空间几何量的计算.板块二.直线与平面所成的角.学生版
- 格式:doc
- 大小:317.52 KB
- 文档页数:3
【例1】 (07全国2文7)已知正三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( )ABCD【难度】4【解析】 已知三棱锥的侧棱长的底面边长的2倍,设底面边长为1,侧棱长为2,连接顶点,所以侧棱与底面所成角的余弦值等,选A .【例2】 (07全国2理7)已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则AB 1与侧面11ACC A 所成角的正弦等于( )ABCD【难度】4 【解析】A已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,取11A C 的中点1D ,连接1BD ,1AD ,11B AD ∠是1AB 与侧面11ACC A所成的角,11sin B AD ∠=,选A . D 1C 1B 1A 1DCA典例分析板块二.直线与平面所成的角【例3】 (2008福建卷6)如图,在长方体ABCD 1111A B C D -中,2AB BC ==,11AA =,则1BC 与平面11BB D D 所成角的正弦值为( )AB .C .D .DCBAA 1D 1B 1C 1【难度】4【解析】 由已知条件有1BC =,连结11A C 交11B D 于O ,连BO ,依题得1111A C B D ⊥,又111BB A C ⊥,则11A C ⊥平面11BB D D ,1C BO ∠就是1BC 与平面11BB D D所成的角,易知11112OC AC ==,故111sin OC C BO BC ∠==,故选D【例4】 (2009浙江)在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( )A .30°B .45°C .60°D .90°E A 1C 1B 1DCBA【难度】4【解析】C ;取BC 的中点E ,则AE ⊥面11BB C C ,∴AE DE ⊥,因此AD 与平面11BB C C 所成角即为ADE ∠, 设AB a =,则AE ,2aDE =,即有tan ADE ∠= ∴60°ADE ∠=.【例5】 (06四川卷理13)在三棱锥O ABC -中,三条棱OA 、OB 、OC 两两互相垂直,且OA =OB =OC ,M 是AB 边的中点,则OM 与平面ABC 所成的角的大小是 ( 用反三角函数表示)【难度】6【解析】在三棱锥O ABC -中,三条棱,,OA OB OC 两两互相垂直,且,OA OB OC M ==是AB 边的中点,设||OA a =,则||||||AB BC CA ===,316O ABC V a -=,O 点在底面的射影为底面△ABC 的中心,||13O ABC ABC V OD S -=,又1||||3DM MC ==,OM 与平面ABC所成角的正切是tan θ==另:也可将锥体看作正方体的一角,则可直接求得sin θ=,θ=【例6】 (2008全国Ⅰ)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B.3CD .23【难度】6【解析】B ;如图,HO C 1B 1A 1CBAO 为ABC ∆的中心,过1B 作1B H ^底边ABC ,垂足为H ,则11A O B H =,1AB 与底面ABC 所成角的正弦值1111B H AOAB AB ==,设三棱柱的底面边长为a ,则1AA a =,23AO =?,故1A O =.又A O B O =,故11A A A B AB ==,从而160A AB ??,1120ABB ??,故11203Aa=?,故所求的正弦值=.【例7】 正三棱柱侧面的一条对角线长为2,且与底面成45角,求此三棱柱的体积.【难度】6【解析】如图,12AB =,11AB A ∠即为1AB 与底面所成角,为45C 1B 1A 1CBA∴在11Rt AA B ∆中,111AA A B ==∴111111111111sin 2A B C V S h A B B C A B C AA ∆=⋅=⋅⋅⋅∠⋅1sin 6022=⋅=【例8】(08四川卷15,且对角线与底面所成角的余,则该正四棱柱的体积等于________________. 【难度】6 【解析】答案:2;1,由勾股定理可知正四棱柱侧棱长为2,因此有正四棱柱体积为2.D 1C 1B 1A 1DCA【例9】 如图,在棱长为1的正方体1111ABCD A B C D -中,⑴求1BC 与平面11ACC A 所成的角; ⑵求11A B 与平面11A C B 所成的角的余弦值.ABCDB 1C 1D 1A 1【难度】6【解析】⑴连结BD 与AC 交于O ,∵1CC ⊥底面ABCD ,且底面为正方形 ∴BD ⊥1CC ,BD ⊥AC ,又1ACCC C =,OA 1D 1C 1B 1DC BA∴BD ⊥平面11ACC A∴斜线1BC 在平面11ACC A 内的射影为1C O ∴1BC O ∠为1BC 与平面11ACC A 所成的角在1Rt OBC ∆中,111sin 2OB OC B BC ∠==,∴130BC O ∠= ⑵(法一)A 1D 1C 1B 1DCBA11A BC ∆是正三角形,且1111A B B C BB == ∴棱锥111B A BC -是正三棱锥, 则1B 在底面的射影为底面的中心,过1B 作1B H ⊥面11A BC ,垂足为H ,连1A H , 11B A H ∠是11A B 与平面11A C B 所成的角.∵111A B =,1A B =11A H A B =,故11111cos A H B A H A B ∠== (法二)连1B C 与1BC 交于点E ,C 1BB 1A 1H E∵11A B ⊥1BC 且1B C ⊥1BC ∴1BC ⊥面11A B E ,又1BC ⊂面11A C B ,HE AB C DB 1C 1D 1A 1∴面11A C B ⊥面11A B E ,且面11AC B面111A B E A E =∴过1B 作1B H ⊥1A E ,交1A E 于点H ,则由面面垂直性质定理可知1B H ⊥面11A C B∴11B A H ∠是11A B 与平面11A C B 所成的角. ∵111A B =,∴1A B =1A H =11111cos A H B A H A B ∠==【例10】 (2008上海)如图,在棱长为2的正方体1111ABCD A B C D -中,E 是BC 的中点.求直线DE 与平面ABCD 所成角的大小(结果用反三角函数值表示).EABC D A 1B 1C 1D 1【难度】8【解析】过E 作EF BC ⊥,交BC 于F ,连接DF .∵EF ⊥平面ABCD ,∴EDF ∠是直线DE 与平面ABCD 所成的角.由题意,得1112EF CC ==.∵112CF CB ==,∴DF∵EF DF ⊥,∴tan EF EDF DF ∠==故直线DE 与平面ABCD所成角的大小是【例11】 如图,正方体的棱长为1,11B CBC O =,求:⑴AO 与11A C 所成角;⑵AO 与平面ABCD 所成角的正切值;EOABCDA 1B 1C 1D 1【难度】8【解析】⑴∵11A C ∥AC∴AO 与11A C 所成角就是OAC ∠∵AB ⊥平面11B BCC , 从而有OC ⊥AB , 又∵OC OB ⊥,∴OC ⊥面AOB ∴OC OA ⊥ 在Rt AOC ∆中,OC AC ==∴30OAC ∠= ⑵作OE BC ⊥,平面11B BCC ⊥平面ABCD∴OE ⊥平面ABCD ,OAE ∠为OA 与平面ABCD 所成角 在Rt OAE ∆中,1,2OE AE ==∴tan OE OAE AE ∠=。
