2.1.1《向量的实际背景及基本概念(1)》教学案5-公开课-优质课(人教A版必修四精品)
- 格式:doc
- 大小:331.00 KB
- 文档页数:5
第二章平面向量2.1平面向量的实际背景及基本概念教学设计一、内容和内容解析向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何和三角函数的一种工具,它有着丰富的现实背景和物理背景。
向量是刻画位置的重要数学工具,在诸如卫星定位、飞船设计等领域有着广泛的应用。
向量也是刻画物理量——力、位移、速度、加速度、动量、电场强度这些物理量的数学工具,它体现了数学和物理的天然联系。
向量的学习有助于学生认识数学和实际生活以及物理学科的紧密联系,体会向量在刻画和解决实际问题中的作用,从中感受数学的应用价值。
在教学中需要引导学生对现实原型的观察分析和比较,得出抽象的数学模型,所以本节内容是渗透“数学抽象”很好的载体。
在本节中,学生将了解平面向量丰富的实际背景,理解平面向量的意义,能用向量的语言和方法表达和解决数学和物理中的一些问题。
本节课是一节概念课,在向量基本概念的形成过程中,需要将学生已有的旧知识作为新知识的固着点和生长点,在探究向量的几何表示时让学生经历以物理中学习力的图示,位移的表示,速度的表示为起点,归纳并确定向量的几何表示以及符号表示,而在探索向量间的特殊关系时,引导学生借助图形进行,这样不仅使研究有序,同时更锻炼学生的直观想象能力,有助于感受向量集数与形于一身的特性。
通过类比学习数量的过程,让学生自然的获得新知识的探究方向,在基本概念的学习中,要让学生体验概念的生成过程,获得这些概念的“基本思路”即获得数学研究对象,认识数学新对象的基本方法,用数学的观点刻画和研究现实事物的方法和途径。
二、目标和目标解析1. 通过对平面向量概念的抽象概括,体验数学概念的形成过程,了解平面向量的实际背景;2. 理解平面向量的意义和两个向量相等的含义;3. 理解平面向量的几何表示和基本要素,会用有向线段表示向量,会判断零向量,单位向量,能做一个向量和已知向量相等,能根据图形判定向量是否是平行,共线,相等向量。
4.通过类比“学习数量的过程”而获得研究的内容与方法的启发,再一次体会研究一类新的数学问题的基本思路.学生已经学习过数量,但是形如确定位置的问题,只用数量是无法满足需要的,这就使得学习新知识是自然的有必要的,同时可以引导学生类比“学习数量的过程”明确研究向量概念的基本方向,因此,复习回顾数量的相关知识是有必要的。
《平面向量数量积的物理背景及其含义》教学设计一、教学设计平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。
本节内容教材共安排两课时,其中第一课时主要研究数量积的概念。
本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。
其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。
同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。
二、教学目标1知识与技能:阐明平面向量的数量积及其几何意义.会算一个向量在另一个上投影的概念,运用平面向量数量积的性质、运算律和几何意义.2过程与方法:以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过作图分析,使学生明确向量的数量积与数的乘法的联系与区别。
3情感态度与价值观:由具体的功的概念到向量的数量积,再到共线、垂直时的数量积,使学生学习从特殊到一般,再由一般到特殊的认知规律,体会数形结合思想,类比思想,体验法则学习研究的过程,培养学生学习数学的兴趣及良好的学习习惯。
三、学情分析学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。
这为学生学习数量积做了很好的铺垫,使学生倍感亲切。
但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。
2.1平面向量的实际背景及基本概念教材分析:向量这一概念是由物理学和工程技术抽象出来的,反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题。
向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用。
因此,本章在介绍向量概念时,重点说明了向量与数量的区别,然后又重新给出了向量代数的部分运算法则,包括加法、减法、实数与向量的积、向量的数量积的运算法则等。
之后,又将向量与坐标联系起来,把关于向量的代数运算与数量(向量的坐标>的代数运算联系起来,这就为研究和解决有关几何问题又提供了两种方法——向量法和坐标法。
本章共分五大节。
第一节是“平面向量的实际背景及基本概念”,内容包括向量的物理背景与概念、向量的几何表示、相等向量与共线向量。
本节从物理学中的位移、力这些既有大小又有方向的量出发,抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念。
