐一辆车.(1)用画树状图的方法或列表法列出所有可能的结果; (2)求程、李两位教师同坐2号车的概率.19.(6分)已知:△ABC 中,AC 边的长为3(cm ),AC 上的高BD 为2(cm ).设△ABC 中BC 边的长为x (cm ),BC 上的高AE 为y (cm ). (1)求y 关于x 的函数解析式和自变量x 的取值范围; (2)求当636x <<时y 的取值范围.20.(6分)已知:如图,A 是⊙O 外一点,AO 的延长线交⊙O 于点C 和点D ,点B 在圆上,且AB BD =,∠30A ο=. (1)求证:直线AB 是⊙O 的切线; (2)若⊙O 的直径为10,求AC 的长.21.(8分)某饮料经营部每天的固定成本为200元,其销售的饮料每瓶进价为5元.销售单价与日均销售量的关系如下表:(1)若记销售单价比每瓶进价多x 元时,日均毛利润(毛利润=售价-进价-固定成本)为y 元,求y 关于x 的函数解析式和自变量的取值范围;AD(2)若要使日均毛利润达到最大,销售单价应定为多少元?最大日均毛利润为多少元?22.(10分)阅读材料,解答问题.例 如图,在△BCD 中,∠90C ο=,∠45BDC ο=,利用此等腰直角三角形你能求出tan 22.5ο的值吗?解:延长CD 到点A ,使AD BD =,连结AB . 设BC a =(0a >).∵在△BCD 中,∠90C ο=,∠45BDC ο=.∴∠4522.52A οο==. ∴CD a =,AD BD ==.∴1)AC a =.∴tan 22.51BC AC ο=====. (1)仿照上例,求出tan15ο的值;(2)在一次课外活动中,小刘从上例得到启发,用硬纸片做了两个直角三角形,如图1、图2.图1中,∠90B ο=,∠30A ο=,6BC cm =;图2中,∠90D ο=,∠45E ο=,4DE cm =.图3是小刘所做的一个实验:他将△DEF 的直角边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿CA 方向移动.在移动过程中,D 、E 两点始终在CA 边上(移动开始时点E 与点C 重合).①在△DEF 沿CA 方向移动的过程中,∠FCD 的度数逐渐__________.(填“不变”、“变大”、“变小”)②在△DEF 移动过程中,是否存在某个位置,使得∠FCD 15ο=?如果存在,求出AD 的ABC长度;如果不存在,请说明理由.23.(10分)如图,已知A ,B 两点的坐标分别为(3-,0),(0,3),⊙C 的圆心坐标为(3,0),并与x 轴交于坐标原点O .若E 是⊙C 上的一个动点,线段AE 与y 轴交于点D . (1)线段AE 长度的最小值是_________,最大值是_________;(2)当点E 运动到点1E 和点2E 时,线段AE 所在的直线与⊙C 相切,求由A 1E 、A 2E 、弧1E O 2E 所围成的图形的面积;(3)求出△ABD 的最大值和最小值.24.(12分)已知:直角梯形OABC 中,BC ∥OA ,∠A O C =90ο,以AB 为直径的圆M 交OC 于点D 、E ,连结AD 、BD 、BE.图1图2图3(1)在不添加其他字母和线的前提下..............,直接..写出图1中的两对相似三角形: _____________________,______________________ ;(2)直角梯形OABC 中,以O 为坐标原点,A 在x 轴正半轴上建立直角坐标系(如图2),若抛物线223(0)y ax ax a a =--<经过点A 、B 、D ,且B 为抛物线的顶点. ①写出顶点B 的坐标(用含a 的代数式表示)___________; ②求抛物线的解析式;③在x 轴下方的抛物线上是否存在这样的点P ,过点P 作PN ⊥x 轴于点N ,使得以点P 、A 、N 为顶点的三角形与△ADB 相似?若存在,求出点P 的坐标;若不存在,说明理由.做完了吗?做完请仔细检查哦!答案:一、选择题(本大题有10小题,每小题3分,共30分.) 1~5:ABCAB 6~10:DDABC二、填空题(本大题有6小题,每小题4分,共24分.) 11. ≠2; 12.52; 13. 4; 14. 11; 15. 14; 16.(367-、(449-)、(203-)、(329-,0).三、解答题(本大题有8小题,共66分.) 17.(8分)(1)1 ………………………………4分 (2)22ab b - ………………………………4分 18.(6分) (1)………………………………4分(2)14………………………………2分 19.(6分)开始12121 2(1)6y x=………………………………3分 2x ≥ ………………………………1分 (2)116y << ………………………………2分 20.(6分)(1)证明略 ………………………………3分 (2)5 ………………………………3分 21.(8分)(1)240520200y x x =-+-………………………………3分 013x << ………………………………1分 (2)销售单价定为11.5元 ………………………………2分 最大日均毛利润为1490元 ………………………………2分 22.(10分)(1)2- ………………………………4分 (2)①变小 ………………………………2分②不存在 ………………………………4分 23.(10分)(1)3 ………………………………1分 9 ………………………………1分(2)3π ………………………………4分(3………………………………2分最小值为92-………………………………2分24.(12分)(1)△OAD ∽△CDB ,△ADB ∽△ECB .……………4分 (2)①(1,4a -)…………………………………………1分②抛物线的解析式为:322++-=x x y ………………3分 ③当1x <-时,点P 为(43-,139-)、(4-,21-)………………2分 当3x >时两个点P 不存在 …………………………………2分。
第一学期九年级期末模拟检测数学试题卷一、选择题:(每题3分,共30分)1.Rt △ABC 中,∠C=90°,AB=13,BC=5,则=∠A tan ( )A .125B .135 C .1312D .1213 2. 已知两圆半径分别为2cm 和3cm ,当两圆外切时,它们的圆心距d 满足( )A.5d cm >B.5d cm =C.1d cm =D.1d cm < 3.在反比例函数(0)k y k x =<的图像上有两点1(1,)y -,21(,)4y -,则12y y -的值是( ) A .正数 B .负数 C .非正数 D .不能确定4.如图,小明周末到外婆家,走到十字路口处,记不清前面哪条路是往外婆家的,那么他能一次选对路的概率是( ) A.41 B.31 C.21D.1(第4题图) (第5题图) (第6题图) (第7题图) 5.如图所示,在房子外的屋檐E 处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区在( )A.△ACEB.△BFDC.四边形BCEDD.△ABD 6.函数2y ax bx c =++的图像如图所示,这个函数的解析式为( )A.223y x x =-++ B. 223y x x =--D BCAEC.223y x x =--+D. 223y x x =---7.如图,在△ABC 中,AB=AC ,∠A=36º,BD 平分∠ABC ,DE ∥BC ,那么在下列三角形中,与 △EBD 相似的三角形是( ) A.△ABC B.△ADE C.△DAB D.△BDC 8.已知一个圆锥的底面积是全面积的13,那么这个圆锥的侧面展开图的圆心角是( ) A. 60º B. 90º C.120º D. 180º9.如图,正方形ABCD 的边长为1,E 、F 分别是边BC 和CD 上的动点 (不与正方形的顶点重合),不管E 、F 怎样动,始终保持AE ⊥EF 。
浙教版2019-2020九年级数学第一学期期末模拟测试题(能力提升附答案详解)一、单选题1.如果x:(x+y)=3:5,那么x:y=( )A.32B.85C.23D.382.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tan B的值是()A.22B.3 C.24D.133.如图,在△ABC中,点D在AB上,BD=2AD,DE∥BC交AC于E,则下列结论不正确的是()A.BC=3DEB.C.△ADE~△ABCD.S△ADE=S△ABC 4.如图,二次函数y=ax2+bx+c(a≠0)的大致图象,关于该二次函数下列说法正确的是()A.a>0,b<0,c>0B.b2﹣4ac<0C.当﹣1<x<2时,y>0D.当x>2时,y随x的增大而增大5.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是()A.C DB CB.A CA BC.A DA CD.C DA C6.五张标有2、6,3,4,1的卡片,除数字外,其它没有任何区别,现将它们背面朝上,从中任取一张,得到卡片的数字为偶数的概率是().12347.下列运动是属于旋转的是( )A.滚动过程中的篮球的滚动;B.钟表的钟摆的摆动;C.气球升空的运动;D.一个图形沿某直线对折过程8.某物体的主视图如图所示,则该物体可能为()A. B. C. D.9.已知y=-x(x+3-a)+1是关于x的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是()A.a=9B.a=5C.a≤9D.a≤510.已知B港口位于A观测点北偏东45°方向,且其到A观测点正北风向的距离BM 的长为10km,一艘货轮从B港口沿如图所示的BC方向航行4km到达C处,测得C处位于A观测点北偏东75°方向,则此时货轮与A观测点之间的距离AC的长为()km.A.8B.9C.6D.7二、填空题11.如图,某长方体的表面展开图的面积为430,其中BC=5,EF=10,则AB=________ .12.如图,AD是⊙O的直径,△ABC是⊙O的内接三角形,已知AC=BC,∠DAB=50°,则∠ABC=__________.13.已知一次函数y kx b =+的图象过点()1,1-且不经过第一象限,设223m k b =-,则m 的取值范值是__;14.有一张矩形的纸片,AB=3cm ,AD=4cm ,若以A 为圆心作圆,并且要使点D 在⊙A 内,而点C 在⊙A 外,⊙A 的半径r 的取值范围是 ______.15.如图,已知AB 是⊙O 的-条直径,延长AB 至点C ,使AC =3BC ,CD 与⊙O 相切于点D ,若CD =3,则OB =__.16.一男生在校运动会比赛中推铅球,铅球的行进高度()y m 与水平距离()x m 之间的函数关系式为21251233y x x =-++,则铅球被推出的水平距离为________m . 17.如图,AB 是⊙O 的直径,AB=15,AC=9,则tan ∠ADC=_____.18.如图,在等腰直角△BCD 中,90B C D ∠=︒,B C C D =,E 为△BCD 内一点,且C E D E ⊥,2D E C E =,将△CDE 绕点C 逆时针旋转90︒得到△CBF ,连接EF 、BE ,G 为DE 的中点,连接BG .如果△BDG 的面积为21cm ,那么BG 的长度为___________cm .19.如图,在正方形A B C D 中,点E 为AD 的中点,连接E C ,过点E 作EF E C ⊥,交AB 于点F ,则t a n E C F ∠=____.20.