空间的几何量计算课标要求1.掌握点、直线到平面的距离,平行平面间的距离的求法2.掌握异面直线所成角;直线和平面所成的角;二面角的求法知识要点空间的角1.异面直线所成角:(1)定义:对于异面直线a 、b ,在空间中任取一点O ,过点O 分别引a ′∥a ,b ′∥b ,则a ′,b ′所成的锐角(或直角)叫做两条异面直线所成的角.范围:θ∈(0,900 ].※a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上;(2)求异面直线所成角的方法—定义法步骤1:(找平行线)平移,使它们相交,找到夹角。
步骤2:解三角形求出角。
余弦定理:abc b a 2cos 222-+=θ(计算结果可能是其补角) 2.线面角(1)定义:若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角称直线与平面所成的角。
范围:θ∈[0,900 ].(2)求线面角的方法—定义法步骤1:作出线面角,并证明。
步骤2:解三角形,求出线面角。
3.二面角(1)二面角的平面角定义:在棱l 上取一点P ,两个半平面内分别作l 的垂线(射线)m 、n ,则射线m 和n 的夹角θ为二面角α—l —β的平面角。
范围:θ∈[0,1800 ].(2)求二面角的方法—①定义法、②面积射影法步骤1:作出二面角的平面角(三垂线定理),并证明。
步骤2:解三角形,求出二面角的平面角。
空间的距离1.点到平面的距离(1)定义:点到平面的垂线段的长度(2)点面距的求法①定义法:步骤1:过点P 作PO ⊥α于O ,线段PO 即为所求。
步骤2:计算线段PO 的长度。
(直接解三角形)②等积法:转换顶点,通过三棱锥体积相等求距离。
2.直线到平面的距离:通过线面平行转化为点到平面的距离解决。
题例方法例1. 如图,已知正方体ABCD -A 1B 1C 1D 1中,E 为AB 的中点.(1)求直线B 1C 与DE 所成的角的余弦值;(2)求证:平面EB 1D ⊥平面B 1CD ;(3)求二面角E -B 1C -D 的余弦值.例2.如图所示,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,且AB∥CD,∠BAD=90°,PA=AD =DC=2,AB=4.(1)求证:BC⊥PC;(2)求PB与平面PAC所成的角的正弦值;(3)求点A到平面PBC的距离.例3.如图所示,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在平面和圆O所在的平面互相垂直.已知AB=2,EF=1.(1)求证:平面DAF⊥平面CBF;(2)求直线AB与平面CBF所成角的大小;(3)当AD的长为何值时,二面角D-FE-B的大小为60°?例4.如图,三棱柱ABC -A 1B 1C 1的底面是边长为a 的正三角形,侧面ABB 1A 1是菱形且垂直于底面,∠A 1AB =60°,M 是A 1B 1的中点.(1)求证:BM ⊥AC ;(2)求二面角B -B 1C 1-A 1的正切值;(3)求三棱锥M -A 1CB 的体积.例5.(09天津19)如图所示,在五面体ABCDEF 中,FA ⊥平面ABCD ,AD ∥BC ∥FE ,AB ⊥AD ,M 为CE 的中点,AF =AB =BC =FE =1AD. (1)求异面直线BF 与DE 所成的角的大小;(2)求证:平面AMD ⊥平面CDE ;(3)求二面角A -CD -E 的余弦值.巩固练习1. (12上海文)如图,在三棱锥P-ABC 中,PA ⊥底面ABC,D 是PC 的中点.已知∠BAC=2 ,AB=2,AC=23,PA=2.求:(1)三棱锥P-ABC 的体积; (2)异面直线BC 与AD 所成的角的余弦值P A CD2.如图所示,在四棱锥P —ABCD 中,底面为直角梯形,AD ∥BC ,∠BAD=90°,PA ⊥底面ABCD ,且PA=AD=AB=2BC ,M 、N 分别为PC 、PB 的中点.(1)求证:PB ⊥DM ;(2)求BD 与平面ADMN 所成的角.3.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,PA ⊥平面ABCD ,且PA =2AB.(1)求证:平面PAC ⊥平面PBD ;(2)求二面角B -PC -D 的余弦值.4.如图所示,在三棱柱ABC —A 1B 1C 1中,四边形A 1ABB 1是菱形,四边形BCC 1B 1是矩形,AB ⊥BC ,CB=3,AB=4,∠A 1AB=60°.(1)求证:平面CA 1B ⊥平面A 1ABB 1;(2)求直线A 1C 与平面BCC 1B 1所成角的正切值;(3)求点C 1到平面A 1CB 的距离.5.四棱锥P -ABCD 中,侧面PDC 是边长为2的正三角形,且与底面垂直,底面ABCD 是面积为23的菱形,∠ADC 为菱形的锐角.(1)求证:PA ⊥CD ;(2)求二面角P -AB -D 的大小;(3)求棱锥P -ABCD 的侧面积;目标测试一、选择题1.若直线a 和b 没有公共点,则a 与b 的位置关系是( )A .相交B .平行C .异面D .平行或异面2.平行六面体ABCD -A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( )A .3B .4C .5D .63.已知平面α和直线l ,则α内至少有一条直线与l( )A .平行B .相交C .垂直D .异面4.长方体ABCD -A 1B 1C 1D 1中,异面直线AB ,A 1D 1所成的角等于( )A .30°B .45°C .60°D .90°5.对两条不相交的空间直线a 与b ,必存在平面α,使得( )A .a ⊂α,b ⊂αB .a ⊂α,b ∥αC .a ⊥α,b ⊥αD .a ⊂α,b ⊥α6.