初三上圆期末复习学案(1)
- 格式:doc
- 大小:126.50 KB
- 文档页数:4
第24章圆一、复习目标1、了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、•弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.2、探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,•探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.3、进一步认识和理解正多边形和圆的关系和正多边的有关计算.4、熟练掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.二、课时安排2三、复习重难点1。
理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,•探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.2。
掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.四、教学过程(一)知识梳理1、圆的有关概念:2、圆的对称性:(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线。
(2)圆是中心对称图形,对称中心为圆心。
3、垂径定理及其推论:定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
(2)弦的垂直垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.(4)圆的两条平行弦所夹的弧相等。
4、圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。
5、圆周角:(1)定义:顶点在圆上,并且两边都和圆相交的角叫圆周角.(2)定理:一条弧所对的圆周角等于它所对的圆心角的一半。
(3)推论:①圆周角的度数等于它所对弧的度数的一半。
②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等。
③直径所对的圆周角是直角;90的圆周角所对的弦是直径。
九年级圆复习教案5篇教案在书写的时候,我们需要考虑联系实际,制定教案是一件值得深思的事情,我们要保持清晰的思路,下面是作者为您分享的九年级圆复习教案5篇,感谢您的参阅。
九年级圆复习教案篇1第一单元第一课一复习生词二背诵最后一段(共两句,最后是省略号)三课文中作者的感情是自豪、赞美,体现了民族团结的精神。
四、抄写窗外安静的句子。
(读书读得认真)五、字音、字形傣昌戴(戈)舞()六、这是一所什么样的学校?(美丽、团结)第二课一、生词二、课文感情:热爱大自然,大自然给我的们生活带来了乐趣。
三、课文写了哪两件事?(第一件:哥俩在草地上玩耍,互相往对方脸上吹蒲公英的绒毛。
第二件:我发现了草地会变色及其变色的原因)四、草地为什么会变色?(花朵张开时,它是金色的,草地也是金色的;花朵合拢时,金色的花瓣被包住,草地就变成绿色的了。
)五、一本正经:很庄严,很严肃。
引人注目:引起人的注意。
第三课一、读课文,读准字音二、生词三、背诵课文第二自然段,这段写了什么?(天都峰又高又陡)四、老爷爷和我爬上天都峰后,为什么要互相道谢?(能从他人身上汲取力量,善于向他人学习,他们个人的奋斗和努力。
)五、多音字si似乎互相似相shi似的相片园地一、我的发现真假好人发现晃眼朝阳假放假好爱好发头发晃摇晃朝朝向二、背《小儿垂钓》三、记住“读读认认”里的生字四、用下面两个词造句十分:好像:第二单元第五课一、读课文二、写生词三、注意易错的字:步胸或低四、把课文描写灰雀的句子背下来(公园里有一棵高大的……非常惹人喜爱)五、列宁是怎样对待小男孩儿的,小男孩是一个怎样的人?(列宁尊重、爱护小男孩,小男孩是一个诚实天真的人)第六课一、读课文,读准字音二、会写生词三、易听写的词:摆弄清准备胶卷杂志社四、高尔基是一个怎样的人?小男是一个怎样的人?(高尔基关心爱护小男孩,小男孩崇敬、热爱高尔基)五、小男孩摆弄了很久很久,说明什么?(从高尔基和小男孩两个方面去回答)六、高尔基的三步曲:童年在人间我的大学第七课1、熟读课文2、听写词语3、容易错的字:旅考遗4、李四光是怎么提问题的?(这么重的大石头从天上掉下来,力量一定非常大。