如图,点P 是矩形ABCD 的边AD 上的一个动点,矩形的两条边AB 、BC 的长分别为3和4,那么点P 到矩形的两条对角线AC 和BD 的距离之和是__________三、解答题21.已知函数y=x(2-3x),当x为何值时,函数有最大值还是最小值?并求出最值.22.如图,某小区①号楼与11号楼隔河相望,李明家住在①号楼,他很想知道11号楼的高度,于是他做了一些测量.他先在点测得点的仰角为60°,然后到42米高的楼顶处,测得点的仰角为30°,请你帮李明计算11号楼的高度.23.如图,在平整地面上,若干个完全相同的棱长为10cm的小正方体堆成一个几何体.(1)这个几何体由______个小正方体组成.(2)如果在这个几何体的表面(不含底面)喷上黄色的漆,则在所有的小正方体中,有______个正方体只有一个面是黄色,有______个正方体只有两个面是黄色,有______个正方体只有三个面是黄色.这个几何体喷漆的面积为______cm2.24.如图,一艘轮船以30海里/小时的速度由西向东航行,途中接到台风警报,台风中心正以60海里/小时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区,当轮船到A处时,测得台风中心移到位于点A正南方向的B处,且AB=40海里.(1)若轮船以原方向、原速度继续航行:①船长发现,当台风中心到达A处时,轮船肯定受影响,为什么?②求轮船从A点出发到最初遇到台风的时间;(2)若轮船在A处迅速改变航线,向北偏东60°的方向的避风港以30海里/小时的速度驶去,轮船还会不会受到影响?若会,试求轮船最初遇到台风的时间;若不会,请说明理由.25.如图,在∠ABC中,∠B=30°,AC=2,等腰直角△ACD斜边AD在AB边上,求BC的长.26.如图,直线L1:y=bx+c与抛物线L2:y=ax2的两个交点坐标分别为A(m,4),B (1,1).(1)求m的值;(2)过动点P(n,0)且垂直于x轴的直线与L1,L2的交点分别为C,D,当点C位于点D上方时,请直接写出n的取值范围.27.方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C 的坐标为(4,﹣1).(1)作出△ABC 关于y 轴对称的111ABC ,并写出1A 的坐标; (2)作出△ABC 绕点O 逆时针旋转90°后得到的222ABC ,并求出2C 所经过的路径长.28.(操作发现) (1)如图1,为等边三角形,先将三角板中的角与重合,再将三角板绕点按顺时针方向旋转(旋转角大于且小于).旋转后三角板的一直角边与交于点.在三角板斜边上取一点,使,线段上取点,使,连接,.①求的度数;②与相等吗?请说明理由;(类比探究) (2)如图2,为等腰直角三角形,,先将三角板的角与重合,再将三角板绕点按顺时针方向旋转(旋转角大于且小于).旋转后三角板的一直角边与交于点.在三角板另一直角边上取一点,使,线段上取点,使,连接,.请直接写出探究结果:①的度数;②线段之间的数量关系.参考答案1.D 【解析】 试题解析::()3:5xxy +=,533,x x y ∴=+ 23,x y ∴=3:3:2.2x y ∴==故选:D. 2.A 【解析】试题分析:设BC=x ,则AB=3x ,由勾股定理得,,则tanB=ACBC= 故选:A .考点:锐角三角函数的定义 3.D 【解析】试题分析:∵BD=2AD ,∴AB=3AD ,∵DE ∥BC ,∴DE AD BC AB ==13,∴BC=3DE ,A 结论正确; ∵DE ∥BC ,∴BD CEBA CA=,B 结论正确; ∵DE ∥BC ,∴△ADE ~△ABC ,C 结论正确; ∵DE ∥BC ,AB=3AD ,∴S △ADE =19S △ABC ,D 结论错误,故选D . 考点:平行线分线段成比例. 4.D 【解析】试题分析:由抛物线开口方向得a >0,由抛物线的对称轴位置得b <0,由抛物线与y 轴的交点位置得c <0,于是可对A 选项进行判断;根据抛物线与x 轴的交点个数可对B 选项进行判断;根据函数图象,利用函数图象在x 轴上方所对应的自变量的取值范围对C 选项进行判断;根据二次函数的增减性可对D选项进行判断.解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,所以A选项错误;∵抛物线与x轴有2个交点,∴△=b2−4ac>0,所以B选项错误;∵抛物线与x轴交于点(−1,0)、(2,0),∴当−1<x<2时,y<0,所以C选项错误;∵x>2在对称轴的右侧,∴y随x的增大而增大,所以D选项正确。
2019-2020学年浙教版九年级上期末考试数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列抛物线中,与y轴交点坐标为(0,3)的是()A.y=(x﹣3)2B.y=x2﹣3C.y=2x2﹣3x D.y=x2﹣2x+3 2.如图所示是一个旋转对称图形,若将它绕自身中心旋转一定角度之后不能与原图重合,则这个角度可能是()A.60°B.90°C.120°D.180°3.已知一个扇形的弧长为3π,所含的圆心角为120°,则半径为()A.9B.3C.D.4.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2﹣2D.y=(x+1)2﹣25.有两辆车按1,2编号,方方和成成两人可以任意选坐一辆车.则两人同坐1号车的概率为()A.B.C.D.6.已知点(﹣2,y1),(,y2),(,y3)在函数y=﹣(x﹣1)2的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,已知在△ABC中,AB=14,BC=12,AC=10,D是AC上一点,过点D画一条直线l,把△ABC分成两部分,使其中的一个三角形与△ABC相似,这样的直线有几条()A.2B.3C.3或4D.48.甲、乙两人同时从A地出发,步行15km到B地,甲比乙每小时多走1km,结果甲比乙早到半小时,两人每小时各走几千米?设甲每小时走xkm,则可列出的方程为()A.B.C.D.9.已知反比例函数的图象经过点P(4,﹣1),则该反比例函数的图象所在的象限是()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限10.如图,在矩形ABCD中,AB=3,BC=5,点E在对角线AC上,连接BE,作EF⊥BE,垂足为E,直线EF交线段DC于点F,则=()A.B.C.D.二.填空题(共6小题,满分30分,每小题5分)11.(5分)醴陵市农科站在相同条件下经试验发现蚕豆种子的发芽率为97.5%,请估计醴陵地区1000斤蚕豆种子中不能发芽的大约有斤.12.(5分)若△ABC∽△A′B′C′,∠A=50°,∠C=110°,则∠B′的度数为.13.(5分)如图,隧道的截面是抛物线型,抛物线的解析式为y=﹣2+4.隧道是单行道(车从正中间通过),为安全考虑,车顶与隧道顶部的垂直距离不少于0.5m,若货运汽车的宽为2米,则车安全通过隧道的限高为米.。
【期末专题复习】浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.如图,AB与CD相交于点E,AD∥BC,,CD=16,则DE的长为()A. 3B. 6C.D. 102.△ABC∽△A′B′C′,且∠A=6 °,则∠A′=().A. 22°B . ° C.6 ° D.0°3.如图,将△ABC绕点C顺时针方向旋转 0°,得△A′B′C,若AC⊥A′B′,则∠A等于()A. 0°B . 60° C.70° D.0°4.随机掷一枚均匀的硬币20次,其中有8次出现正面,12次出现反面,则掷这枚均匀硬币出现正面的概率是()A. 2B.2C. 2D.5.已知抛物线y=-x2+mx的对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A. t>-5B. -5<t<3 C. 3<t≤ D. -5<t≤BC,则=()6.如图,在平行四边形ABCD中,E是BC延长线上一点,AE交CD于点F,且CE=2A. B.C. 2D.27.如图,已知矩形ABCD中,AB=3,BE=2,EF⊥BC.若四边形EFDC与四边形BEFA相似而不全等,则CE=()A.3B.3.5C.4D.4.58.如图,在平行四边形ABCD中,E为CD上一点,连接AE,BD,且AE,BD相交于点F,DE:EC=2:3,则S△DEF:S△ABF等于()A. 4:25B. 4:9C. 9:25D. 2:39.一条排水管的截面如图.已知排水管的截面圆半径OB=10,水面宽AB是16,则截面水深CD是()A. 3B. 4C. 5D. 610.如图,二次函数y=ax2+bx+c的图象过(1,-1)和(3,0),则下列关于这个二次函数的描述,正确的是()A. y的最小值大于-1B. 当x=0时,y的值大于0C. 当x=2时,y的值等于-1 D. 当x>3时,y 的值大于0二、填空题(共10题;共33分)11.若抛物线22的开口向上,则的取值范围是________.12.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为________cm13.一个不透明的盒子中有一定数量的完全相同的小球,分别标号为1,2,3,其中标号为1的小球有,则m 3个,标号为2的小球2个,标号为3的小球有m个,若随机摸出一个小球,其标号为偶数的概率为6的值为________.14.如图,在平面直角坐标系xOy中,△ABC外接圆的圆心坐标是________,半径是________.15.抛物线y=﹣2x2+4x﹣1的对称轴是直线________ .16.如图,是半圆的直径,是一条弦,是的中点,于点且交于点,交于点.若,则 ________.17.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为________.18.(20 7•无锡)如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB 在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于________.19.如图,在扇形AOB中,∠AOB= 00,以点A为圆心, OA的长为半径作交于点C,若OA=2,则阴影部分的面积是________.20.如图,在Rt△ABC中,∠BAC= 0°,AB=4,AC=3,点D,E分别是AB,AC的中点,点G,F在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转 0°,将△CEF绕点E逆时针旋转 0°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是________.三、解答题(共9题;共57分)21.如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(-1,1), B(-3,1),C (-1,4).①画出△ABC关于y轴对称的△A1B1C1;②将△ABC绕着点B顺时针旋转 0°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留)22.甲、乙两人做摸球游戏,在不透明的口袋里放入大小相同的两个黑球和两个白球,甲摸出两个球后放回,乙再摸出两个球,若摸出一黑一白甲赢,若摸出两个相同颜色的乙赢.