下面四个命题:①若直线a ,b 异面,b ,c 异面,则a ,c 异面;②若直线a ,b 相交,b ,c 相交,则a ,c 相交;③若a ∥b ,则a ,b 与c 所成的角相等;④若a ⊥b ,b ⊥c ,则a ∥c. 其中真命题的个数为( )A .1B .2C .3D .47.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是线段A 1B 1,B 1C 1上的不与端点重合的动点,如果A 1E =B 1F ,有下面四个结论:①EF ⊥AA 1;②EF ∥AC ;③EF 与AC 异面;④EF ∥平面ABCD.其中一定正确的有( )A .①②B .②③C .②④D .①④8.设a ,b 为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是( )A .若a ,b 与α所成的角相等,则a ∥bB .若a ∥α,b ∥β,α∥β,则a ∥bC .若a ⊂α,b ⊂β,a ∥b ,则α∥βD .若a ⊥α,b ⊥β,α⊥β,则a ⊥b9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,n ∥β,则下列四种位置关系中,不一定成立的是( )A .AB ∥m B .AC ⊥m C .AB ∥βD .AC ⊥β10.(12大纲文)已知正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为BB 1、CC 1的中点,那么直线AE 与D 1F 所成角的余弦值为( )A .-45 B. .35 C.34 D .-3511.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的余弦值为( ) A.33 B.13 C .0 D .-1212.如图所示,点P 在正方形ABCD 所在平面外,PA ⊥平面ABCD ,PA =AB ,则PB 与AC 所成的角是( )A .90°B .60°C .45°D .30°(12题图) (13题图) 二、填空题13.如图,在△ABC 中,∠BAC=90°,PA⊥面ABC ,AB =AC ,D 是BC 的中点,则图中直角三角形的个数是________14.正方体ABCD -A 1B 1C 1D 1中,二面角C 1-AB -C 的平面角等于________.15.设平面α∥平面β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于点S ,且点S 位于平面α,β之间,AS =8,BS =6,CS =12,则SD =________.16.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论:①AC ⊥BD ; ②△ACD 是等边三角形;③AB 与平面BCD 成60°的角; ④AB 与CD 所成的角是60°.其中正确结论的序号是________.三、解答题17.(10分)如下图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.18.(12分)如图所示,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(1)证明:CD⊥平面PAE;(2)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.19.(12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.20.(12分)如图,棱柱ABC -A 1B 1C 1的侧面BCC 1B 1是菱形,B 1C ⊥A 1B.(1)证明:平面AB 1C ⊥平面A 1BC 1; (2)设D 是A 1C 1上的点,且A 1B ∥平面B 1CD ,求A 1D :DC 1的值.21.(12分)如图,△ABC 中,AC =BC =2AB ,ABED 是边长为1的正方形,平面ABED ⊥底面ABC ,若G ,F 分别是EC ,BD 的中点.(1)求证:GF ∥底面ABC ;(2)求证:AC ⊥平面EBC ;(3)求几何体ADEBC 的体积V.22.(12分)如下图所示,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,点D 是AB 的中点.(1)求证:AC ⊥BC 1;(2)求证:AC 1∥平面CDB 1;(3)求异面直线AC 1与B 1C 所成角的余弦值.。
【例1】 直线和平面所成的角为α,则( )A .090α︒<<︒B .090α︒︒≤≤C .090α︒<︒≤D .090α︒<︒≤【例2】 若直线a ∥平面α,直线b ⊂平面α,则直线a 与b 的位置关系是【例3】 室内有一根直尺,无论怎么放置,在地面上总有这样的直线,它与直尺所在的直线A .异面B .相交C .平行D .垂直【例4】 若不共线的三点到平面α的距离相等,则该三点确定的平面β与α之间的关系为( )A .平行B .相交C .平行或相交D .无法确定【例5】 设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( )A .若a b ,与α所成的角相等,则a b ∥B .若a α∥,b β∥,αβ∥,则a b ∥C .若a α⊂,b β⊂,a b ∥,则αβ∥D .若a α⊥,b β⊥,αβ⊥,则a b ⊥【例6】 下列命题中,真命题有_______.①若,,//a b a b αβ⊂⊂,则//αβ;②若//,//,//,//a a b b αβαβ,则//αβ; ③若,,//a b a αββ⊂⊂,则a b =∅;④若//,//,//,//,a a b b a b A αβαβ=,则αβ=∅;【例7】 m ,n 是空间两条不同直线,α,β是空间两条不同平面,下面有四个命题:①,;m n m n αβαβ⊥⇒⊥, ②,,;m n m n αβαβ⊥⊥⇒ ③,,;m n m n αβαβ⊥⇒⊥ ③,,;m m n n ααββ⊥⇒⊥ 其中真命题的编号是________(写出所有真命题的编号).【例8】 (2009广东五校)在下列关于直线l 、m 与平面α、β的命题中,真命题是( )A .若l β⊂,且αβ⊥,则l α⊥B .若l β⊥,且//αβ,则l α⊥典例分析板块二.空间位置关系的判断C .若m αβ=,且l m ⊥,则//l α D .