初三圆的复习教案教案标题:初三圆的复习教案教学目标:1. 学生能够理解圆的概念,并能正确使用圆的术语。
2. 学生能够计算圆的周长和面积。
3. 学生能够应用圆的相关概念解决实际问题。
4. 学生能够发展对圆形图形的观察和推理能力。
教学准备:1. 教学PPT或白板。
2. 圆规、直尺和铅笔。
3. 纸板或绘图纸。
4. 练习题和答案。
教学过程:Step 1: 引入1. 在白板上画一个圆形,引导学生回顾圆的定义,并解释相关术语(圆心、半径、直径、弧、弦、切线等)。
2. 提问学生有关圆的特征和性质,激发他们对圆更深入的思考。
Step 2: 计算圆的周长和面积1. 提醒学生关于计算周长和面积的公式(周长=2πr,面积=πr²)。
2. 通过示范,解释如何根据给定的半径或直径计算圆的周长和面积。
3. 给学生一些练习题,让他们独立计算圆的周长和面积,并检查答案。
Step 3: 圆的相关问题1. 提供一些实际问题,要求学生应用所学知识解决。
例如:一个花坛的形状是一个半径为4米的圆,求花坛周围的围墙长度和花坛的面积分别是多少?2. 引导学生思考解决问题的方法,并鼓励他们用图画或数学计算来解决。
Step 4: 圆形图形观察和推理1. 准备一些不同大小和位置的圆形图形,让学生观察并描述它们的特征和相似之处。
2. 引导学生思考圆形图形的一些共同特点,并鼓励他们提出自己的观察和推理。
例如:如何通过测量圆的直径来判断两个圆是否相等?3. 给学生几个挑战性的问题,鼓励他们思考并解决。
Step 5: 小结和反思1. 总结圆的相关概念和计算方法。
2. 要求学生回顾整个课堂内容,自我评价学习效果。
3. 鼓励学生思考如何将所学知识应用到实际生活中。
教学扩展:1. 鼓励学生自行寻找更多关于圆的实际问题并解决。
2. 设计一些有趣的游戏或活动,帮助学生巩固对圆的概念的理解。
教学评估:1. 在课堂上观察学生的参与度和对圆概念的理解程度。
2. 分发练习题和挑战性问题,检查学生对圆的计算和应用能力。
小结与复习(一)素质教育目标1,系统地归纳总结本章的知识内容.2,通过系统地归纳总结本章的知识内容,培养学生阅读理解能力;整理归纳所学知识使其条理化、系统化的能力;通过系列练习题的完成培养学生的理解能力、记忆能力。
3,通过圆与各种图形位置关系的复习,认识事物之间是相互联系的,通过运动和变化,事物之间可以互相转化;由于本章内容较多因而显得零散,通过系统归纳,向学生渗透了抓主要矛盾,“纲举目张”的辩证唯物主义观点.教学重点、难点1.重点:系统地归纳总结本章知识内容.2.难点:使所学知识结构化.教法学法和教具1.教法:引导学生探索研究发现法。
2.学法:学生主动探索研究发现法。
3.教具:三角尺、圆规、投影仪(或小黑板)。
教学过程教师谈话引入:经过近50课时的学习,第七章圆的全部内容已经学完了,今天我们这节课的任务就是回顾一下这50课时学习内容,将其整理归纳,使之结构化.圆是最常见的几何图形之一,在生活、生产实践中应用十分广泛.“圆”又是初中几何最后一章,与前面所学的知识又有着千丝万缕的联系.本章的内容又较多,为了便于学生掌握这些内容,安排一节课将本章内容归纳整理,使之结构化,就显得十分有必要.课堂探练部分:同学们请看书,回顾一下第七章圆,你都学了有关圆的哪些知识.[安排学生读书,讨论研究,然后回答这个问题.学生的回答必然零散,或读目录.] 教师引导学生总结:第七章的内容可概括为三大部分:其一,是它本身的概念和性质;其二是它与其它几何图形的位置关系及性质、判定和应用;其三,圆柱、圆锥侧面展示图.课堂讲练部分第一部分圆的概念和性质:提出如下问题让学生先看书后回答.