在“向量的物理背景与概念”中介绍向量的定义;在“向量的几何表示”中,主要介绍有向线段、有向线段的三个要素、向量的表示、向量与有向线段的区别与联系、向量的长度、零向量、单位向量、平行向量;在“相等向量与共线向量”中,主要介绍相等向量,共线向量定义等。
教案目标:1、了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.2、通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3、通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.教案重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教案难点:平行向量、相等向量和共线向量的区别和联系.学 法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.教 具:多媒体或实物投影仪,尺规授课类型:新授课教案过程:一、情景设置:如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追到老鼠?<画图)结论:猫的速度再快也没用,因为方向错了. A B C D分析:老鼠逃窜的路线AC 、猫追逐的路线BD 实际上都是有方向、有长短的量. 引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?二、新课学习:<一)向量的概念:我们把既有大小又有方向的量叫向量<二)请同学阅读课本后回答:<可制作成幻灯片)1、数量与向量有何区别?2、如何表示向量?3、有向线段和线段有何区别和联系?分别可以表示向量的什么?4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向相同或相反,这组向量有什么关系?7、如果把一组平行向量的起点全部移到一点O ,这是它们是不是平行向量?这时各向量的终点之间有什么关系?<三)探究学习1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.2.向量的表示方法:①用有向线段表示;②用字母a、b<黑体,印刷用)等表示; ③用有向线段的起点与终点字母:; ④向量的大小――长度称为向量的模,记作||. 3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:<1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;<2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0.0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.A(起点> B <终点)a说明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:<1)综合①、②才是平行向量的完整定义;<2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:<1)向量a与b相等,记作a=b;<2)零向量与零向量相等;<3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有..向线段的起点无关.........7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上<与有向线段.....的起点无关).......说明:<1)平行向量可以在同一直线上,要区别于两平行线的位置关系;<2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.<四)理解和巩固:例1 书本86页例1.例2判断:<1)平行向量是否一定方向相同?<不一定)<2)不相等的向量是否一定不平行?<不一定)<3)与零向量相等的向量必定是什么向量?<零向量)<4)与任意向量都平行的向量是什么向量?<零向量)<5)若两个向量在同一直线上,则这两个向量一定是什么向量?<平行向量)<6)两个非零向量相等的当且仅当什么?<长度相等且方向相同)<7)共线向量一定在同一直线上吗?<不一定)例3下列命题正确的是< )A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.例4 如图,设O是正六边形ABCDEF的中心,分别写出图中与向量、、相等的向量.变式一:与向量长度相等的向量有多少个?<11个)变式二:是否存在与向量长度相等、方向相反的向量?<存在)变式三:与向量共线的向量有哪些?<)课堂练习:1.判断下列命题是否正确,若不正确,请简述理由.①向量与是共线向量,则A、B、C、D四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD是平行四边形当且仅当=⑤一个向量方向不确定当且仅当模为0;⑥共线的向量,若起点不同,则终点一定不同.解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量、在同一直线上.②不正确.单位向量模均相等且为1,但方向并不确定.