这个游戏公平吗?为什么?23.已知函数y=(k﹣2)x k2﹣4k+5+2x是关于x的二次函数.求:(1)满足条件的k的值;(2)当k为何值时,抛物线有最高点?求出这个最高点,这时,x为何值时,y随x的增大而增大?24.某批发商以每件50元的价格购进400件T恤.若以单价70元销售,预计可售出200件.批发商的销售策略是:第一个月为增加销售量,降价销售,经过市场调查,单价每降低0.5元,可多售出5件,但最低单价不低于购进的价格;第一个月结束后,将剩余的T恤一次性清仓销售,清仓时单价为40元.设第一个月单价降低x元.(1)根据题意,完成下表:25.亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部,颖颖的头顶及亮亮的眼睛恰在一条直线上时,两人分别标定自己的位置,.然后测出两人之间的距离 2 ,颖颖与楼之间的距离 0 (,,在一条直线上),颖颖的身高 6 ,亮亮蹲地观测时眼睛到地面的距离0.你能根据以上测量数据帮助他们求出住宅楼的高度吗?26.如图,在□ABCD中,AB=4,AD=6,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=2.[MISSING IMAGE: , ](1)求AE的长;(2)求ΔCEF的周长和面积.27.某商店将进价为100元的某商品按120元的价格出售,可卖出300个;若商店在120元的基础上每涨价1元,就要少卖10个,而每降价1元,就可多卖30个.(1)求所获利润y (元)与售价x(元)之间的函数关系式;(2)为获利最大,商店应将价格定为多少元?(3)为了让利顾客,且获利最大,商店应将价格定为多少元?28.如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1米).29.如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A.D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.答案解析部分一、单选题1.【答案】D2.【答案】C3.【答案】A4.【答案】B5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】B10.【答案】D二、填空题11.【答案】a>212.【答案】513.【答案】714.【答案】(5,2);215.【答案】x=116.【答案】17.【答案】218.【答案】3﹣﹣619.【答案】π20.【答案】≤l<13三、解答题21.【答案】①△A1B1C1如图所示②△A2BC2如图所示线段BC旋转过程中所扫过得面积S= = .22.【答案】解:画树状图如下:由树状图知,P(一黑一白)22,P(颜色相同)2,∵ 2∴不公平23.【答案】解:(1)函数y=(k﹣2)x k2﹣4k+5+2x是关于x的二次函数,得2220,解得k=1或k=3;(2)当k=1时,函数y=﹣x2+2x有最高点;y=﹣(x﹣1)2+1,最高点的坐标为(1,1),当x<1时,y随x的增大而增大.24.【答案】解:(1)20200 0 0 0 00200 0= 0 2 00 20当 0020时,售价为:50-5=45(元)0 2 00200022 0,答:T恤的销售单价定为45元时该批发商可获得最大利润,最大利润为2250元.25.【答案】过A作CN的平行线交BD于E,交MN于F.由已知可得FN=ED=AC=0.8m,AE=CD=1.25m,EF=DN=30m,∠AEB=∠AFM= 0°.又∵∠BAE=∠MAF,∴△ABE∽△AMF.∴,即:60 22 0,解得MF=20m.∴MN=MF+FN=20+0. =20. m.∴住宅楼的高度为20.8m.26.【答案】27.【答案】解:(1)当x>120时,y1=﹣10x2+2500x﹣150000;当100<x<120时,y2=﹣30x2+6900x﹣390000;(2)y1=﹣10x2+2500x﹣150000=﹣10(x﹣125)2+6250;y2=﹣30x2+6900x﹣390000=﹣30(x﹣115)2+6750;6750>6250,所以当售价定为115元获得最大为6750元;(3)当涨价x=5(元)时,所获利润y1的最大值=6250(元);当降价x=5(元)时,所获利润y2的最大值=6750(元).∴为获利最大,应降价5元,即将价格定为115元.28.【答案】解:根据题意得:AB⊥BH,CD⊥BH,FG⊥BH,在Rt△ABE和Rt△CDE中,∵AB⊥BH,CD⊥BH,∴CD∥AB,可证得:△CDE∽△ABE∴ ①,同理:②,又CD=FG=1.7m,由①、②可得:,即,解之得:BD=7.5m,将BD=7.5代入①得:AB= . m≈6.0m.答:路灯杆AB的高度约为6.0m.29.【答案】(1)解:由题意可知:0 0解得:2∴抛物线的解析式为:y=﹣x2﹣2x+3 (2)解:∵△PBC的周长为:PB+PC+BC ∵BC是定值,∴当PB+PC最小时,△PBC的周长最小,∵点A.点B关于对称轴I对称,∴连接AC交l于点P,即点P为所求的点∵AP=BP∴△PBC的周长最小是:PB+PC+BC=AC+BC∵A(﹣3,0),B(1,0),C(0,3),∴AC= 2,BC= 0∴△PBC的周长最小是:2 0.(3)解:①∵抛物线y=﹣x2﹣2x+3顶点D的坐标为(﹣1,4)∵A(﹣3,0)∴直线AD的解析式为y=2x+6∵点E的横坐标为m,∴E(m,2m+6),F(m,﹣m2﹣2m+3)∴EF=﹣m2﹣2m+3﹣(2m+6)=﹣m2﹣4m﹣3∴S=S△DEF+S△AEF=EF•GH+EF•AC=EF•AH=(﹣m2﹣4m﹣3)×2=﹣m2﹣4m﹣3;②S=﹣m2﹣4m﹣3=﹣(m+2)2+1;∴当m=﹣2时,S最大,最大值为1此时点E的坐标为(﹣2,2)。
期末综合达标测试卷(满分:120分 时间:120分钟)一、选择题(每小题3分,共30分)1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( B )A .4个B .3个C .2个D .1个2.如图,在△ABC 中,D 、E 两点分别在BC 、AC 边上.若BD =CD ,∠B =∠CDE ,DE =2,则AB 的长为( A )第2题A .4B .5C .6D .73.如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB 的度数为( A )第3题A .25°B .30°C .40°D .50°4.如图,在△ABC 中,∠B =90°,AB =6,BC =8,将△ABC 沿DE 折叠,使点C 落在AB 边上的点C ′处,并且C ′D ∥BC ,则CD 的长是( A )第4题A .409B .509C .154D .2545.一个布袋里装有3个红球、2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是红球的概率是( C )A .15B .25C .35D .236.在同一坐标系中,一次函数y =a +b (a ≠0)与二次函数y =b 2+a (b ≠0)的图象可能是( C )7.如图,AB 为⊙O 的直径,弦DC ⊥AB 于点E ,∠DCB =30°,EB =3,则弦DC 的长度为( D )第7题A .3 3B .4 3C .5 3D .6 38.如图,在四边形ABCD 中,E 、F 分别在AD 和BC 上,AB ∥EF ∥DC ,且DE =3,DA =5,CF =4,则FB 等于( B )第8题A .32B .83C .5D .69.在一个不透明的盒子中,装有2个白球和1个红球,这些球除颜色外其余都相同,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,应在该盒子中再添加红球( B )A .2个B .3个C .4个D .5个10.已知关于的方程ax -2+2-3=0只有一个实数根,则实数a 的取值范围是( C )A .a >0B .a <0C .a ≠0D .a 为一切实数二、填空题(每小题4分,共32分)11.给出下列四个函数:①y =-;②y =;③y =1x ;④y =2(<0).其中,y 随的增大而减小的函数有①④ .(写出正确答案的序号)12.如图,D 、E 两点分别在△ABC 的边AB 、AC 上,DE 与BC 不平行,当满足条件__∠ADE =∠C (答案不唯一)__(写出一个即可)时,△ADE ∽△ACB .第12题13.如图,AB 是⊙O 的直径,BC ︵ =CD ︵ =DE ︵,∠COD =34°,则∠AEO 的度数是__51°__ .第13题14.如图,△ABC 中,点D 、E 分别在边AB 、BC 上,DE ∥AC .若BD =4,DA =2,BC =5,则EC = 53.第14题15.在一个暗箱里放有m 个除颜色外其他完全相同的球,这m 个球中绿球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到绿球的频率稳定在25%,那么可以推算出m 大约是__12__.16.出售某种文具盒,若每个获利元,一天可售出(6-)个,则当=__3__元时,一天出售该种文具盒的总利润最大.17.一个扇形的圆心角为120°,弧长为6π,则此扇形的半径为__9__ .18.如图,在△ABC 中,∠C =90°,BC =16 cm ,AC =12 cm ,点P 从点B 出发,沿BC 以2 cm /s 的速度向点C 移动,点Q 从点C 出发,以1 cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为t s ,当t =6411或245时,△CPQ 与△CBA 相似.第18题三、解答题(共58分)19.(8分)在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1,2,3,现从中任意摸出一个小球,将其上面的数字作为点M 的横坐标,将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M 的纵坐标.(1)写出点M 坐标的所有可能的结果; (2)求点M 在直线y =上的概率;(3)求点M 的横坐标与纵坐标之和是偶数的概率. 解:(1)列表如下:由表可知,点M ,(2,3),(3,1),(3,2),(3,3). (2)由表可得,点M 在直线y =上的结果有(1,1),(2,2),(3,3),共3个,∴所求概率P =39=13.(3)点M 的横、纵坐标之和为偶数的结果有(1,1),(1,3),(2,2),(3,1),(3,3),共5个,∴所求概率P =59. 20.(8分)如图,AB =3AC ,BD =3AE ,BD ∥AC ,点B 、A 、E 在同一条直线上.第20题(1)求证:△ABD ∽△CAE ;(2)如果AC =BD ,AD =22BD ,设BD =a ,求BC 的长.(1)证明:∵BD ∥AC ,点B 、A 、E 在同一条直线上,∴∠DBA =∠CAE .又∵AB AC =BDAE =3,∴△ABD∽△CAE .(2)解:∵AB =3AC =3BD ,AD =22BD ,∴AD 2+BD 2=8BD 2+BD 2=9BD 2=AB 2, ∴∠D =90°.由(1)得∠E =∠D =90°.