[提问的重点是中下学生] 1.什么是圆?2.圆心确定圆的什么?半径确定圆的什么?3.满足什么条件的三点可以确定一个圆.4.圆是轴对称图形,它的对称轴是谁?它有多少条对称轴?5.圆的轴对称性主要体现在哪个定理上?6.圆是中心对称图形吗?它的对称中心是谁?7.圆的旋转不变性,主要体现在哪个定理上?什么是圆的旋转不变性?8.弧长公式、扇形面积公式?中下生答:[1.圆是与定点的距离等于定长的点的集合;2.圆心确定圆的位置,半径确定圆的大小;3.经过不在同一直线上的三点可以确定一个圆;4.它的任意一条直径所在的直线都是对称轴,它有无数条对称轴;5.垂经定理;6.圆是中心对称图形,它的圆心就是对称中心;7.在同圆或等圆中,两个圆心角、圆心角所对的弧、弦、弦心距的相等关系定理.圆绕圆心旋转任意大小的角度都能够与原图形重合称为圆的旋转不变性;8,L=n R180π,S 扇形 =2n360Rπ=1LR2第一大部分知识间的关系可如下表:第二大部分知识间的关系可如下表:第二部分拟提出以下问题让学生看书,然后回答,重点仍然是中下学生.1.点与圆有哪几种位置关系?2.点到圆心的距离d跟点与圆的位置关系是怎样对应的?3.直线与圆有哪几种位置关系?4.圆心到直线的距离d跟直线与圆的位置关系是怎样对应的?5.圆与圆有哪几种位置关系?6.两圆的圆心距d与两圆的位置关系又是怎样对应的?7.与圆有关的角都有哪些?8.圆心角的度数和它所对弧的度数有什么关系?9.一条弧所对的圆周角与圆心角具有什么数量关系?10.弦切角与它所夹的弧所对的圆周角具有什么数量关系?11.三角形的三边中垂线的交点是三角形的什么心?三角形的内心是三角形的什么特殊线段的交点?12.圆内接四边形有哪些性质?13.正多边形和圆有哪些关系定理?14.与圆有关的成比例线段定理有哪些?[答案:1.点在圆内,点在圆上,点在圆外.2.设圆的半径为R,线与圆相交;直线与圆相切;直线与圆相离.4.设圆的半径为R,则离.5.两圆外离、外切、相交、内切、内含.6.设一圆半径为R,的度数等于它所对的弧的度数.9.一条弧所对的圆周角是它所对圆心角的一半.10.弦切角等于它所夹弧对的圆周角.11.外心;两角平分线的交点.12.圆内接四边形对角互补、外角等于它的内对角.13.n等分圆周,(n≥3),(1)顺次连结各分点得圆内接正n边形,(2)过各分点作切线,以相邻切线的交点为顶点的多边形是圆的外切正n边形.(3)正n边形(n≥3)一定有一个内切圆且有一个外接圆,并且这两个圆是同心圆.14.相交弦定理、切割线定理、割线定理.]第三部分:通过圆柱、圆锥的直观展开图进行有关计算.第三部分拟提出以下问题,由幻灯片形式给出,让学生观察直观图并回答.[重点:提问中下生]1.在圆1中的h与m分别表示圆柱的什么?h与m有何数量关系?2.图1中圆柱展开图矩形的一边是高或母线,另一边是圆柱的什么?3.在图2中的h与m分别表示圆锥的什么?m、h、r,具有什么关系?4.图2中的∠θ和∠α分别表示什么角?5.圆锥展开图的弧长与圆锥底面圆有何联系?[答案:1.h是高,m是母线,h=m.2.另一边是圆柱底面圆的周长.3.h是高,m是母线,m2=h2+r2,4.∠θ是圆锥的锥角,∠α是圆锥展开图扇形的圆心角.5.圆锥展开图的弧长等于圆锥底面圆的周长.]总结、扩展(教师引导学生对本课进行学习反思)本节课将第七章圆的知识内容进行系统归纳整理.布置作业(学生可根据自己的实际情况选做)教材P.67中1;P.84中1;P.100中1;P.118中1;P.137中1;P.157中1;P.179中1;P.192中1.板书设计教学札记本节课面广量大综合性强,要求学生自己整理成知识网络,实行分层教学,分类作业,以激发学生的学习积极性,切实减轻学生的课业负担。
《圆》复习课教学设计一、教材的地位和作用本节是初中数学九上第24章复习测试。
圆在初中数学中占有重要地位,在中考中也占有一定的比例。
本节课的内容是对已经学过的圆的基本性质等基本知识的巩固,也为即将复习的圆和直线位置关系等其他问题打下坚实的基础。
二、学情分析初三的学生已经通过三年的学习掌握了一些必要数学基础知识和思考方式。