③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的.④、⑤正确.⑥不正确.如图与共线,虽起点不同,但其终点却相同.2.书本88页练习三、小结:1、描述向量的两个指标:模和方向.2、平行向量不是平面几何中的平行线段的简单类比.3、向量的图示,要标上箭头和始点、终点.四、课后作业:书本88页习题2.1第3、5题2.1平面向量的实际背景及基本概念课前预习学案一、预习目标通过阅读教材初步了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.二、预习内容<一)、情景设置:如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追到老鼠?<画图)结论:猫的速度再快也没用,因为方向错了.分析:老鼠逃窜的路线AC 、猫追逐的路线BD 实际上都是有方向、有长短的量.引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?<二)、新课预习:1、向量的概念:我们把既有大小又有方向的量叫向量2、请同学阅读课本后回答:<可制作成幻灯片)1) 数量与向量有何区别?2) 如何表示向量?3) 有向线段和线段有何区别和联系?分别可以表示向量的什么?4) 长度为零的向量叫什么向量?长度为1的向量叫什么向量?5) 满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6) 有一组向量,它们的方向相同或相反,这组向量有什么关系?7) 如果把一组平行向量的起点全部移到一点O ,这是它们是不是平行向量?这时各 向量的终点之间有什么关系?三、提出疑惑课内探究学案一、学习目标1、通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.2、通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.二、学习过程1、数量与向量的区别?-2.向量的表示方法?A B C D A(起点> B <终点)a①②③④向量的大小――长度称为向量的模,记作。
课题:2.1.1向量的物理背景与概念2.1.2向量的几何表示2.1.3相等向量与共线向量教学目的:1.理解向量的概念,掌握向量的几何表示;2.了解零向量、单位向量、平行向量、相等向量等概念,并会辨认图形中的相等向量或出与某一已知向量相等的向量;3.了解平行向量的概念.教学重点:向量概念、相等向量概念、向量几何表示教学难点:向量概念的理解授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:向量这一概念是由物理学和工程技术抽象出来的,反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用因此,本章在介绍向量概念时,重点说明了向量与数量的区别,然后又重新给出了向量代数的部分运算法则,包括加法、减法、实数与向量的积、向量的数量积的运算法则等之后,又将向量与坐标联系起来,把关于向量的代数运算与数量(向量的坐标)的代数运算联系起来,这就为研究和解决有关几何问题又提供了两种方法——向量法和坐标法教学过程:一、复习引入:在现实生活中,我们会遇到很多量,其中一些量在取定单位后用一个实数就可以表示出来,如长度、质量等.还有一些量,如我们在物理中所学习的位移,是一个既有大小又有方向的量,这种量就是我们本章所要研究的向量.向量是数学中的重要概念之一,向量和数一样也能进行运算,而且用向量的有关知识还能有效地解决数学、物理等学科中的很多问题,在这一章,我们将学习向量的概念、运算及其简单应用.这一节课,我们将学习向量的有关概念.二、讲解新课:1.向量的概念:我们把既有大小又有方向的量叫向量注意:1 数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小2 从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质2.向量的表示方法:①用有向线段表示;②用字母a r 、b r 等表示;③用有向线段的起点与终点字母:AB u u u r ;注意:起点一定写在终点的前面④向量AB u u u r 的大小――长度称为向量的模,记作|AB u u u r |.3.零向量、单位向量概念:①长度为0的向量叫零向量,记作0r 0r 的方向是任意的注意0r 与0的区别②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都是只限制大小,不确定方向.4.平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a r 、b r 、c r 平行,记作a r ∥b r ∥c r .5.相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a r 与b r 相等,记作a r =b r ;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起.......点无关.... 6.