若l β⊥,且αβ⊥,则//l α【例9】 (2010年二模·东城·文·题3)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( )A .,m n m n αα⊥⇒⊥∥B .,,m n m n αβαβ⊂⊂⇒∥∥C .,m m n n αα⊥⊥⇒∥D .,,,m n m n ααββαβ⊂⊂⇒∥∥∥【例10】 (2010年二模·宣武·理·题4)已知直线m 、n 与平面α、β,下列命题正确的是( )A .,m n αβ∥∥且αβ∥,则m n ∥B .,m n αβ⊥∥且αβ⊥,则m n ⊥C .,m n m αβ=⊥且αβ⊥,则n α⊥D .,m n αβ⊥⊥且αβ⊥,则m n ⊥【例11】 (2010浙江高考)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,l m ∥,则m α⊥ C .若l α∥,m α⊂则l m ∥ D .若l α∥,m α∥,则l m ∥【例12】 (2008新课标海南宁夏)已知平面α⊥平面β,l αβ=,点A α∈,A l ∉,直线AB l ∥,直线AC l ⊥,直线m α∥,m β∥,则下列四种位置关系中,不一定...成立的是( ) A .AB m ∥ B .AC m ⊥C .AB β∥D .AC β⊥【例13】 已知直线m n ,与平面αβ,,下面三个命题中正确的有______. ①m n m n αα⇒∥,∥∥;②m n n m αα⊥⇒⊥∥,;③m m αβαβ⊥⇒⊥,∥.【例14】 (05广东)给出下列关于互不相同的直线m 、l 、n 和平面α、β的四个命题:①若m α⊂,l A α=,点A m ∉,则l 与m 不共面;②若m 、l 是异面直线,∥l α,∥m α,且n l ⊥,n m ⊥,则n α⊥; ③若∥l α,∥m β,∥αβ,则∥l m ;④若l α⊂,m α⊂,l m =点A ,∥l β,∥m β,则∥αβ. 其中为假命题的是( )A .①B .②C .③D .④【例15】 (2009北江中学)已知,αβ是两个不同的平面,,m n 是两条不同的直线,给出下列命题:①若,m m αβ⊥⊂,则αβ⊥;②若m α⊂,,//,//n m n αββ⊂,则αβ∥;③如果,,m n m n αα⊂⊄、是异面直线,则n 与α相交;④若,m n m αβ=∥,且,n n αβ⊄⊄,则n α∥且n β∥.其中正确的命题是( ) A .①② B .②③C .③④D .①④【例16】 (05福建卷)已知直线m 、n 与平面,αβ,给出下列三个命题:①若m α⊥,∥n α,则∥m n ②若∥m α,n α⊥,则n m ⊥ ③若m α⊥,∥m β,则αβ⊥ 其中真命题的个数是( ) A .0 B .1 C .2 D .3【例17】 (2010年二模·朝阳·理·题5)已知平面,αβ,直线l α⊥,直线m β⊂,有下面四个命题:①l m αβ⇒⊥∥②l m αβ⊥⇒∥③l m αβ⇒⊥∥④l m αβ⊥⇒∥其中正确的命题是 ( )A .①与②B .③与④C .①与③D .②与④【例18】 (2010年二模·海淀·理·题6)已知m ,n 是不同的直线,α,β是不同的平面,则下列条件能使n α⊥成立的是( )A .αβ⊥,n β⊂B .//αβ,n β⊥C .αβ⊥,//n βD .//m α,n m ⊥【例19】 (2010年二模·丰台·文·题7)设,,a b c 是空间三条不同的直线,,,αβγ是空间三个不同的平面,给出下列四个命题:① 若,a b αα⊥⊥,则a b ;② 若,αγβγ⊥⊥,则αβ;③ 若,b b αβ⊂⊥,则αβ⊥;④ 若c 是b 在α内的射影,a α⊂且a c ⊥,则a b ⊥. 其中正确的个数是( )A .1B .2C .3D .4【例20】 (2010年一模·崇文·理·题5)(崇文·文·题6)已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的为 ( )A .若,,αγβγ⊥⊥则αβ∥B .若,,m n αα⊥⊥则m n ∥C .若,m n αα∥∥,则m n ∥D .若,,m m αβ∥∥则αβ∥【例21】 (09年西城区期末考试5)已知m 是平面α的一条斜线,点A α∉,l 为过点A 的一条动直线,那么下列情形可能出现的是( )A . l m ∥,l α⊥B . l m ⊥,l α⊥C . l m ⊥,l α∥D . l m ∥,l α∥【例22】 (05江苏)设,,αβγ为两两不重合的平面,,,l m n 为两两不重合的直线,给出下列四个命题:①若αγ⊥,βγ⊥,则∥αβ;②若m α⊂,n α⊂,∥m β,∥n β,则∥αβ; ③若∥αβ,l α⊂,则∥l β;④若l αβ=,m βγ=,n γα=,∥l γ,则∥m n .其中真命题的个数是( )A .1B .2C .3D .4【例23】 (2008浙江)对两条不相交的空间直线a 和b ,必定存在平面α,使得( )A .a α∈,b α∈B .a α⊂,b α∥C .a α⊥,b α⊥D .a α⊂,b α⊥【例24】 (2009江苏12)设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l 与α内的一条直线平行,则l 和α平行;③设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; ④直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直. 上面命题中,真命题的序号是 .(写出所有真命题的序号)【例25】 (2007湖南文6)如图,在正四棱柱 1111ABCD A B C D -中,E 、F 分别是1AB 、1BC 的中点,则以下结论中不成立的是( ) A .EF 与1BB 垂直 B .EF 与BD 垂直 C .EF 与CD 异面D .EF 与11A C 异面AB CDE F A 1B 1C 1D 1【例26【例27】 (2008崇文一模)如图,在正方体1111ABCD A B C D -中,O 是底面正方形ABCD 的中心,M 是1D D 的中点,N 是11A B 上的动点,则直线NO 、AM 的位置关系是( )A .平行B .相交C .异面垂直D .异面不垂直OD 1C 1B 1A 1D CBAM N【例28】 (2009山东文9)已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例29】 对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果,m n αα⊂⊄,m 、n 是异面直线,那么∥n αB .如果,m n αα⊂⊄,m 、n 是异面直线,那么与n α相交C .如果,∥m n αα⊂,m 、n 共面,那么∥m nD .如果∥,∥m n αα,m 、n 共面,那么∥m n【例30】 (2009福建文10)设m n ,是平面α内的两条不同直线;1l ,2l 是平面β内的两条相交直线.