∵AE =13BD ,EC =13AD =223BD ,AB =3BD ,∴在Rt △BCE 中,BC 2=(AB +AE )2+EC 2=12BD 2=12a 2,∴BC =23a .21.(9分)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 于点E ,交BC 于点D .求证:第21题(1)D 是BC 的中点; (2)△BEC ∽△ADC ; (3)BC 2=2AB ·CE .证明:(1)∵AB 是⊙O 的直径,∴∠ADB =90°,即AD 是底边BC 上的高.又∵AB =AC ,∴△ABC 是等腰三角形,∴D 是BC 的中点. (2)∵∠CBE 与∠CAD 是同弧所对的圆周角,∴∠CBE =∠CAD .又∵∠BCE =∠ACD ,∴△BEC ∽△ADC . (3)由△BEC ∽△ADC ,知CD AC =CEBC ,即CD ·BC =AC ·CE .∵D 是BC 的中点,∴CD =12BC .又∵AB =AC ,∴12BC ·BC =AB ·CE ,即BC 2=2AB ·CE .22.(9分)如图,已知AB 是半圆O 的直径,点P 是半圆上一点,连结BP ,并延长BP 到点C ,使PC =PB ,连结AC .(1)求证:AB =AC ;(2)若AB =4,∠ABC =30°,求阴影部分的面积.第22题(1)证明:连结AP .∵AB 是半圆O 的直径,∴∠APB =90°,∴AP ⊥BC .又∵PC =PB ,∴△ABC 是等腰三角形,即AB =AC . (2)解:∵∠APB =90°,AB =4,∠ABC =30°,∴AP =12AB =2,∴BP =AB 2-AP 2=2 3.连结OP .∵∠ABC =30°,∴∠P AB =60°,∴∠POB =120°.∵点O 是AB 的中点,∴S ΔPOB =12S ΔP AB=12×12AP ·PB =14×2×23=3,∴S 阴影=S 扇形BOP -S ΔPOB =120π×22360-3=43π- 3. 23.(10分)某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y (单位:元)与销售价(单位:元/件)之间的函数解析式; (2)当销售价定为45元时,计算月销售量和销售利润;(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10 000元,销售价应定为多少? (4)当销售价定为多少元时会获得最大利润?并求出最大利润.解:(1)由题意,得y =(-30)[600-10(-40)]=-102+1300-30 000. (2)当=45时,600-10(-40)=550,y =550×(45-30)=8250.即月销售量和销售利润分别为550件,8250元. (3)当y =10 000时,即10 000=-102+1300-30 000,解得1=50,2=80.当=80时,600-10×(80-40)=200<300(不合题意,舍去),故销售价应定为50元. (4)y =-102+1300-30 000=-10(-65)2+12 250,故当=65时,y 有最大值.即当销售价定为65元时获得最大利润,最大利润为12 250元.24.(14分)如图,已知抛物线y =122+b +c 与y 轴相交于点C ,与轴相交于A 、B 两点,点A 的坐标为(2,0),点C 的坐标为(0,-1).(1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥轴于点D ,连结DC ,当△CDE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形?若存在,求点P 的坐标;若不存在,说明理由.第24题解:(1)将A 、C 的坐标代入y =122+b +c ,易得二次函数的解析式为y =122-12-1. (2)设点D 的坐标为(m,0)(0<m <2),则OD =m ,AD =2-m .由△ADE ∽△AOC ,得AD AO =DE OC .∴2-m 2=DE1,∴DE =2-m 2,∴△CDE 的面积为12×2-m 2×m =-14(m -1)2+14.当m =1时,△CDE 的面积最大,此时点D 的坐标为(1,0). (3)存在.易求得直线BC 的解析式为y =--1.在Rt △AOC 中,∠AOC =90°,OA =2,OC =1,∴AC = 5.∵OB =OC ,∴∠BCO =45°.①当PC =AC =5时,设P (,--1).过点P 作PH ⊥y 轴于点H ,如图1,则∠HCP =∠BCO =45°,CH =PH =||.在Rt △PCH 中,2+2=()52,解得1=102,2=-102.∴点P 坐标为⎝⎛⎭⎫102,-102-1或⎝⎛⎭⎫-102,102-1;②当AC =AP =5时,设P (,--1).过点P 作PG ⊥轴于点G ,如图2.AG =|2-|,GP =|--1|.在Rt △APG 中,由AG 2+PG 2=AP 2,可得1=1,2=0(舍去),∴P (1,-2);③当PC =AP 时,设P (,--1).过点P 作PQ ⊥y 轴于点Q ,PL ⊥轴于点L ,如图3,∴L (,0),∴△QPC 为等腰直角三角形,PQ =CQ =,∴CP =P A = 2.在Rt △APL 中,AL =|-2|,PL =|--1|,∴(2)2=(-2)2+(+1)2,解得=52,∴P ⎝⎛⎭⎫52,-72.综上所述,点P 的坐标为⎝⎛⎭⎫102,-102-1或⎝⎛⎭⎫-102,102-1或(1,-2)或⎝⎛⎭⎫52,-72.图1图2图3。
浙教版2019—2020学年度九年级上学期期末数学试卷及答案一、选择题(共12小题;每小题4分;满分48分)1.若x:y=6:5;则下列等式中不正确的是( )A.B.C.D.2.二次函数y=x2﹣2x﹣2与坐标轴的交点个数是( )A.0个B.1个C.2个D.3个3.如图;在平行四边形ABCD中;E为CD上一点;DE:CE=2:3;连结AE;BD交于点F;则S△DEF:S△A DF:S△ABF等于( )A.2:3:5 B.4:9:25 C.4:10:25 D.2:5:254.从标有1;2;3;4的四张卡片中任取两张;卡片上的数字之和为奇数的概率是( )A.B.C.D.5.如图;一根5m长的绳子;一端拴在互相垂直的围墙墙角的柱子上;另一端拴着一只小羊A(羊只能在草地上活动);那么小羊A在草地上的最大活动区域面积是( )A.πm2B.πm2C.πm2D.πm26.二次函数y=ax2﹣2x﹣3(a<0)的图象一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限.7.在下列命题中;正确的是( )A.三点确定一个圆B.圆的内接等边三角形只有一个C.一个三角形有且只有一个外接圆D.一个四边形一定有外接圆8.二次函数y=ax2+bx+c(a≠0)的图象如图;下列结论:(1)c<0;(2)b>0;(3)4a+2b+c>0;(4)(a+c)2<b2.其中不正确的有( )A.1个B.2个C.3个D.4个9.某块面积为4000m2的多边形草坪;在嘉兴市政建设规划设计图纸上的面积为250cm2;这块草坪某条边的长度是40m;则它在设计图纸上的长度是( )A.4cm B.5cm C.10cm D.40cm10.抛物线y=﹣(x﹣2)2+1经过平移后与抛物线y=﹣(x+1)2﹣2重合;那么平移的方法可以是( ) A.向左平移3个单位再向下平移3个单位B.向左平移3个单位再向上平移3个单位C.向右平移3个单位再向下平移3个单位D.向右平移3个单位再向上平移3个单位11.如图;将∠AOB放置在5×5的正方形网格中;则tan∠AOB的值是( )A.B.C.D.12.如图;等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2;且AC与DE在同一直线上;开始时点C与点D重合;让△ABC沿这条直线向右平移;直到点A与点E重合为止.设CD的长为x;△ABC 与正方形DEFG重合部分(图中阴影部分)的面积为y;则y与x之间的函数关系的图象大致是( ) A.B.C.D.二、填空题(共6小题;每小题4分;满分24分)13.已知弦AB把圆周分成1:5的两部分;则弦AB所对的圆心角的度数为__________.14.如图;将弧AC沿弦AC折叠交直径AB于圆心O;则弧AC=__________度.15.如图;我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点;抛物线的解析式为y=x2﹣2x﹣3;AB为半圆的直径;则这个“果圆”被y轴截得的弦CD 的长为__________.16.如图;在直角三角形ABC中(∠C=90°);放置边长分别3;4;x的三个正方形;则x的值为__________.17.如图;A、D、E是⊙O上的三个点;且∠AOD=120°;B、C是弦AD上两点;BC=;△BCE是等边三角形.若设AB=x;CD=y;则y与x的函数关系式是__________.18.如图;在Rt△ABC中;∠ABC=90°;BA=BC;点D是AB的中点;连结CD;过点B作BG⊥CD;分别交CD、CA于点E;F;与过点A且垂直于AB的直线相交于点G;连结DF.给出以下四个结论:①;②FG=FB;③AF=;④S△ABC=5S△BDF;其中正确结论的序号是__________.三、解答题(共8小题;满分78分)19.计算:(+1)()﹣(﹣2014)0+2sin45°.20.如图;在等边△ABC中;D为BC边上一点;E为AC边上一点;且∠ADE=60°.(1)求证:△ABD∽△DCE;(2)若BD=3;CE=2;求△ABC的边长.21.如图;AB和CD是同一地面上的两座相距39米的楼房;在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45°;楼底D的俯角为30°.求楼CD的高(结果保留根号).22.如图所示的转盘;分成三个相同的扇形;指针位置固定;转动转盘后任其自由停止;其中的某个扇形会恰好停在指针所指的位置;并相应得到一个数(指针指向两个扇形的交线时;视为无效;重新转动一次转盘);此过程称为一次操作.请用树状图或列表法;求事件“两次操作;第一次操作得到的数与第二次操作得到的数的绝对值相等”发生的概率.23.在学习圆与正多边形时;马露、高静两位同学设计了一个画圆内接正三角形的方法:(1)如图;作直径AD;(2)作半径OD的垂直平分线;交⊙O于B;C两点;(3)联结AB、AC、BC;那么△ABC为所求的三角形.请你判断两位同学的作法是否正确;如果正确;请你按照两位同学设计的画法;画出△ABC;然后给出△A BC是等边三角形的证明过程;如果不正确;请说明理由.24.如图1;在四边形ABCD的AB边上任取一点E(点E不与点A、点B重合;分别连接ED;EC;可以把四边形ABCD分成3个三角形.如果其中有2个三角形相似;我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似;我们就把点E叫做四边形ABCD的AB边上的强相似点.(1)若图1中;∠A=∠B=∠DEC=50°;证明点E是四边形ABCD的AB边上的相似点.(2)①如图2;画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限;不写画法;保留画图痕迹或有必要的说明)②对于任意的一个矩形;是否一定存在强相似点?如果一定存在;请说明理由;如果不一定存在;请举出反例.