共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上. 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.探究:1.对向量概念的理解要深刻理解向量的概念,就要深刻理解有向线段这一概念.在线段AB 的两个端点中,我们规定了一个顺序,A 为起点,B 为终点,我们就说线段AB 具有射线AB 的方向,具有方向的线段就叫做有向线段.通常有向线段的终点要画箭头表示它的方向,以A 为起点,以B 为终点的有向线段记为AB u u u r ,需要学生注意的是:AB u u u r 的字母是有顺序的,起点在前终点在后,所以我们说有向线段有三个要素:起点、方向、长度.既有大小又有方向的量,我们叫做向量,有些向量既有大小、方向、作用点(起点),比如力;有些向量只有大小、方向,比如位移、速度,我们现在所学的向量一般指后者.2.向量与有向线段的区别:(1)向量是自由向量,只有大小和方向两个要素;与起点无关:只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段三、讲解范例:例1 判断下列命题是否正确,若不正确,请简述理由.①向量AB u u u r 与CD uuu r 是共线向量,则A 、B 、C 、D 四点必在一直线上; ②单位向量都相等; ③任一向量与它的相反向量不相等;④四边形ABCD 是平行四边形的充要条件是AB u u u r =DC u u u r⑤模为0是一个向量方向不确定的充要条件;⑥共线的向量,若起点不同,则终点一定不同.解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB u u u r 、AC u u u r 在同一直线上.②不正确.单位向量模均相等且为1,但方向并不确定.③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的.④、⑤正确.⑥不正确.如图AC u u u r 与BC uuu r 共线,虽起点不同,但其终点却相同.评述:本题考查基本概念,对于零向量、单位向量、平行向量、共线向量的概念特征及相互关系必须把握好.例2下列命题正确的是( )A.a r 与b r 共线,b r 与c r 共线,则a r 与c r 也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a r 与b r 不共线,则a r 与b r 都是非零向量D.有相同起点的两个非零向量不平行解:由于零向量与任一向量都共线,所以A 不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B 不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C ,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a r 与b r 不都是非零向量,即a r 与b r 至少有一个是零向量,而由零向量与任一向量都共线,可有a r 与b r 共线,不符合已知条件,所以有a r 与b r 都是非零向量,所以应选C.评述:对于有关向量基本概念的考查,可以从概念的特征入手,也可以从反面进行考虑,要启发学生注意这两方面的结合.例3下列命题正确的是( )如图,设O 是正六边形ABCDEF 的中心,分别写出图中与OA OB OC u u u r u u u r u u u r 、、相等的向量. 解:OA CB DO u u u r u u u r u u u r == OB DC EO OC AB FO==u u u r u u u r u u u r u u u r u u u r u u u r ==四、课堂练习:五、小结 :向量及向量的有关概念、表示方法,还知道有两个特殊向量,最后学了向量间的两种关系,即平行向量(共线向量)和相等向量六、课后作业:七、板书设计(略)。
平面向量的实际背景及基本概念教学设计一.教学内容分析本节课是《普通高中课程标准实验教科书•数学4(必修)》(人教A版)第二章第一节的第一课时《平面向量的实际背景及基本概念》.本节内容属于概念性知识.向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有及其丰富的实际背景,在数学和物理学科中具有广泛的应用在现实生活中随处可见的力、位移、速度等既有大小,又有方向的量是其物理背景,有向线段是其几何背景,向量就是从这些实际对象中抽象出来的数学概念,经过研究,建立起完整的知识体系之后,向量又作为数学工具,广泛地应用于解决数学、物理学科或实际生活中的问题因此,它在整个高中数学的地位是非常重要的本节课是《平面向量》的起始课,通过本节课的学习,让学生体会到向量的两个属性:大小和方向,研究向量我们可以从大小和方向两个角度入手另外,实数学习的经验可以启发我们对向量的学习,引进一个量,就要研究它的运算,研究相应的运算律,因此,《平面向量》这一章,后续将要研究的内容就比较明朗了,这体现了本节课内容,对这一章的教学具有“统领全局”的作用另外,对于本节课的教学,重要的是让学生去体会研究数学新对象的方法和基本思路,而不是向量的形式化定义及几个相关概念因此,本节课内容的学习,它的理论意义远远大于它在解题中的作用.