则αβ∥的一个充分而不必要的条件是( ) A .m β∥且1l α∥ B .1m l ∥且2n l ∥C .m β∥且n β∥D .m β∥且2n l ∥【例31】 已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线 ④一条直线及其外一点 在上面结论中,正确结论的编号是 (写出所有正确结论的编号).【例32】 (2007西城高三期末)在空间中,有如下四个命题:①平行于同一个平面的两条直线是平行直线;②垂直于同一条直线的两个平面是平行平面;③若平面α内有不共线的三个点到平面β距离相等,则∥αβ; ④过平面α的一条斜线有且只有一个平面与平面α垂直. 其中正确的两个命题是( )A .①、③B .①、④C .②、④D .②、③【例33】 两个平面平行的条件是( )A .一个平面内一条直线平行于另一个平面B .一个平面内两条直线平行于另一个平面C .一个平面内的无数条直线平行于另一个平面D .一个平面内的任意一条直线平行于另一个平面【例34】 (2009江苏12)设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; ②若α外一条直线l 与α内的一条直线平行,则l 和α平行;③设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; ④直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直. 上面命题中,真命题的序号是 .(写出所有真命题的序号)【例35】 (05年北京卷6)在正四面体P ABC -中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立...的是( ) A .BC ∥平面PDF B .DF ⊥平面PAEC .平面PDF ⊥平面ABCD .平面PAE ⊥平面ABC【例36】 判断下面命题的正误:⑴一条直线和一个平面平行,它就和这个平面内的任何直线平行.⑵如果一条直线垂直于平面内的两条直线,那么这条直线和这个平面垂直. ⑶垂直于三角形两边的直线必垂直于第三边.⑷过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.⑸如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.【例37】 (2010年一模·朝阳·文·题8)如图,设平面,,EF AB CD αβαα=⊥⊥,垂足分别为,B D ,且AB CD ≠,如果增加一个条件就能推出BD EF ⊥,给出四个条件:①AC β⊥;②AC EF ⊥;③AC 与BD 在β内的正投影在同一条直线上;④AC 与BD 在平面β内的正投影所在直线交于一点. 那么这个条件不可能...是( ) A .①② B .②③ C .③ D .④【例38】(2009四川)如图,已知六棱锥P ABCDEF-的底面是正六边形,PA⊥平面ABC,2PA AB=,则下列结论正确的是()A.PB AD⊥ B.平面PAB⊥平面PBCC.直线∥BC平面PAE D.直线PD与平面ABC所成的角为45︒PFE DCA年一模·西城·理·题8)αβ=直线D∉直线l,N两点不可能重合两点可能重合,但此时直线AC平行于是异面直线时,直线MN。
空间几何角度计算公式在空间几何中,角度是一个重要的概念,用于描述两条线、平面或多个向量之间的夹角。
计算空间几何角度的公式可以根据具体情况而变化,下面将介绍几种常见的计算公式。
1. 点和直线的夹角设直线L上有一点A,过点A引一直线与直线L相交于点B,计算点A和直线L之间的夹角,可使用以下公式:cosθ = |AB| / |OB|其中θ表示点A和直线L的夹角,|AB|表示线段AB的长度,|OB|表示向量OB的长度。
2. 直线与直线的夹角设两条直线L1和L2,如果它们的方向向量分别为a和b,计算直线L1和直线L2之间的夹角,可使用以下公式:cosθ = |a·b| / (|a| |b|)其中θ表示直线L1和直线L2的夹角,|a·b|表示向量a与向量b的点乘的绝对值,|a|和|b|表示向量a和向量b的长度。
3. 平面和平面的夹角设两个平面α和β,它们的法线向量分别为n1和n2,计算平面α和平面β之间的夹角,可使用以下公式:cosθ = |n1·n2| / (|n1| |n2|)其中θ表示平面α和平面β的夹角,|n1·n2|表示向量n1与向量n2的点乘的绝对值,|n1|和|n2|表示向量n1和向量n2的长度。
4. 空间向量的夹角设两个非零向量a和b,计算向量a和向量b之间的夹角,可使用以下公式:cosθ = (a·b) / (|a| |b|)其中θ表示向量a和向量b的夹角,a·b表示向量a与向量b的点乘,|a|和|b|表示向量a和向量b的长度。
以上就是在空间几何中常用的几种角度计算公式。
根据具体情况,选择适合的公式进行计算,可以帮助我们解决空间几何问题。
空间几何中的平面与直线的夹角与垂直关系
的计算
空间几何是几何学的一个分支,研究三维空间中的几何对象和它们
的性质。
在这个领域中,与平面和直线的夹角和垂直关系有关的概念
和计算方法是非常重要的。
本文将介绍如何计算平面和直线之间的夹
角以及它们的垂直关系。
1. 平面与直线的夹角
平面与直线的夹角是指从一个垂直于该平面的向量到该直线的向量
所形成的角度。
用符号“∠(平面,直线)”表示。
计算平面与直线的夹角
需要用到向量的内积和模长的概念。
具体计算方法如下:
首先,找到垂直于平面的单位向量n,用点A表示直线上的一个点,用向量a表示直线的方向,则向量a是垂直于直线的单位向量。
然后,计算向量a和向量n的内积 a·n,得到cos(∠(平面,直线))的值,即cos(∠(平面,直线))=a·n。
最后,通过反余弦函数acos()求得∠(平面,直线)的值。
2. 平面与直线的垂直关系
平面与直线的垂直关系是指该直线与平面上的所有向量都垂直。
用
符号“直线⊥平面”表示。
计算平面与直线的垂直关系需要用到向量的
内积概念。
具体计算方法如下:
首先,找到平面的法向量n,用向量a表示直线的方向,则 a·n=0。
然后,将直线上的一个点A代入平面的方程,得到点A到平面的距离,如果距离为0,则直线与平面垂直,否则不垂直。
以上是平面与直线的夹角和垂直关系的计算方法,在实际应用中,可以通过这些方法来解决空间几何中的实际问题,比如计算两个物体间相对角度、判断两个物体是否垂直等问题。
高三数学知识点:空间角问题知识点总结下面整理了高三数学知识点:空间角问题,希望大家能把觉得有用的知识点摘抄下来,在空余时间进行复习。
一、直线与直线所成的角①两平行直线所成的角:规定为。