(3)如图3;在四边形ABCD中;AD∥BC;AD<BC;∠B=90°;点E是四边形ABCD的AB边上的一个强相似点;判断AE与BE的数量关系并说明理由.25.某蔬菜经销商到蔬菜种植基地采购一种蔬菜;经销商一次性采购蔬菜的采购单价y(元/千克)与采购量x(千克)之间的函数关系图象如图中折线AB﹣﹣BC﹣﹣CD所示(不包括端点A).(1)当100<x<200时;直接写y与x之间的函数关系式:__________.(2)蔬菜的种植成本为2元/千克;某经销商一次性采购蔬菜的采购量不超过200千克;当采购量是多少时;蔬菜种植基地获利最大;最大利润是多少元?(3)在(2)的条件下;求经销商一次性采购的蔬菜是多少千克时;蔬菜种植基地能获得418元的利润?26.在平面直角坐标系xOy中;一块含60°角的三角板作如图摆放;斜边AB在x轴上;直角顶点C在y轴正半轴上;已知点A(﹣1;0).(1)请直接写出点B、C的坐标:B__________、C__________;并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°;∠DEF=60°);把顶点E放在线段AB上(点E是不与A、B两点重合的动点);并使ED所在直线经过点C.此时;EF所在直线与(1)中的抛物线交于点M.①设AE=x;当x为何值时;△OCE∽△OBC;②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在;请写出点P的坐标;若不存在;请说明理由.一、选择题(共12小题;每小题4分;满分48分)1.若x:y=6:5;则下列等式中不正确的是( )A.B.C.D.考点:比例的性质.分析:根据比例设x=6k;y=5k;然后分别代入对各选项进行计算即可判断.解答:解:∵x:y=6:5;∴设x=6k;y=5k;A、==;故本选项错误;B、==;故本选项错误;C、==6;故本选项错误;D、==﹣5;故本选项正确.故选D.点评:本题考查了比例的性质;利用“设k”法表示出x、y可以使计算更加简便.2.二次函数y=x2﹣2x﹣2与坐标轴的交点个数是( )A.0个B.1个C.2个D.3个考点:抛物线与x轴的交点.分析:先计算根的判别式的值;然后根据b2﹣4ac决定抛物线与x轴的交点个数进行判断.解答:解:∵△=(﹣2)2﹣4×1×(﹣2)=12>0;∴二次函数y=x2﹣2x﹣2与x轴有2个交点;与y轴有一个交点.∴二次函数y=x2﹣2x﹣2与坐标轴的交点个数是3个.故选D.点评:本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a;b;c是常数;a≠0)与x轴的交点坐标;令y=0;即ax2+bx+c=0;解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a;b;c是常数;a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2﹣4ac决定抛物线与x轴的交点个数;△= b2﹣4ac>0时;抛物线与x轴有2个交点;△=b2﹣4ac=0时;抛物线与x轴有1个交点;△=b2﹣4ac<0时;抛物线与x轴没有交点.3.如图;在平行四边形ABCD中;E为CD上一点;DE:CE=2:3;连结AE;BD交于点F;则S△DEF:S△A DF:S△ABF等于( )A.2:3:5 B.4:9:25 C.4:10:25 D.2:5:25考点:相似三角形的判定与性质;平行四边形的性质.分析:根据平行四边形性质得出DC=AB;DC∥AB;求出DE:AB=2:5;推出△DEF∽△BAF;求出=()2=;==;根据等高的三角形的面积之比等于对应边之比求出===;即可得出答案.解答:解:∵四边形ABCD是平行四边形;∴DC=AB;DC∥AB;∵DE:CE=2:3;∴DE:AB=2:5;∵DC∥AB;∴△DEF∽△BAF;∴=()2=;==;∴===(等高的三角形的面积之比等于对应边之比);∴S△DEF:S△ADF:S△ABF等于4:10:25;故选C.点评:本题考查了平行四边形的性质和相似三角形的判定和性质的应用;注意:相似三角形的面积之比等于相似比的平方.4.从标有1;2;3;4的四张卡片中任取两张;卡片上的数字之和为奇数的概率是( )A.B.C.D.考点:列表法与树状图法.分析:列举出所有情况;看卡片上的数字之和为奇数的情况数占总情况数的多少即可.解答:解:1 2 3 41 3 4 52 3 5 63 4 5 74 5 6 7由列表可知:共有3×4=12种可能;卡片上的数字之和为奇数的有8种.所以卡片上的数字之和为奇数的概率是.故选C.点评:本题考查求随机事件概率的方法.注意:任意取两张;相当于取出不放回.用到的知识点为:概率=所求情况数与总情况数之比.5.如图;一根5m长的绳子;一端拴在互相垂直的围墙墙角的柱子上;另一端拴着一只小羊A(羊只能在草地上活动);那么小羊A在草地上的最大活动区域面积是( )A.πm2B.πm2C.πm2D.πm2考点:扇形面积的计算.专题:压轴题.分析:小羊A在草地上的最大活动区域是一个扇形+一个小扇形的面积.解答:解:大扇形的圆心角是90度;半径是5;所以面积==m2;小扇形的圆心角是180°﹣120°=60°;半径是1m;则面积==(m2);则小羊A在草地上的最大活动区域面积=+=(m2).故选D.点评:本题的关键是从图中找到小羊的活动区域是由哪几个图形组成的;然后分别计算即可.6.二次函数y=ax2﹣2x﹣3(a<0)的图象一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限.考点:二次函数的性质.分析:先根据题意判断出二次函数的对称轴方程;再令x=0求出y的值;进而可得出结论.解答:解:∵二次函数y=ax2﹣2x﹣3(a<0)的对称轴为直线x=﹣=﹣=<0;∴其顶点坐标在第二或三象限;∵当x=0时;y=﹣3;∴抛物线一定经过第四象限;∴此函数的图象一定不经过第一象限.故选A.点评:本题考查的是二次函数的性质;熟知二次函数的对称轴方程是解答此题的关键.7.在下列命题中;正确的是( )A.三点确定一个圆B.圆的内接等边三角形只有一个C.一个三角形有且只有一个外接圆D.一个四边形一定有外接圆考点:命题与定理.分析:利用确定圆的条件、圆内接三角形的定义、外接圆的定义分别判断后即可确定正确的选项.解答:解:A、不在同一直线上的三点确定一个圆;故错误;B、圆内接等边三角形有无数个;故错误;C、一个三角形有且只有一个外接圆;正确;D、并不是所有的四边形一定有外接圆;故错误;故选C.点评:本题考查了命题与定理的知识;解题的关键是了解确定圆的条件、圆内接三角形的定义、外接圆的定义等知识;难度不大.8.二次函数y=ax2+bx+c(a≠0)的图象如图;下列结论:(1)c<0;(2)b>0;(3)4a+2b+c>0;(4)(a+c)2<b2.其中不正确的有( )A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a的符号;由抛物线与y轴的交点得出c的值;然后根据图象经过的点的情况进行推理;进而对所得结论进行判断.解答:解:抛物线的开口向上;则a>0;对称轴为x=﹣=1;即b=﹣2a;故b<0;故(2)错误;抛物线交y轴于负半轴;则c<0;故(1)正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c<0;故(3)错误;把x=1代入y=ax2+bx+c得:y=a+b+c<0;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c<0;则(a+b+c)(a﹣b+c)>0;故(4)错误;不正确的是(2)(3)(4);故选C.点评:本题考查二次函数图象与二次函数系数之间的关系;二次函数与方程之间的转换;根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子;如:y=a+b+c;y=4a+2b+c;然后根据图象判断其值.9.某块面积为4000m2的多边形草坪;在嘉兴市政建设规划设计图纸上的面积为250cm2;这块草坪某条边的长度是40m;则它在设计图纸上的长度是( )A.4cm B.5cm C.10cm D.40cm考点:相似多边形的性质.分析:首先设这块草坪在设计图纸上的长度是xcm;根据题意可得这两个图形相似;根据相似图形的面积比等于相似比的平方;可列方程=()2;解此方程即可求得答案;注意统一单位.解答:解:设这块草坪在设计图纸上的长度是xcm;4000m2=40000000m2;40m=4000cm;根据题意得:=()2;解得:x=10;即这块草坪在设计图纸上的长度是10cm.故选C.点评:此题考查了相似图形的性质.此题难度不大;注意相似图形的面积比等于相似比的平方的应用与方程思想的应用.10.抛物线y=﹣(x﹣2)2+1经过平移后与抛物线y=﹣(x+1)2﹣2重合;那么平移的方法可以是( ) A.向左平移3个单位再向下平移3个单位B.向左平移3个单位再向上平移3个单位C.向右平移3个单位再向下平移3个单位D.向右平移3个单位再向上平移3个单位考点:二次函数图象与几何变换.分析:根据平移前后的抛物线的顶点坐标确定平移方法即可得解.解答:解:∵抛物线y=﹣(x﹣2)2+1的顶点坐标为(2;1);抛物线y=﹣(x+1)2﹣2的顶点坐标为(﹣1;﹣2);∴顶点由(2;1)到(﹣1;﹣2)需要向左平移3个单位再向下平移3个单位.故选A.点评:本题考查了二次函数图象与几何变换;此类题目;利用顶点的变化确定抛物线解析式更简便.11.如图;将∠AOB放置在5×5的正方形网格中;则tan∠AOB的值是( )A.B.C.D.考点:锐角三角函数的定义.专题:网格型.分析:认真读图;在以∠AOB的O为顶点的直角三角形里求tan∠AOB的值.解答:解:由图可得tan∠AOB=.故选B.点评:本题考查了锐角三角函数的概念:在直角三角形中;正切等于对边比邻边.12.如图;等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2;且AC与DE在同一直线上;开始时点C与点D重合;让△ABC沿这条直线向右平移;直到点A与点E重合为止.设CD的长为x;△ABC 与正方形DEFG重合部分(图中阴影部分)的面积为y;则y与x之间的函数关系的图象大致是( )A.B.C.D.考点:动点问题的函数图象.专题:几何图形问题;压轴题.分析:此题可分为两段求解;即C从D点运动到E点和A从D点运动到E点;列出面积随动点变化的函数关系式即可.解答:解:设CD的长为x;△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y∴当C从D点运动到E点时;即0≤x≤2时;y==.当A从D点运动到E点时;即2<x≤4时;y==∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.故选:A.点评:本题考查的动点变化过程中面积的变化关系;重点是列出函数关系式;但需注意自变量的取值范围.二、填空题(共6小题;每小题4分;满分24分)13.已知弦AB把圆周分成1:5的两部分;则弦AB所对的圆心角的度数为60°.考点:圆心角、弧、弦的关系.专题:计算题.分析:由于弦AB把圆周分成1:5的两部分;根据圆心角、弧、弦的关系得到弦AB所对的圆心角为周角的.解答:解:∵弦AB把圆周分成1:5的两部分;∴弦AB所对的圆心角的度数=×360°=60°.故答案为60°.