二.教学目标设置根据本节课的内容特点以及学生的认知水平,确定本节课的教学目标是:1 通过位移的实例分析,了解向量的实际背景,理解向量的概念及向量相等的含义,理解向量的几何表示2 在向量概念的形成过程中,提高抽象与概括能力,在向量的表示、特殊向量、向量的特殊关系的探讨过程中,体会向量具有数和形两个特征.3 由具有物理意义的量抽象出向量的概念,积累从具体到抽象的活动经验;在向量的概念、向量的表示、特殊向量、向量的特殊关系的探讨过程中,自觉形成从大小和方向两个角度来进行思考的习惯,培养理性思维.三.教学重难点1 重点:向量的概念,相等向量的概念,向量的几何表示2难点:向量的概念和共线向量的概念四.教学过程设计(一)创设情境,引入课题【问题1】同学们被外国人誉为中国的“新四大发明”是什么?设计意图:教师提出一个生活中的热点问题,激发学生学习兴趣,为下一步引出物理现象作铺垫【问题2】运用物理学的哪个量,可以解释路径不同,但是最终都能从南宁到达福州这一现象?追问1:这个物理量有什么特点?师生活动:教师通过图片演示两条不同从南宁到福州的路径,学生认真观察现象并进行思考,教师组织学生交流设计意图:进一步让学生思考现象背后的原理,让学生经历由直观感知,为向量概念的引出作准备;(二)概念形成【问题3】大家能否举出一些既有大小,又有方向的量请举例说明。
第二章平面向量本章教材分析1.丰富多彩的背景,引人入胜的内容.教材首先从力、位移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了平面向量的有关知识.学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言与方法表述和解决数学、物理中的一些问题,发展运算能力和解决实际问题的能力.平面向量基本定理是平面向量正交分解及坐标表示的基础,从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示.向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题.最后介绍了平面向量的应用.2.教学的最佳契机,全新的思维视角.向量具有几何形式和代数形式的“双重身份”,这一概念是由物理学和工程技术抽象出来的.反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题.这一章的内容虽然概念多,但大都有其物理上的来源,虽然抽象,却与图形有着密切的联系,向量应用的优越性也是非常明显的.全新的思维视角,恰当的教与学,使得向量不仅生动有趣,而且是培养学生创新精神与能力的极佳契机.3.本章充分体现出新教材特点.以学生已有的物理知识和几何内容为背景,直观介绍向量的内容,注重向量运算与数的运算的对比,特别注意知识的发生过程.对概念、法则、公式、定理等的处理主要通过观察、比较、分析、综合、抽象、概括得出结论.这一章中的一些例题,教科书不是先给出解法,而是先进行分析,探索出解题思路,再给出解法.解题后有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题.对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力.向量的坐标实际上是把点与数联系起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题.整体设计教学分析本节是本章的入门课,概念较多,但难度不大.学生可根据原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.由于向量来源于物理,并且兼具“数”和“形”的特点,所以它在物理和几何中具有广泛的应用,可通过几个具体的例子说明它的应用.位移是物理中的基本量之一,也是几何研究的重要对象.几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.位移简明地表示了点的位置之间的相对关系,它是向量的重要的物理模型.力是常见的物理量.重力、浮力、弹力等都是既有大小又有方向的量.物理中还有其他力,让学生举出物理学中力的其他一些实例,目的是要建立物理课中学过的位移、力及矢量等概念与向量之间的联系,以此更加自然地引入向量概念,并建立学习向量的认知基础.三维目标1.通过实例,利用平面向量的实际背景以及研究平面向量的必要性,理解平面向量的概念以及确定平面向量的两个要素,搞清数量与向量的区别.2.理解自由向量、相等向量、相反向量、平行向量等概念,并能判断向量之间的关系,并会辨认图形中的相等向量或作出与某一已知向量相等的向量.3.在教学过程中,应充分根据平面向量的两个要素加以研究向量的关系,揭示向量可以平移这一特性.重点难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量. 教学难点:平行向量、相等向量和共线向量的区别和联系.课时安排1课时教学过程导入新课思路1.(情境导入)如图1,在同一时刻,老鼠由A向西北方向的C处逃窜,猫在B处向正东方向的D处追去,猫能否追到老鼠呢?学生马上得出结论:追不上,猫的速度再快也没用,因为方向错了.教师适时设问:如何从数学的角度来揭示这个问题的本质?