②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。
③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。
二、直线和平面所成的角①平面的平行线与平面所成的角:规定为。
②平面的垂线与平面所成的角:规定为。
③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。
求斜线与平面所成角的思路类似于求异面直线所成角:一作,二证,三计算。
在作角时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,三、解题技巧在解题时,注意挖掘题设中两个主要信息(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。
(3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角以上就是高三数学知识点:空间角问题,希望能帮助到大家。
空间中的线面关系要求层次重难点空间线、面的位置关系 B ①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.◆公理2:过不在同一条直线上的三点,有且只有一个平面.◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线互相平行.◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面公理1,公理2,公理3,公理4,定理*A高考要求模块框架空间几何量的计算平行、垂直的有关性质与判定. 理解以下判定定理.◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直. 理解以下性质定理,并能够证明. ◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行. ◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行. ◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.③ 能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.*公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线平行.定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补.1.集合的语言:我们把空间看做点的集合,即把点看成空间中的基本元素,将直线与平面看做空间的子集,这样便可以用集合的语言来描述点、直线和平面之间的关系: 点A 在直线l 上,记作:A l ∈;点A 不在直线l 上,记作A l ∉; 点A 在平面α内,记作:A α∈;点A 不在平面α内,记作A α∉; 直线l 在平面α内(即直线上每一个点都在平面α内),记作l α⊂; 直线l 不在平面α内(即直线上存在不在平面α内的点),记作l α⊄; 直线l 和m 相交于点A ,记作{}l m A =I ,简记为l m A =I ; 平面α与平面β相交于直线a ,记作a αβ=I . 2.平面的三个公理:知识内容⑴ 公理一:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 图形语言表述:如右图:符号语言表述:,,,A l B l A B l ααα∈∈∈∈⇒⊂⑵ 公理二:经过不在同一条直线上的三点,有且只有一个平面,也可以简单地说成,不共线的三点确定一个平面. 图形语言表述:如右图,符号语言表述:,,A B C 三点不共线⇒有且只有一个平面α, 使,,A B C ααα∈∈∈.⑶ 公理三:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线. 图形语言表述:如右图:符号语言表述:,A a A a αβαβ∈⇒=∈I I .如果两个平面有一条公共直线,则称这两个平面相交,这条公共直线叫做两个平面的交线.3.平面基本性质的推论:推论1:经过一条直线和直线外的一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面.4.共面:如果空间中几个点或几条直线可以在同一平面内,那么我们说它们共面.<教师备案>1.公理1反映了直线与平面的位置关系,由此公理我们知道如果一条直线与一个平面有公共点,那公共点要么只有一个,要么直线上所有点都是公共点,即直线在平面内.2.公理2可以用来确定平面,只要有不在同一条直线上的三点,便可以得到一个确定的平面,后面的三个推论都是由这个公理得到的.要强调这三点必须不共线,否则有无数多个平面经过它们. 确定一个平面的意思是有且仅有一个平面.3.公理3反应了两个平面的位置关系,两个平面(一般都指两个不重合的平面)只要有公共点,它们的交集就是一条公共直线.此公理可以用来证明点共线或点在直线上,可以从后面的例题中看到.4.平面基本性质的三个公理是不需要证明的,后面的三个推论都可以由这三个公理得到.推论1与2直接在直线上取点,利用公理1与2便可得到结论,推论3是由平行的定义得到存在性的,再由公理2保证唯一性.线线关系与线面平行1.平行线:在同一个平面内不相交的两条直线.平行公理:过直线外一点有且只有一条直线与这条直线平行. 公理4(空间平行线的传递性):平行于同一条直线的两条直线互相平行;等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.2.空间中两直线的位置关系:⑴共面直线:平行直线与相交直线;⑵异面直线:不同在任一平面内的两条直线.3.空间四边形:顺次连结不共面的四点所构成的图形.这四个点叫做空间四边形的顶点;所连结的相邻顶点间的线段叫做空间四边形的边;连结不相邻的顶点的线段叫做空间四边形的对角线.如右图中的空间四边形ABCD ,它有四条边,,,AB BC CD DA ,两条对角线,AC BD . 其中,AB CD ;,AC BD ;,AD BC 是三对异面直线.DCBA4.直线与平面的位置关系:⑴直线l 在平面α内:直线上所有的点都在平面内,记作l α⊂,如图⑴;⑵直线l 与平面α相交:直线与平面有一个公共点A ;记作l A α=I ,如图⑵; ⑶直线l 与平面α平行:直线与平面没有公共点,记作//l α,如图⑶.l3()2()1()lAαααl5.直线与平面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.符号语言表述:,,////l m l m l ααα⊄⊂⇒. 