点评:本题考查了圆心角、弧、弦的关系:在同圆或等圆中;如果两个圆心角、两条弧、两条弦中有一组量相等;那么它们所对应的其余各组量都分别相等.14.如图;将弧AC沿弦AC折叠交直径AB于圆心O;则弧AC=120度.考点:翻折变换(折叠问题);等边三角形的判定与性质;圆心角、弧、弦的关系.分析:过O点作OD⊥AC交AC于D;交弧AC于E;连结OC;BC.根据垂径定理可得OD=OE;AD=CD;根据三角形中位线定理可得OD=BC;再根据等边三角形的判定和性质;以及邻补角的定义即可求解.解答:解:过O点作OD⊥AC交AC于D;交弧AC于E;连结OC;BC.∴OD=OE;AD=CD;∵AB是直径;∴∠ACB=90°;OD=BC;又∵OC=OB;∴△OBC是等边三角形;∴∠BOC=60°;∴∠AOC=180°﹣60°=120°;即弧AC=120度.故答案为:120.点评:考查了翻折变换(折叠问题);垂径定理;三角形中位线定理;等边三角形的判定和性质;以及邻补角的定义;综合性较强;难度中等.15.如图;我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点;抛物线的解析式为y=x2﹣2x﹣3;AB为半圆的直径;则这个“果圆”被y轴截得的弦CD 的长为3+.考点:二次函数综合题.分析:连接AC;BC;有抛物线的解析式可求出A;B;C的坐标;进而求出AO;BO;DO的长;在直角三角形ACB中;利用射影定理可求出CO的长;进而可求出CD的长.解答:解:连接AC;BC;∵抛物线的解析式为y=x2﹣2x﹣3;∴点D的坐标为(0;﹣3);∴OD的长为3;设y=0;则0=x2﹣2x﹣3;解得:x=﹣1或3;∴A(﹣1;0);B(3;0)∴AO=1;BO=3;∵AB为半圆的直径;∴∠ACB=90°;∵CO⊥AB;∴CO2=AO•BO=3;∴CO=;∴CD=CO+OD=3+;故答案为:3+.点评:本题是二次函数综合题型;主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理;读懂题目信息;理解“果圆”的定义是解题的关键.16.如图;在直角三角形ABC中(∠C=90°);放置边长分别3;4;x的三个正方形;则x的值为7.考点:相似三角形的判定与性质;正方形的性质.分析:根据已知条件可以推出△CEF∽△OME∽△PFN然后把它们的直角边用含x的表达式表示出来;利用对应边的比相等;即可推出x的值答题解答:解:如图∵在Rt△ABC中∠C=90°;放置边长分别3;4;x的三个正方形;∴△CEF∽△OME∽△PFN;∴OE:PN=OM:PF;∵EF=x;MO=3;PN=4;∴OE=x﹣3;PF=x﹣4;∴(x﹣3):4=3:(x﹣4);∴(x﹣3)(x﹣4)=12;∴x1=0(不符合题意;舍去);x2=7.故答案为:7.点评:本题主要考查相似三角形的判定和性质、正方形的性质;解题的关键在于找到相似三角形;用x的表达式表示出对应边.17.如图;A、D、E是⊙O上的三个点;且∠AOD=120°;B、C是弦AD上两点;BC=;△BCE是等边三角形.若设AB=x;CD=y;则y与x的函数关系式是y=.考点:相似三角形的判定与性质;等边三角形的性质;圆周角定理.专题:计算题.分析:由圆周角定理得出∠AED=120°;得出∠EAD+∠EDC=60°;由等边三角形的性质得出∠BEC=∠EBC =∠ECB=60°;BE=CE=BC=;得出∠ABE=∠ECD=120°;证出∠AEB=∠EDC;证明△ABE∽△ECD;得出对应边成比例;即可得出结果.解答:解:连接AE、DE;如图所示:∵∠AOD=120°;∴360°﹣120°=240°;∴∠AED=×240°=120°;∴∠EAD+∠EDC=60°;∵△BCE是等边三角形;∴∠BEC=∠EBC=∠ECB=60°;BE=CE=BC=;∴∠ABE=∠ECD=120°;∠EAD+∠AEB=60°;∴∠AEB=∠EDC;∴△ABE∽△ECD;∴;即;∴y=.故答案为:y=.点评:本题考查了圆周角定理、等边三角形的性质、相似三角形的判定与性质;熟练掌握圆周角定理和等边三角形的性质;并能进行推理论证与计算是解决问题的关键.18.如图;在Rt△ABC中;∠ABC=90°;BA=BC;点D是AB的中点;连结CD;过点B作BG⊥CD;分别交CD、CA于点E;F;与过点A且垂直于AB的直线相交于点G;连结DF.给出以下四个结论:①;②FG=FB;③AF=;④S△ABC=5S△BDF;其中正确结论的序号是①②③.考点:相似三角形的判定与性质;等腰直角三角形.分析:根据同角的余角相等求出∠ABG=∠BCD;然后利用“角边角”证明△ABC和△BCD全等;根据全等三角形对应边相等可得AG=BD;然后求出AG=BC;再求出△AFG和△CFB相似;根据相似三角形对应边成比例可得=;从而判断出①正确;由AG=BC;所以FG=FB;故②正确;根据相似三角形对应边成比例求出=;再根据等腰直角三角形的性质可得AC=AB;然后整理即可得到AF=AB;判断出③正确;过点F作MF⊥AB于M;根据三角形的面积整理即可判断出④错误.解答:解:∵∠ABC=90°;BG⊥CD;∴∠ABG+∠CBG=90°;∠BCD+∠CBG=90°;∴∠ABG=∠BCD;在△ABC和△BCD中;;∴△ABG≌△BCD(ASA);∴AG=BD;∵点D是AB的中点;∴BD=AB;∴AG=BC;在Rt△ABC中;∠ABC=90°;∴AB⊥BC;∵AG⊥AB;∴AG∥BC;∴△AFG∽△CFB;∴;∵BA=BC;∴;故①正确;∵△AFG∽△CFB;∴;∴FG=FB;故②正确;∵△AFG∽△CFB;∴;∴AF=AC;∵AC=AB;∴AF=AB;故③正确;过点F作MF⊥AB于M;则FM∥CB;∴;∵;∴====;故④错误.故答案为:①②③.点评:本题考查了相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形的性质;熟练掌握相似三角形的判定方法和相似三角形对应边成比例的性质是解题的关键.三、解答题(共8小题;满分78分)19.计算:(+1)()﹣(﹣2014)0+2sin45°.考点:二次根式的混合运算;零指数幂;特殊角的三角函数值.分析:分别进行二次根式的乘法、零指数幂、特殊角的三角函数值等运算;然后合并.解答:解:原式=6﹣1﹣1+2=6.点评:本题考查了二次根式的混合运算;涉及了二次根式的乘法、零指数幂、特殊角的三角函数值等知识;属于基础题.20.如图;在等边△ABC中;D为BC边上一点;E为AC边上一点;且∠ADE=60°.(1)求证:△ABD∽△DCE;(2)若BD=3;CE=2;求△ABC的边长.考点:相似三角形的判定与性质;等边三角形的性质.分析:(1)由∠ADE=60°;可证得△ABD∽△DCE;(2)可用等边三角形的边长表示出DC的长;进而根据相似三角形的对应边成比例;求得△ABC的边长.解答:(1)证明:∵△ABC是等边三角形;∴∠B=∠C=60°;∴∠BAD+∠ADB=120°∵∠ADE=60°;∴∠ADB+∠EDC=120°;∴∠DAB=∠EDC;又∵∠B=∠C=60°;∴△ABD∽△DCE;(2)解:∵△ABD∽△DCE;∴;∵BD=3;CE=2;∴;解得AB=9.点评:此题主要考查了等边三角形的性质和相似三角形的判定和性质;能够证得△ABD∽△DCE是解答此题的关键.21.如图;AB和CD是同一地面上的两座相距39米的楼房;在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45°;楼底D的俯角为30°.求楼CD的高(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.分析:在题中两个直角三角形中;知道已知角和其邻边;只需根据正切值求出对边后相加即可.解答:解:延长过点A的水平线交CD于点E;则有AE⊥CD;四边形ABDE是矩形;AE=BD=39米.∵∠CAE=45°;∴△AEC是等腰直角三角形;∴CE=AE=39米.在Rt△AED中;tan∠EAD=;∴ED=39×tan30°=13米;∴CD=CE+ED=(39+13)米.答:楼CD的高是(39+13)米.点评:本题考查的是解直角三角形的应用﹣仰角俯角问题;涉及到特殊角的三角函数值及等腰三角形的判定;熟知以上知识是解答此题的关键.22.如图所示的转盘;分成三个相同的扇形;指针位置固定;转动转盘后任其自由停止;其中的某个扇形会恰好停在指针所指的位置;并相应得到一个数(指针指向两个扇形的交线时;视为无效;重新转动一次转盘);此过程称为一次操作.请用树状图或列表法;求事件“两次操作;第一次操作得到的数与第二次操作得到的数的绝对值相等”发生的概率.考点:列表法与树状图法.分析:根据题意;用列表法列举出所有情况;看所求的情况与总情况的比值即可得答案.解答:解:画树状图如下:所有可能出现的结果共有9种;其中满足条件的结果有5种.所以P(所指的两数的绝对值相等)=.点评:考查了列表法与树状图法求概率的知识;树状图法适用于两步或两部以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.在学习圆与正多边形时;马露、高静两位同学设计了一个画圆内接正三角形的方法:(1)如图;作直径AD;(2)作半径OD的垂直平分线;交⊙O于B;C两点;(3)联结AB、AC、BC;那么△ABC为所求的三角形.请你判断两位同学的作法是否正确;如果正确;请你按照两位同学设计的画法;画出△ABC;然后给出△A BC是等边三角形的证明过程;如果不正确;请说明理由.考点:正多边形和圆;垂径定理.分析:利用锐角三角函数关系得出∠BOE=60°;进而得出∠COE=∠BOE=60°;再利用圆心角定理得出答案.解答:解:两位同学的方法正确.连BO、CO;∵BC垂直平分OD;∴直角△OEB中.cos∠BOE==;∠BOE=60°;由垂径定理得∠COE=∠BOE=60°;由于AD为直径;∴∠AOB=∠AOC=120°;∴AB=BC=CA;。