由此展开新课.图1思路2.两列火车先后从同一站台沿相反方向开出,各走了相同的路程,怎样用数学式子表示这两列火车的位移?从中国象棋中规定“马”走日,象走“田”,让学生在图上画出马、象走过的路线引入也是一个不错的选择.推进新课新知探究提出问题①在物理课中,我们学过力的概念.请回顾一下力的三要素是什么?还有哪些量和力具有同样特征呢?这些量的共同特征是什么?怎样利用你所学的数学中的知识抽象这些具有共同特征的量呢?②新的概念是对这些具有共同特征的量的描述,应怎样定义这样的量呢?③数量与向量的区别在哪里?活动:教师指导学生阅读教材,思考讨论并解决上述问题,学生讨论列举与位移一样的一些量.物体受到的重力是竖直向下的,物体的质量越大,它受到的重力越大;物体在液体中受到的浮力是竖直向上的,物体浸在液体中的体积越大它受到的浮力就越大;速度与加速度都是既有大小,又有方向的量;物理中的动量与矢量都有方向,且有大小;物理学中存在着许多既有大小,又有方向的量.教师引导学生观察思考这些量的共同特征,我们能否在数学学科中对这些量加以抽象,形成一种新的量.至此时机成熟,引入向量,并把那些只有大小,没有方向的量,如年龄、身高、长度、面积、体积、质量等称为数量,物理学上称为标量.显然数量和向量的区别就在于方向问题.讨论结果:①略.②我们把既有大小,又有方向的量叫做向量.物理中称为矢量.③略.提出问题①如何表示向量?②有向线段和线段有何区别和联系?分别可以表示向量的什么?③长度为零的向量叫什么向量?长度为1的向量叫什么向量?④满足什么条件的两个向量是相等向量?单位向量是相等向量吗?⑤有一组向量,它们的方向相同或相反,这组向量有什么关系?怎样定义平行向量?⑥如果把一组平行向量的起点全部移到一点O,它们是不是平行向量?这时各向量的终点之间有什么关系?⑦数量与向量有什么区别?⑧数学中的向量与物理中的力有什么区别?活动:教师指导学生阅读教材,通过阅读教材思考讨论以上问题.特别是有向线段,是学习向量的关键.但不能说“向量就是有向线段,有向线段就是向量”,有向线段只是向量的一种几何表示,二者有本质的区别.向量只由方向和大小决定,而与向量的起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置有关.如图2,在线段AB 的两个端点中,规定一个顺序,假设A 为起点、B 为终点,我们就说线段AB 具有方向,具有方向的线段叫做有向线段,通常在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作.起点要写在终点的前面.已知,线段AB 的长度也叫做有向线段的长度,记作|AB |.有向线段包含三个要素:起点、方向、长度.图2知道了有向线段的起点、方向和长度,它的终点就唯一确定.用有向线段表示向量的方法是:1°起点是A,终点是B 的有向线段,对应的向量记作:AB . 这里要提醒学生注意的方向是由点A 指向点B,点A 是向量的起点.2°用字母a ,b ,c ,…表示.(一定要学生规范书写:印刷用黑体a ,书写用)3°向量(或a )的大小,就是向量(或a )的长度(或称模),记作||(或|a |).教师要注意引导学生将数量与向量的模进行比较,数量有大小而没有方向,其大小有正、负和0之分,可进行运算,并可比较大小;向量的模是正数或0,也可以比较大小.由于方向不能比较大小,像a >b 就没有意义,而|a |>|b |有意义.讨论结果:①向量也可用字母a,b,c,…表示(印刷用粗黑体表示),手写用a →来表示,或用表示向量的有向线段的起点和终点字母表示,如、CD.注意:手写体上面的箭头一定不能漏写.②有向线段:具有方向的线段就叫做有向线段,其有三个要素:起点、方向、长度.向量与有向线段的区别:向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.图3③长度为0的向量叫零向量,长度为1个单位长度的向量,叫单位向量.但要注意,零向量、单位向量的定义都只是限制了大小.长度为0的向量叫做零向量,记作0,规定零向量的方向是任意的.长度等于1个单位的向量,叫做单位向量.④长度相等且方向相同的向量叫做相等向量.⑤是平行向量.平行向量定义的理解:第一,方向相同或相反的非零向量叫平行向量;第二,我们规定0与任一向量平行即0∥a.综合第一、第二才是平行向量的完整定义;向量a,b,c平行,记作a∥b∥c.如图3.图4又如图4,a,b,c是一组平行向量,任作一条与a所在直线0平行的直线l,在l上任取一点O,则可在l上分别作出=a,=b,=c.这就是说,任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量.说明:平行向量可以在同一直线上,要区别于两平行线的位置关系.⑥是共线向量,也就是平行向量.但要注意,平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.⑦数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小双重性质,不能比较大小.⑧力有大小、方向、作用点三个要素,而数学中的向量是由物理中的力抽象出来的,只有大小与方向两个要素,与起点的位置无关.