学生们处于求知欲和表现欲都很强的阶段,可以给学生提高更多的表现机会,加强合作交流,多互动,多反馈。
同时在教学时,应注意讲练结合,随时总结做题的规律和方法,随时注意纠正、反馈学生可能出现的问题等方面的错误。
二、教学目标(一)知识目标1.掌握本章的知识结构图.2.探索圆及其相关性质.3.掌握并理解垂径定理.4.认识圆心角、弧、弦之间相等关系的定理.5.掌握圆心角和圆周角的关系定理.(二)能力目标1.通过测试圆的基本知识,发展学生的数学思考能力。
2.用推理证明的方法研究圆周角和圆心角的关系,发展学生的推理能力。
3.让学生自己总结交流所学内容,发展学生的语言表达能力和合作交流能力。
(三)情感与价值观通过学生自己归纳总结本章内容,使他们在动手操作方面,探索研究方面,语言表达方面,分类讨论、归纳等方面都有所发展.(四)核心素养目标进一步发展几何直观和空间想象能力,增强运用图形和空间想象思考问题的意识,提升数形结合的能力,感悟事物的本质,培养创新思维。
三、教学重点、难点重点:掌握圆的对称性,垂径定理,圆心角、弧、弦之间的关系,圆心角和圆周角的关系.对这些内容不仅仅是知道结论,要注重它们的推导过程和运用添括号法则的推导,进一步熟悉乘法公式并灵活应用。
难点:命题的推导和说理过程,对复杂图形的理解能力。
四、教学方法小组合作、问题探究、变式训练、练习反馈教学环节环节三垂径定理及其推论专题1垂径定理:垂直于弦的直径平分弦并且平分弦所对的两条弧。
练习1在⊙O 中,AB 为直径,C 为⊙O 上一点.D 为弧AC 上一点,且OD 经过AC 的中点E ,连接DC 并延长,与AB 的延长线相交于点P ,若∠CAB =10°,求∠P 的大小.练习2垂径定理及推论的四个应用:1. 计算线段的长度:利用半径、半弦长、弦心距,构造直角三角形,结合勾股定理计算。
初中圆的复习教案一、教学目标:1. 知识与技能:使学生掌握圆的基本概念、性质和运算方法,能够运用圆的知识解决实际问题。
2. 过程与方法:通过复习,提高学生的逻辑思维能力、空间想象能力和解决实际问题的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
二、教学内容:1. 圆的基本概念:圆的定义、圆心、半径、直径等。
2. 圆的性质:圆的对称性、旋转性、圆周率等。
3. 圆的运算:圆的周长、面积的计算公式及应用。
4. 圆与直线、圆与圆的位置关系。
三、教学过程:1. 导入:回顾圆的基本概念,引导学生回顾圆的定义和性质。
2. 复习圆的运算:周长和面积的计算公式,并通过例题讲解其应用。
3. 探讨圆与直线、圆与圆的位置关系:利用几何图示和实例,引导学生理解圆与直线、圆与圆的相切、相离、相交等关系。
4. 解决问题:通过实际问题,引导学生运用圆的知识解决问题。
例如,计算自行车轮胎的周长和面积,估算圆的直径等。
5. 总结与反思:对本节课的内容进行总结,引导学生反思自己在学习过程中的优点和不足,并提出改进措施。
四、教学评价:1. 课堂参与度:观察学生在课堂上的发言和表现,评价学生的学习积极性。
2. 作业完成情况:检查学生作业的完成质量,评价学生的学习效果。
3. 问题解决能力:通过课堂提问和课后练习,评价学生运用圆的知识解决问题的能力。
五、教学资源:1. 教材:人教版《数学》八年级下册。
2. 教具:黑板、粉笔、几何图示、实例图片等。
3. 课件:利用多媒体课件辅助教学,提高课堂效果。
六、教学时间:1课时(40分钟)七、教学步骤:1. 导入(5分钟):回顾圆的基本概念,引导学生回顾圆的定义和性质。
2. 复习圆的运算(10分钟):周长和面积的计算公式,并通过例题讲解其应用。
3. 探讨圆与直线、圆与圆的位置关系(10分钟):利用几何图示和实例,引导学生理解圆与直线、圆与圆的相切、相离、相交等关系。
4. 解决问题(5分钟):通过实际问题,引导学生运用圆的知识解决问题。