2019-2020学年度第一学期浙教版九年级数学期末考试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.在﹣1,0,,3.010010001…,中任取一个数,取到无理数的概率是()A. B. C. D.2.如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点.若AE= ,∠EAF=135°,则以下结论正确的是()A. DE=1B. tan∠AFO=C. AF=D. 四边形AFCE的面积为3.如图,⊙O 中,弦AB、CD 相交于点P,∠A=40°,∠APD=75°,则∠B=()A. 15°B. 40°C. 75°D. 35°4.二次函数y=ax²+bx+2(a≠0)的图像经过点(-1,1)则代数1-a+b的值为()A. -3B. -1C. 2D. 55.以下说法正确的是()A. 在同一年出生的400人中至少有两人的生日相同B. 一个游戏的中奖率是1%,买100张奖券,一定会中奖C. 一副扑克牌中,随意抽取一张是红桃K,这是必然事件D. 一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是6.如图,在平面直角坐标系中,点A(-1,m)在直线y=2x+3上,连接OA,将线段OA绕点O顺时针旋转90°,点A的对应点B恰好落在直线y=-x+b上,则b的值为( )A. -2B. 1C.D. 27.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF 的长为()A. 5B. 6C. 7D. 88.如图,半径为1的圆中,圆心角为120°的扇形面积为()A. B. C. π D.9.如图,分别是边上的点,,若,则的长是().A. 1B. 2C. 3D. 410.已知过点、和的抛物线的图象大致为A. B. C. D.二、填空题(共6题;共24分)11.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=________.12.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是________.13.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,若OA2﹣AB2=8,则k的值为________.14.如图,在平面直角坐标系中,抛物线y= 与直线交于A、B,直线AB交于y轴于点C,点P为线段OB上一个动点(不与点O、B重合),当△OPC为等腰三角形时,点P的坐标:________.15.如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是________.16.如图,已知△ABO顶点A(-3,6),以原点O为位似中心,把△ABO缩小到原来的,则与点A对应的点A'的坐标是________.三、解答题(共8题;共66分)17.小丽和小明将在下周的星期一到星期三这三天中各自任选一天担任值日工作,请用画树状图或列表格的方法,求小丽和小明在同一天值日的概率.18.如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均在小正方形的顶点上.(1)以点O为位似中心,在网格图中作△A′B′C′(在位似中心的同侧)和△ABC位似,且位似比为1 2;(2)连结(1)中的AA′,求四边形AA′C′C的周长(结果保留根号).19.如图, 是的边的中点,过延长线上的点作的垂线, 为垂足, 与的延长线相交于点,点在上, , ∥.(1)证明:;(2)证明:点是的外接圆的圆心;20.如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.21.商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件,据此规律,请回答:(1)当每件商品售价定为140元时,每天可销售多少件商品?商场获得的日盈利是多少?(2)在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元,商场日盈利可达1500元?(3)商家应把商品的单价定为多少元时,可获得最大利润,并求出此时的利润为多少?22.如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(-1,2),AB⊥x轴于点E,正比例函数y=mx的图像与反比例函数的图像相交于A,P两点。
期末专题复习:浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A. 100°B. 110°C. 120°D. 130°2.两个相似多边形一组对应边分别为3 cm,4.5 cm,那么它们的相似比为( )A. B. C. D.3.在某幅地图上,AB两地距离8.5cm,实际距离为170km,则比例尺为()A. 1:20B. 1:20000C. 1:200000D. 1:20000004.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A. 8cmB. 5cmC. 3cmD. 2cm5.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a﹣b+c >0;④(a+c)2<b2.其中正确的结论是()A. ①②B. ①③C. ①③④D. ①②③④6.围棋盒子中有x颗白色棋子和y颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是,则原来盒子中有白色棋子()A. 4颗B. 6颗C. 8颗D. 12颗7.一个质地均匀的小正方体的六面上都标有数字,1,2,3,4,5,6。
如果任意抛掷小正方体两次,那么下列说法正确的是()A. 得到的数字之和必然是4B. 得到的数字之和可能是3C. 得到的数字之和不可能是2D. 得到的数字之和有可能是18.函数的图象如图所示,则下列结论中正确的是().A. B. C. D. 当时,9.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是()A. (-1.4,-1.4)B. (1.4,1.4)C. (- ,- )D. (,)10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有()个.A. 1个B. 2个C. 3个D. 4个二、填空题(共10题;共30分)11.在一个不透明的纸箱内放有除颜色外无其他差别的2个红球,8个黄球和10个白球,从中随机摸出一个球为黄球的概率是________.12.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=________°.13.如图,AB、CD是⊙O的两条弦,若∠AOB+∠C=180°,∠COD=∠A,则∠AOB= ________14.在△中,,,点D在边AB上,且,点E在边AC上,当________时,以A、D、E为顶点的三角形与△相似.15.已知点A(-4,m)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点的坐标为________.16.某飞机着陆滑行的路程s(米)与时间t(秒)的关系式为:s=60t﹣1.5t2,那么飞机着陆后滑行________ 米才能停止.17.已知点P为平面内一点,若点P 到⊙O上的点的最长距离为5,最短距离为1,则⊙O 的半径为________.18.从1、2、3、4中任取一个数作为十位上的数,再从2、3、4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是________19.如图:正方形ABCD中,过点D作DP交AC于点M、交AB于点N,交CB的延长线于点P,若MN=1,PN=3,则DM的长为________ .20.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8 ,则另一直角边AE的长为________.三、解答题(共8题;共60分)21.如图,在△ABC和△ADE中,已知∠B=∠D ,∠BAD=∠CAE ,求证:△ABC∽△ADE .22.如图,一位测量人员,要测量池塘的宽度的长,他过、两点画两条相交于点的射线,在射线上取两点、,使,若测得米,他能求出、之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.23.如图,已知AB,CB为⊙O的两条弦,请写出图中所有的弧.24.有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大和最小的事件分别是哪个?(填写序号)(2)将这些事件的序号按发生的可能性从小到大的顺序排列:.25.某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)26.D、E是圆O的半径OA、OB上的点,CD⊥OA、CE⊥OB,CD=CE,则弧CA与弧CB 的关系是?27.如图,直线BC与半径为6的⊙O相切于点B,点M是圆上的动点,过点M作MC⊥BC,垂足为C,MC与⊙O交于点D,AB为⊙O的直径,连接MA、MB,设MC的长为x,(6<x<12).(1)当x=9时,求BM的长和△ABM的面积;(2)是否存在点M,使MD•DC=20?若存在,请求出x的值;若不存在,请说明理由.28.甲、乙两个仓库向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨,B地需110吨水泥,两库到A,B两地的路程和费用如下表:(表中运费“元/吨·千米”表示每吨水泥运送1千米所需要人民币).(1)写出w关于x的函数关系式,并求x为何值时总运费最小?(2)如果要求运送的水泥数是10吨的整数倍,且运费不能超过38000元,则总共有几种运送方案?答案解析部分一、单选题1.【答案】B2.【答案】A3.【答案】D4.【答案】A5.【答案】C6.【答案】C7.【答案】B8.【答案】B9.【答案】D10.【答案】C二、填空题11.【答案】12.【答案】5513.【答案】108°14.【答案】,15.【答案】(0,10)16.【答案】60017.【答案】2或318.【答案】19.【答案】220.【答案】10三、解答题21.【答案】解答:如图,∵∠BAD=∠CAE ,∴∠BAD+∠BAE=∠CAE+∠BAE ,即∠DAE=∠BAC .又∵∠B=∠D ,∴△ABC∽△ADE .22.【答案】解: ∵,∠∠(对顶角相等),∴△ △,∴,∴,解得米.所以,可以求出、之间的距离为111.6米23.【答案】解:图中的弧为24.【答案】解:∵共3红2黄1绿相等的六部分,∴①指针指向红色的概率为=;②指针指向绿色的概率为;③指针指向黄色的概率为=;④指针不指向黄色为,(1)可能性最大的是④,最小的是②;(2)由题意得:②<③<①<④,故答案为:②<③<①<④.25.【答案】解:设男同学标记为A、B;女学生标记为1、2,可能出现的所有结果列表如下:场参赛的结果有2种,所以恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率为26.【答案】解:连CO∵DC⊥AD,CE⊥OBCD=EC∠1=∠227.【答案】证明:(1)∵直线BC与半径为6的⊙O相切于点B,且AB为⊙O的直径,∴AB⊥BC,又∵MC⊥BC,∴AB∥MC,∴∠BMC=∠ABM,∵AB是⊙O的直径,∴∠AMB=90°,∴∠BCM=∠AMB=90°,∴△BCM∽△AMB,∴,∴BM2=AB•MC=12×9=108,∴BM=6,∵BC2+MC2=BM2,∴BC==3∴S△ABM=AB•BC=×12×3=18;(2)解:过O作OE⊥MC,垂足为E,∵MD是⊙O的弦,OE⊥MD,∴ME=ED,又∵∠CEO=∠ECB=∠OBC=90°,∴四边形OBCE为矩形,∴CE=OB=6,又∵MC=x,∴ME=ED=MC﹣CE=x﹣6,MD=2(x﹣6),∴CD=MC﹣MD=x﹣2(x﹣6)=12﹣x,∴MD•DC=2(x﹣6)•(12﹣x)=﹣2x2+36x﹣144=﹣2(x﹣9)2+18∵6<x<12,∴当x=9时,MD•DC的值最大,最大值是18,∴不存在点M,使MD•DC=20.28.【答案】(1)解:设甲库运往A地粮食x吨,则甲库运到B地(100-x)吨,乙库运往A地(70-x)吨,乙库运到B地[80-(70-x)]=(10+x)吨.根据题意得:w=12×20x+10×25(100-x)+12×15(70-x)+8×20(10+x)=-30x+39200(0≤x≤70).∴总运费w(元)关于x(吨)的函数关系式为w=-30x+39200(0≤x≤70).∵一次函数中w=-30x+39200中,k=-30<0∴w的值随x的增大而减小∴当x=70吨时,总运费w最省,最省的总运费为:-30×70+39200=37100(元)答:从甲库运往A地70吨粮食,往B地运送30吨粮食,从乙库运往B地80吨粮食时,总运费最省为37100元.(2)解:因为运费不能超过38000元,所以w=-30x+39200≤38000,所以x≥40.又因为40≤x≤70,所以满足题意的x值为40,50,60,70,所以总共有4种方案.。