图象语言表述:如右图:mlα6.直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和两平面的交线平行.符号语言表述://,,//l l m l m αβαβ⊂=⇒I . 图象语言表述:如右图:βαl m<教师备案>1.画线面平行时,常常把直线画成与平面的一条边平行; 2.等角定理证明:已知:如图所示,BAC ∠和B A C '''∠的边//AB A B '',//AC A C '',且射线AB与A B ''同向,射线AC 与A C ''同向. 求证:BAC B A C '''∠=∠证明:对于BAC ∠和B A C '''∠在同一平面内的情形,在初中几何中已经证明,下面证明两个角不在同一平面内的情形.分别在BAC ∠的两边和B A C '''∠的两边上截取线段AD AE 、和A D A E ''''、,使,AD A D AE A E ''''==,因为//''AD A D ,所以AA D D ''是平行四边形 所以//AA DD ''.同理可得//AA EE '',因此//DD EE ''. 所以DD E E ''是平行四边形. 因此DE D E ''=. 于是ADE A D E '''∆≅∆. 所以BAC B A C '''∠=∠.E'E DC BAA'D 'B 'C '3.根据等角定理可以定义异面直线所成的角的概念:过空间一点作两异面直线的平行线,得到两条相交直线,这两条相交直线成的直角或锐角叫做两异面直线成的角.异面直线所成角的范围是π(0,]24.线面平行判定定理(,,////l m l m l ααα⊄⊂⇒),即线线平面,则线面平行.要证明这个定理可以考虑用反证法,因为线线平行(//l m ),所以它们可以确定一个平面β,β与已知平面α的交线恰为m ,若线面不平行,则线面相交于一点,此点必在两个平面的交线m 上,从而得到l 与m 相交,与已知矛盾.5.线面平行性质定理,即线面平行,则线线平行,这平行的定义立即可得(共面且无交点).面面平行的判定与性质1.两个平面的位置关系⑴两个平面,αβ平行:没有公共点,记为//αβ;画两个平行平面时,一般把表示平面的平行四边形画成对应边平行,如右图:⑵两个平面,αβ相交,有一条交线,l αβ=I .2.两个平面平行的判定定理:如果一个平面内有两条相交直线平行于另一个平面, 那么这两个平面平行.符号语言表述:,,,//,////a b a b A a b ααββαβ⊂⊂=⇒I .推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,则这两个平面平行.3.两个平面平行的性质定理:如果两个平面同时与第三个平面相交,那么它们的交线平行. 符号语言表述://,,//a b a b αβαγβγ==⇒I I . 图象语言表述:如右图:γbaβα<教师备案>1.画两个平面相交时,可以先画出交线,再补充其它,平面被遮住的部分画成虚线或不画. 如右图所示:2.面面平行的判定定理可以由线面平行的性质直接得到,如果满足定理条件的两个平面相交,则这两条相交直线都平行于平面的交线,与过直线外一点只能作一条直线与已知直线平行的公理矛盾.故这两个平面不相交,是平行平面.3.面面平行的性质定理可以直接由两条交线无交点且共面得到.4.在证明线面平行,线线平行和面面平行的题时,常常遇到平行关系的转化,要灵活运用两个性质定理与两个判定定理,证明要求的结论.由于空间中平行关系与垂直关系是高考的核心内容,因此在出题时经常会有所结合,本板块专门就平行知识的题目类型归纳,更综合的题目会在第十一讲中详细讲解.由于线面与面面问题之间都是互相转化的,因此本板块中的面面平行题目较少,多数都为线面平行问题.本板块题目多采用两种方法,事实上就是两种思路证明线面平行,一种方法线线平行⇒线面平行,另一种方法是面面平行⇒线面平行.线面垂直1.线线垂直:如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.由定义知,垂直有相交垂直和异面垂直.2.直线与平面垂直:⑴概念:如果一条直线和一个平面相交于点O,并且和这个平面内过交点的任何直线都垂直,则称这条直线与这个平面互相垂直.这条直线叫做平面的垂线,这个平面叫做直线的垂面,交点叫垂足.垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段.垂线段的长度叫做这个点到平面的距离.如果一条直线垂直于一个平面,那么它就和平面内的任意一条直线垂直.画直线与平面垂直时,通常把直线画成和表示平面的平行四边形的一边垂直,如右图.lα直线l与平面α互相垂直,记作lα⊥.⑵线面垂直的判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.⑶线面垂直的性质定理:如果两条直线垂直于同一个平面,那么这两条直线平行.<教师备案>1.如果定义了异面直线所成角,则异面垂直即异面直线所成角为90︒.2.线面垂直的判定定理把定义中的与任意一条直线垂直这个很强的命题,转化为只需证明与两条相交直线垂直这个问题,从而大大简化了线面垂直的判断.n mA'EDCB Aβα要证明判定定理,只能用定义,若',',AA m AA n m n B ⊥⊥=I ,,m n α⊂,要证'AA α⊥,在平面α内任选一条直线g ,去证'AA g ⊥,结合右图,通过全等三角形的证明可得到,从而得到判定定理,具体的证法略. 3.线面垂直的性质定理,可以用同一法证明, 如图:laABm'mβα直线,l m αα⊥⊥,若直线,l m 不平行,则过直线l 与平面α的交点B 作直线'//m l ,从而有'm α⊥.又相交直线,'m m 可以确定一个平面β,记a αβ=I ,则因为,'m m 都垂直于平面α,故,'m m 都垂直于交线a .这与在一个平面内,过直线上一点有且只有一条直线与已知直线垂直相矛盾.故,'m m 重合,//m l ,性质定理得证.由同一法还可以证明:过一点与已知平面垂直的直线只有一条.点面距离与线面角 (一)主要方法:本板块所学内容为点面距离与线面角,求点面距离有两种方法,首先可以通过直接法作面的垂线,其次可以通过体积法转化,或者将问题转化为与面平行的直线上的点到面的距离;线面角问题属于线面关系的一种,是线面垂直与面面垂直定理的应用. 1.点、斜线、斜线段及射影⑴点在直线上的射影自点A 向直线l 引垂线,垂足1A 叫做点A 在直线l 上的射影.点A 到垂足的距离叫点到直线的距离.⑵点在平面内的射影自点A 向平面α引垂线,垂足1A 叫做点A 在平面α内的射影,这点和垂足间的线段叫做这点到平面的垂线段.垂线段的长度叫做这点到这个平面的距离. ⑶斜线在平面内的射影一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点叫做斜足,斜线上一点和斜足间的线段,叫做这点到平面的斜线段.