山东省乳山市南黄镇初级中学九年级数学上册《4.10圆复习》学案(无答案)圆的概念与性质 一、知识点:1、圆的定义:到 的距离等于 的所有点组成的图形叫圆2、圆是轴对称图形,它的 的直线都是对称轴;又时中心对称图形,它的中心是 . 垂经定理:垂直于弦的直径 这条弦,并且平分垂经定理的推论:平分弦( )的直径垂直于弦,并且 3、圆是中心对称图形,对称中心是圆心角、弧、弦之间关系定理:在 或 中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么他们所对应的其余各组量 4、顶点在 ,并且两边都和圆 的角叫做圆周角. 圆周角定理:一条弧所对的圆周角等于推论1:同弧或等弧所对的圆周角 ;推论2:直径所对的圆周角是 ,90°的圆周角所对的弦是5、 的三点可以确定一个圆,三角形外接圆的圆心叫三角形的 ,三角形的外心是 的交点,它到 的距离相等。
6、圆内接四边形的性质:(1) (2) 二 易错点1.注意考虑点的位置在解决点与圆的有关问题时,应注意对点的位置进行分类,如点在圆内圆外、点在优弧劣弧等.例1.点P 到⊙O 上的最近距离为cm 3,最远距离为cm 5,则⊙O 的半径为 cm . 例2.BC 是⊙O 的一条弦, ︒=∠120BOC ,点A 是⊙O 上的一点(不与B 、C 重合),则BAC ∠的度数为 . 2.注意考虑弦的位置在解决与弦有关的问题时,应对两条的位置进行分类, 即注意位于圆心同侧和异侧的分类.例3.在半径cm 5为的圆中,有两条平行的弦,一条为cm 8,另一条为cm 6,则这两条平图3图4行弦的距离是 .例4.AB 是⊙O 的直径,AC 、AD 是⊙O 的两条弦,且︒=∠30BAC ,︒=∠45BAD ,则CAD ∠的度数为 .三、典型例题:如图,在⊙O 中,有折线OABC ,其中8=OA ,12=AB ,︒=∠=∠60B A ,求弦BC 的长作出垂直于弦的半径或弦心距,构造直角三角形进行解决.四、巩固练习:1、①等边三角形;②等腰梯形;③平行四边形;④等腰三角形;⑤圆.在以上五种几何图形中,既是轴对称图形,又是中心对称图形的是 .2、有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ). A .4个 B .3个 C . 2个 D . 1个3、⊙O 的弦AB=6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为4、一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是 .5、若上题中已知水管直径是1米,有水部分水面宽为0.8米,则水深为6、如图 ,⊙O 是正方形 ABCD 的外接圆,点 P 在⊙O 上,则∠APB 等于7、下列命题中,正确的是( )① 顶点在圆周上的角是圆周角; ② 圆周角的度数等于圆心角度数的一半; ③ 90的圆周角所对的弦是直径; ④ 不在同一条直线上的三个点确定一个圆; ⑤ 同弧所对的圆周角相等A .①②③B .③④⑤C .①②⑤D .②④⑤8、如图,⊙O 的半径为1,AB 是⊙O 的一条弦,且AB=3,则弦AB 所对圆周角的度数为 9、如图,AB 为O ⊙的直径,CD 为O ⊙的弦,42ACD ∠=°,则BAD ∠= 10、已知:如图,30PAC ∠=︒,在射线AC 上顺次截取AD =3cm ,DB =10cm , 以DB 为直径作⊙O 交射线AP 于E 、F 两点,求圆心O 到AP 的距离及EF 的长.10、如图,已知AB 是⊙O 的直径,点C 是⊙O 上一点,连结BC ,AC ,过点C 作直线CD⊥AB 于点D ,点E 是AB 上一点,直线CE 交⊙O 于点F ,连结BF ,与直线CD 交于点G . 求证:BF BG BC ⋅=2与圆有关的位置关系 一、知识点1、 的三点确定一个圆2、点与圆的位置关系:(1(2(33、直线和圆的位置关系:(1)直线与圆(2)直线与圆(3)直线与圆 切线的性质:圆的切线垂直于 ;切线的判定:过 的外端并且 半径的直线是圆的切线切线长定理:从圆外一点引圆的两条切线,他们的 相等,圆心和圆外这一点的连线 。