期末综合达标测试卷(满分:120分 时间:120分钟)一、选择题(每小题3分,共30分)1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( B )A .4个B .3个C .2个D .1个2.如图,在△ABC 中,D 、E 两点分别在BC 、AC 边上.若BD =CD ,∠B =∠CDE ,DE =2,则AB 的长为( A )第2题A .4B .5C .6D .73.如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB 的度数为( A )第3题A .25°B .30°C .40°D .50°4.如图,在△ABC 中,∠B =90°,AB =6,BC =8,将△ABC 沿DE 折叠,使点C 落在AB 边上的点C ′处,并且C ′D ∥BC ,则CD 的长是( A )第4题A .409B .509C .154D .2545.一个布袋里装有3个红球、2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是红球的概率是( C )A .15B .25C .35D .236.在同一坐标系中,一次函数y =a +b (a ≠0)与二次函数y =b 2+a (b ≠0)的图象可能是( C )7.如图,AB 为⊙O 的直径,弦DC ⊥AB 于点E ,∠DCB =30°,EB =3,则弦DC 的长度为( D )第7题A .3 3B .4 3C .5 3D .6 38.如图,在四边形ABCD 中,E 、F 分别在AD 和BC 上,AB ∥EF ∥DC ,且DE =3,DA =5,CF =4,则FB 等于( B )第8题A .32B .83C .5D .69.在一个不透明的盒子中,装有2个白球和1个红球,这些球除颜色外其余都相同,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,应在该盒子中再添加红球( B )A .2个B .3个C .4个D .5个10.已知关于的方程ax -2+2-3=0只有一个实数根,则实数a 的取值范围是( C )A .a >0B .a <0C .a ≠0D .a 为一切实数二、填空题(每小题4分,共32分)11.给出下列四个函数:①y =-;②y =;③y =1x ;④y =2(<0).其中,y 随的增大而减小的函数有①④ .(写出正确答案的序号)12.如图,D 、E 两点分别在△ABC 的边AB 、AC 上,DE 与BC 不平行,当满足条件__∠ADE =∠C (答案不唯一)__(写出一个即可)时,△ADE ∽△ACB .第12题13.如图,AB 是⊙O 的直径,BC ︵ =CD ︵ =DE ︵,∠COD =34°,则∠AEO 的度数是__51°__ .第13题14.如图,△ABC 中,点D 、E 分别在边AB 、BC 上,DE ∥AC .若BD =4,DA =2,BC =5,则EC = 53.第14题15.在一个暗箱里放有m 个除颜色外其他完全相同的球,这m 个球中绿球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到绿球的频率稳定在25%,那么可以推算出m 大约是__12__.16.出售某种文具盒,若每个获利元,一天可售出(6-)个,则当=__3__元时,一天出售该种文具盒的总利润最大.17.一个扇形的圆心角为120°,弧长为6π,则此扇形的半径为__9__ .18.如图,在△ABC 中,∠C =90°,BC =16 cm ,AC =12 cm ,点P 从点B 出发,沿BC 以2 cm /s 的速度向点C 移动,点Q 从点C 出发,以1 cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为t s ,当t =6411或245时,△CPQ 与△CBA 相似.第18题三、解答题(共58分)19.(8分)在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1,2,3,现从中任意摸出一个小球,将其上面的数字作为点M 的横坐标,将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M 的纵坐标.(1)写出点M 坐标的所有可能的结果; (2)求点M 在直线y =上的概率;(3)求点M 的横坐标与纵坐标之和是偶数的概率. 解:(1)列表如下:由表可知,点M ,(2,3),(3,1),(3,2),(3,3). (2)由表可得,点M 在直线y =上的结果有(1,1),(2,2),(3,3),共3个,∴所求概率P =39=13.(3)点M 的横、纵坐标之和为偶数的结果有(1,1),(1,3),(2,2),(3,1),(3,3),共5个,∴所求概率P =59. 20.(8分)如图,AB =3AC ,BD =3AE ,BD ∥AC ,点B 、A 、E 在同一条直线上.第20题(1)求证:△ABD ∽△CAE ;(2)如果AC =BD ,AD =22BD ,设BD =a ,求BC 的长.(1)证明:∵BD ∥AC ,点B 、A 、E 在同一条直线上,∴∠DBA =∠CAE .又∵AB AC =BDAE =3,∴△ABD∽△CAE .(2)解:∵AB =3AC =3BD ,AD =22BD ,∴AD 2+BD 2=8BD 2+BD 2=9BD 2=AB 2, ∴∠D =90°.由(1)得∠E =∠D =90°.∵AE =13BD ,EC =13AD =223BD ,AB =3BD ,∴在Rt △BCE 中,BC 2=(AB +AE )2+EC 2=12BD 2=12a 2,∴BC =23a .21.(9分)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 于点E ,交BC 于点D .求证:第21题(1)D 是BC 的中点; (2)△BEC ∽△ADC ; (3)BC 2=2AB ·CE .证明:(1)∵AB 是⊙O 的直径,∴∠ADB =90°,即AD 是底边BC 上的高.又∵AB =AC ,∴△ABC 是等腰三角形,∴D 是BC 的中点. (2)∵∠CBE 与∠CAD 是同弧所对的圆周角,∴∠CBE =∠CAD .又∵∠BCE =∠ACD ,∴△BEC ∽△ADC . (3)由△BEC ∽△ADC ,知CD AC =CEBC ,即CD ·BC =AC ·CE .∵D 是BC 的中点,∴CD =12BC .又∵AB =AC ,∴12BC ·BC =AB ·CE ,即BC 2=2AB ·CE .22.(9分)如图,已知AB 是半圆O 的直径,点P 是半圆上一点,连结BP ,并延长BP 到点C ,使PC =PB ,连结AC .(1)求证:AB =AC ;(2)若AB =4,∠ABC =30°,求阴影部分的面积.第22题(1)证明:连结AP .∵AB 是半圆O 的直径,∴∠APB =90°,∴AP ⊥BC .又∵PC =PB ,∴△ABC 是等腰三角形,即AB =AC . (2)解:∵∠APB =90°,AB =4,∠ABC =30°,∴AP =12AB =2,∴BP =AB 2-AP 2=2 3.连结OP .∵∠ABC =30°,∴∠P AB =60°,∴∠POB =120°.∵点O 是AB 的中点,∴S ΔPOB =12S ΔP AB=12×12AP ·PB =14×2×23=3,∴S 阴影=S 扇形BOP -S ΔPOB =120π×22360-3=43π- 3. 23.(10分)某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y (单位:元)与销售价(单位:元/件)之间的函数解析式; (2)当销售价定为45元时,计算月销售量和销售利润;(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10 000元,销售价应定为多少? (4)当销售价定为多少元时会获得最大利润?并求出最大利润.解:(1)由题意,得y =(-30)[600-10(-40)]=-102+1300-30 000. (2)当=45时,600-10(-40)=550,y =550×(45-30)=8250.即月销售量和销售利润分别为550件,8250元. (3)当y =10 000时,即10 000=-102+1300-30 000,解得1=50,2=80.当=80时,600-10×(80-40)=200<300(不合题意,舍去),故销售价应定为50元. (4)y =-102+1300-30 000=-10(-65)2+12 250,故当=65时,y 有最大值.即当销售价定为65元时获得最大利润,最大利润为12 250元.24.(14分)如图,已知抛物线y =122+b +c 与y 轴相交于点C ,与轴相交于A 、B 两点,点A 的坐标为(2,0),点C 的坐标为(0,-1).(1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥轴于点D ,连结DC ,当△CDE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形?若存在,求点P 的坐标;若不存在,说明理由.第24题解:(1)将A 、C 的坐标代入y =122+b +c ,易得二次函数的解析式为y =122-12-1. (2)设点D 的坐标为(m,0)(0<m <2),则OD =m ,AD =2-m .由△ADE ∽△AOC ,得AD AO =DE OC .∴2-m 2=DE1,∴DE =2-m 2,∴△CDE 的面积为12×2-m 2×m =-14(m -1)2+14.当m =1时,△CDE 的面积最大,此时点D 的坐标为(1,0). (3)存在.易求得直线BC 的解析式为y =--1.在Rt △AOC 中,∠AOC =90°,OA =2,OC =1,∴AC = 5.∵OB =OC ,∴∠BCO =45°.①当PC =AC =5时,设P (,--1).过点P 作PH ⊥y 轴于点H ,如图1,则∠HCP =∠BCO =45°,CH =PH =||.在Rt △PCH 中,2+2=()52,解得1=102,2=-102.∴点P 坐标为⎝⎛⎭⎫102,-102-1或⎝⎛⎭⎫-102,102-1;②当AC =AP =5时,设P (,--1).过点P 作PG⊥轴于点G ,如图2.AG =|2-|,GP =|--1|.在Rt △APG 中,由AG 2+PG 2=AP 2,可得1=1,2=0(舍去),∴P (1,-2);③当PC =AP 时,设P (,--1).过点P 作PQ ⊥y 轴于点Q ,PL ⊥轴于点L ,如图3,∴L (,0),∴△QPC 为等腰直角三角形,PQ =CQ =,∴CP =P A = 2.在Rt △APL 中,AL =|-2|,PL =|--1|,∴(2)2=(-2)2+(+1)2,解得=52,∴P ⎝⎛⎭⎫52,-72.综上所述,点P 的坐标为⎝⎛⎭⎫102,-102-1或⎝⎛⎭⎫-102,102-1或(1,-2)或⎝⎛⎭⎫52,-72.图1图2图3。