过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这平面内的射影,垂足与斜足间的线段叫做这点到平面的斜线段在这个平面内的射影. 2.直线和平面所成的角直线和平面所成的角,应分三种情况:⑴直线和平面斜交时,线面所成的角是这条直线和它在平面内的射影所成的锐角; ⑵直线和平面垂直时,直线和平面所成的角的大小为90o ;⑶直线和平面平行或在平面内时,直线和平面所成的角的大小为0o .显然,直线和平面所成的角的范围为0,90⎡⎤⎣⎦o o .由此可见,一条直线和一个平面斜交,它们所成的角的度量问题(空间问题),是通过斜线在平面内的射影转化成两条相交直线的度量问题(平面问题)来解决的. 具体的解题步骤与求异面直线所成的角类似,有如下的环节: ⑴作——作出斜线与射影所成的角;⑵证——论证所作(或找到)的角就是要求的角;⑶算——常用解三角形的方法(通常是解由垂线段、斜线段、斜线段的射影所组成的直角三角形)求出角.在求直线和平面所成的角时,垂线段是其中最重要的元素,它可起到联系各线段的纽带作用。
空间角的几何求法一、 异面直线所成角(线线角)范围:(0,]2πθ∈先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得。
【典例分析】例1. 已知多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,AC = AD = CD = DE = 2,AB = 1,F 为CD 的中点. (1)求证:AF ⊥平面CDE ; (2)求异面直线AC ,BE 所成角余弦值;【变式】在长方体中,,,则异面直线与所成角的余弦值为。
二、直线与平面所成角(线面角)范围:[0,]2πθ∈【典例分析】例1.如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.【变式】如图,四边形ABCD 是正方形,PB ⊥平面ABCD ,MA//PB ,PB=AB=2MA , (1)证明:AC//平面PMD ;(2)求直线BD 与平面PCD 所成的角的大小;1111ABCD A B C D -1AB BC ==13AA =1AD 1DB例2. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2, M 为PC 的中点。
(1)求证:BM∥平面PAD ;(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ; (3)求直线PC 与平面PBD 所成角的正弦。
【变式】如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(1)求证:平面VAB ⊥平面VCD ;(2)试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6.三、平面与平面所成角(面面角)范围:[0,]θπ∈(1)定义法:当点A 在二面角α- -β的棱 上时,可过A 分别在α、β内作棱 的垂线,AB 、AC ,由定义可知∠BAC 即为二面角α- -β的平面角。
在高中的空间几何学习中,常见的几何形状包括点、线、面、体等,涉及到各种角的计算。
以下是一些常见的角的公式:
1. 平面内的角:
-顶点在圆心的圆心角和半圆角:圆心角等于对应的圆周角,半圆角为180度。
-对顶角:对顶角相等。
-同位角:同位角相等。
-内错角和内错角互补:内错角之和等于180度,内错角互补。
2. 空间内的角:
-平行线与截线:平行线与截线的对应角相等。
-直线与平面:直线与平面的夹角等于其倾斜角。
-平面与平面:两平面的夹角等于它们法向量的夹角。
3. 立体几何中的角:
-直线与立体的交角:直线与平面或立体的夹角等于90度减去它们的夹角余补角。
-两平面之间的夹角:两平面的夹角是它们的法线之间的夹角。
这些公式是空间几何中常见的角度计算原则,通过理解和掌握这些规律,可以更好地解决空间几何题目中涉及到的各种角度问题。
【例1】 (07全国2文7)
已知正三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( )
A
B
C
D
【例2】 (07全国2理7)
已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则AB 1与侧面11ACC A 所成角的正弦等于( )
A
B
C
D
【例3】 (2008福建卷6) 如图,在长方体ABCD 1111A B C D -中,2AB BC ==,11AA =,则1BC 与平面11BB D D 所成角的正弦值为( )
A
B .
C .
D .
D
C
B
A
A 1
D 1
B 1
C 1
【例4】 (2009浙江)
在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( ) A .30° B .45° C .60° D .90°
典例分析
板块二.直线与平面所成的角
E A 1
C 1
B 1
D
C
B
A
【例5】 (06四川卷理13)在三棱锥O ABC -中,三条棱OA 、OB 、OC 两两互相垂直,
且OA =OB =OC ,M 是AB 边的中点,则OM 与平面ABC 所成的角的大小是 ( 用反三角函数表示)
【例6】 (2008全国Ⅰ)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面
ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )
A .13
B
C
D .
23
【例7】 正三棱柱侧面的一条对角线长为2,且与底面成45角,求此三棱柱的体积.
【例8】 (08四川卷15
,则该正四棱柱的体积等于________________.
【例9】 如图,在棱长为1的正方体1111ABCD A B C D -中,
⑴求1BC 与平面11ACC A 所成的角; ⑵求11A B 与平面11A C B 所成的角的余弦值.
A
B
C
D
B 1
C 1
D 1
A 1
【例10】 (2008上海)如图,在棱长为2的正方体1111ABCD A B C D -中,E 是BC 的中点.求
直线DE 与平面ABCD 所成角的大小(结果用反三角函数值表示).
E
A
B
C D A 1
B 1
C 1
D 1
【例11】 如图,正方体的棱长为1,11B C
BC O =,求:
⑴AO 与11A C 所成角;
⑵AO 与平面ABCD 所成角的正切值;
E
O
A
B
C
D
A 1
B 1
C 1
D 1。