图1图2图3图4厦门五中 九 级 数学 学科教学案上课时间:月日 第 周 星期 班级: 座号: 姓名课题: §24 圆期末复习1学习目标:1.理解圆的弧、弦、圆心角、圆周角之间的关系,并能运用它们之间的关系解决问题; 2.在观察和分析过程中发展主动探索、质疑和独立思考的习惯. 学习重点:运用同圆中弧、弦、圆心角、圆周角之间的关系解决问题. 学习难点:学会分析问题,寻找解题方向. 【知识梳理】1.在同一个圆中,下列三组量中:(1)两个圆心角(2)两条弧(3)两条弦 ,其中有一组量相等, 那么它们对应的其它两组量也相等.(1)如图,AB 是⊙O 的直径,BC ︵= CD ︵= DE ︵,⊙COD=35°, 则⊙AOE= °. (2)如图,弦AB 与CD 相交于一点,① 若AD=BC ,比较AB ︵与CD ︵的长度的大小,并证明你的结论. ② 若AB=CD ,求证:AD=BC .2.在同一个圆中,一条弧所对的圆周角都相等,并且等于这条弧所对圆心角的一半;在同一个圆中,同弧或等弧所对的圆周角相等;半圆(或直径)所对的圆周角是直角(90°);90°(直角)的圆周角所对的弦是直径; 圆内接四边形对角互补.(1)如图1,⊙O 的两条弦AE 、BC 相交于点D ,连结AC 、BE .则下列结论不正确的是( ) A .⊙AOB =2⊙ACB B .⊙AEB =⊙ACB C .⊙CAE =⊙CBE D .⊙AOB =2⊙ADB (2)如图2,AB 是⊙O 的直径,点C 在圆周上,∠A=60°,则∠B= °.(3)如图3,在⊙O 中,⊙ABC 的三个顶点都在圆周上,且⊙OBC =40°,则⊙A = °. (4)如图4,四边形ABCD 内接于⊙O ,若⊙BOD=130°,则它的一个外角⊙DCE 等于 °. 3.如图,在Rt ∠ABC 中,⊙ACB =90°,⊙O 是Rt ∠ABC 的外接圆, D 是⊙O 上一点,连接BD .(1)若⊙CDB =30°,BC =1,求⊙O 的半径;(2)若BC=6,AC=8,CD 平分⊙ACB ,求BD 的长.学习小组长评价和签字完成订正签字PQAOCP AOC【课堂探究】问题1:在知识梳理3(2)的情况下,如何求CD 的长?问题2:如图,AB 是∠O 的直径,C 是半圆AB ︵的中点,点P 是AC ︵上一点,连接PA ,PC . (1)若CQ ∠CP 交PB 于点Q ,且AP=1,PC =22,求PB 的长.(2)课堂拓展:若AP=1,AB =26,求PC 的长.PD EOCBAPOC B A【课后作业】1.如图,在⊙O 中,AB ︵=AC ︵,⊙A=30°,则⊙B= °.2.如图,⊙O 的两条弦AB ,CD 相交于点P ,若∠APC=120°, ∠A=40°,则∠B= °.3.如图,△ABC 的外角∠CAD 的平分线AE 交△ABC 的外接圆O 于点P ,连接PC . (1)求证:PB=PC .(2)若PB=52,BC =4,求⊙O 的半径.4.如图,∠ABC 是∠O 的内接三角形,P 为劣弧BC 上任意一点,∠APB =∠APC = 60 (1)若AB =3,求∠ABC 的周长;(2)若PB=1,PC =2,求四边形ABPC 的面积.【课后反思】。
期末复习圆(1)
知识回顾:
1、基本概念:弧、弦、圆心角、圆周角
2、基本性质
确定圆的条件:
对称性:
垂径定理:
圆心角、弧、弦的关系定理:
圆周角定理:同弧或等弧所对的圆心角是它所对的圆周角的
推论:(1)同弧或等弧所的圆周角
(2)90°的圆周角所对弦是,
与圆有关的计算公式:(1)弧长:;
(2)扇形面积;
(3)圆锥的侧面积:;
(4) 圆锥的;
例题讲解:
例1 (有关弦、半径、圆心到弦的距离之间的计算)Array (1)如图,在半径为5cm的⊙O中,圆心O到弦AB的距离为
3cm,则弦AB的长是_______ ; 弦AB所对的圆心角的度
数为___________(精确到度)
(2)如图,在⊙O中,弦AB=60,弓高CD=9,
求
例2 (圆心角、弧、弦和弦心距定理的应用)
如图所示,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,•且AE=BF,请你找出弧AC
与弧BD的数量关系,并给予证明.
例3 :(圆周角与圆心角)
1.如图,点A 、B 、C 、D 是⊙O 上的三点,∠BAC=40°,则∠OBC 的度数是________
2.如图,已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 等于____________º。
3.如图是不倒翁的正视图,不倒翁的圆形脸恰好与帽子边沿PA 、PB 分别相切于点A 、B ,
不倒翁的鼻尖正好是圆心O ,若∠OAB=25°,则∠A PB=____________º.
4.在半径为2的⊙O 中,弦AB 的长为22,则弦AB 所对的圆心角∠AOB 的度数是__________ 5.(2006年金华市)如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,且AB=6,BC=3. 如果OE⊥AC,垂足为E ,求OE 的长;
例4 (圆锥和它的侧面展开图)
如图10,这是一个由圆柱体材料加工而成的零件,•它是以圆柱体的上底面为底面,在其内部“掏取”一个与圆柱体等高的圆锥体而得到的,其底面直径AB=12cm ,高BC=8cm ,求这个零件的表面积.(结果保留根号)
C
C
课后作业:
一、选择:
1.如图1,BD 为⊙O 的直径,∠A=30°,则∠CBD 的度数为( )
A .30° B.60° C.80° D.120°
2. 如图6,AB 是⊙O 的直径,BC ,CD ,DA 是⊙O 的弦,且BC=CD=DA ,则∠BCD 等于( ) A .100° B.110° C.120° D .130° 3. 如图3,⊙O 的直径CD 过弦EF 的中点G ,∠EOD=40°,则∠DCF 等于( ) A .80°
B .50° C.40° D.20° 4. 半径为6的圆中,圆心角α的余弦值为
1
2
,则角α所对弦长等于(• ) A .
B .10
C .8
D .6
5. 若一个直角三角形的两边分别为6和8,则这个直角三角形外接圆直径是( )
A.8
B.10
C.5或4
D.10或8 6.如图,OAB 是以6cm 为半径的扇形,AC 切弧AB 于点A 交OB 的延长线于点C,如果弧AB 的长等于3cm,AC=4cm,则图中阴影部分的面积为( )
A.15cm 2
B.6 cm 2
C. 4 cm 2
D. 3 cm 2
7. 用半径为30cm ,圆心角为120°的扇形围成一个圆锥的侧面,•则圆锥的底面半径为( ) A .10cm B .30cm C .45cm D .300cm 二、填空
1.已知扇形的圆心角为120°,半径为2cm ,则扇形的弧长是_______cm ,扇形的面积是
______cm 2
. 2. 若圆锥的母线长为6cm ,侧面展开图是圆心角为300°的扇形,则圆锥底面半径___cm 。
3.已知Rt △ABC ,斜边AB =13 cm ,以直线BC 为轴旋转一周,得到一个侧面积为65π cm
2
的圆锥,则这个圆锥的高等于_____.
4.如图,⊙O 的直径为10,弦AB =8,P 是弦AB 上一动点,那么OP 长的取值范围是____. 5.如图,△ABC 为⊙O 的内接三角形,O 为圆心,OD⊥AB,垂足为D ,OE⊥AC,•垂足为E ,•
若DE=3
,则
BC=________.
6.如图6,矩形ABCD与圆心在AB上的⊙O交于点G,B,F,E,GB=8cm,AG=1cm,DE=2cm,则EF=_______cm.
7.如图,在⊙O中,∠ACB=∠D=60°,AC=3,则△ABC的周长为________.
8.在半径为1的⊙O中,弦AB、AC分别是2、3,则∠BAC的度数为_______________.
9.如图,Rt△ABC的斜边AB=35,AC=21,点O在AB边上,OB=20,一个以O为圆心的圆,分别切两直角边边BC、AC于D、E两点,求弧DE的长度.
10、如图,已知点A、B、C、D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,
四边形ABCD的周长为10。
(1)求此圆的半径;
(2)求图中阴影部分的面积。
11、如图12,ABC
△是⊙O的内接三角形,AC BC
=,D为⊙O弧AB上一点,延长DA 至点E,使CE CD
=.
(1)求证:AE BD
=;(2)若AC BC
⊥
,求证:AD BD
+=.
E。