应用示例例1 如图5,试根据图中的比例尺以及三地的位置,在图中分别用有向线段表示A地至B、C 两地的位移.(精确到1 km)图5分析:本例是一个简单的实际问题,要求画出有向线段表示位移,目的在于巩固向量概念及其几何表示.解:表示A地至B地的位移,且||≈232 km;(AB长度×8 000 000÷100 000)表示A地至C地的位移,且||≈296 km.(AC长度×8 000 000÷100 000)点评:位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图5,由A点确定B点、C点的位置.变式训练一个人从A点出发沿东北方向走了100 m到达B点,然后改变方向,沿南偏东15°方向又走了100 m到达C点,求此人从C点走回A点的位移.图6解:根据题意画出示意图,如图6所示.||=100 m,|BC|=100 m,∠ABC=45°+15°=60°,∴△ABC为正三角形.∴||=100 m,即此人从C点返回A点所走的路程为100 m.∵∠BAC=60°,∴∠CAD=∠BAC-∠BAD=15°,即此人行走的方向为西偏北15°.故此人从C点走回A点的位移为沿西偏北15°方向100 m.图7例2 判断下列命题是否正确,若不正确,请简述理由.(1)ABCD中,与是共线向量;(2)单位向量都相等.活动:教师引导学生画出平行四边形,如图7.因为AB//CD,所以AB∥CD.由于上面已经明确,单位向量只限制了大小,方向不确定,所以单位向量不一定相等,即单位向量模均相等且为1,但方向不确定.解:(1)正确;(2)不正确.点评:本题考查基本概念,对于单位向量、平行向量的概念特征及相互关系必须把握好.图8例3 如图8,设O是正六边形ABCDEF的中心,分别写出图中所示向量与相等的量.活动:本例是结合正六边形的一些几何性质,让学生巩固相等向量和平行向量的概念,正六边形是边长等于半径并且对边互相平行的正多边形,它既是轴对称图形,又是中心对称图形,具有丰富的几何性质.教科书中要求判断与,与是否相等,是要通过长度相等方向相反的两个向量的不等,让学生从反面认识向量相等的概念.解:OA=CB=DO;OB=DC=EO;OC=AB=ED=FO.点评:向量相等是一个重要的概念,今后经常用到.让学生在训练中明确,向量相等不仅大小相等,还要方向相同.变式训练本例变式一:与向量OA长度相等的向量有多少个?(11个)本例变式二:是否存在与向量长度相等、方向相反的向量?(存在)例4 下列命题正确的是( )A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行活动:由于零向量与任一向量都共线,所以A不正确.由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确.向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确.对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b 共线,不符合已知条件,所以有a与b都是非零向量,即只有C正确.答案:C点评:对于有关向量基本概念的考查,可以从概念特征入手,也可以从反面进行考虑.即要判断一个结论不正确,只需举一个反例即可.要启发学生注意这两方面的结合.变式训练1.判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)2.把一切单位平面向量归结到共同的始点,那么这些向量的终点所构成的图形是( )A.一条线段B.一段圆弧C.两个点D.一个圆答案:D3.将平行于一直线的所有单位向量的起点平移到同一始点,则这些向量的终点所构成的图形是( )A.一个点B.两个点C.一个圆D.一条线段答案:B知能训练课本本节练习.解答:1.通过具体的例子,让学生动手画两个方向不同、大小不等的力(向量),图略.2.|AB|,|BA|,这两个向量的长度相等,但它们不等.点评:向量是既有大小,又有方向的量.长度相等的两个向量未必是两个相等的量.3.||=2,|CD|=2.5,||=3,|GH|=22.点评:方格纸是学生学习几何、向量等内容的好工具.在方格纸中,长度和角度非常容易表现.建议在向量内容的学习中把方格纸作为重要的学具.4.(1)它们的终点相同;(2)它们的终点不同.点评:方向相同的两个向量,如果它们的起点相同,它们的终点只与长度有关.课堂小结本节课从平面向量的物理背景和几何背景入手,利用类比的方法,介绍了向量的两种表示方法:几何表示和字母表示,几何表示为用向量处理几何问题打下了基础,字母表示则利于向量的运算;然后又介绍了向量的模、平行向量、共线向量、相等向量等重要概念,这些概念是进一步学习后续课程的基础,必须要在理解的基础上把握好.作业课本习题2.1 1、2.设计感想本节是平面向量的第一节,显然属于“概念课”,概念的理解无疑是重点,但也是难点.本教案设计的指导思想是:把学生划分小组合作讨论学习,经过小组成员们的合作探究,对平面向量的基本概念和基本解题方法都明了了不少,应该有很多的成功之处或收获.对失败或教训之处可能是由于一些概念性问题没有深入研究,导致解题存在困难,不过这些会通过学习的深入弥补过来的.作为现代数学重要标志之一的向量引入中学数学以后,给中学数学带来了无限生机.通过本节具体问题的解决,让学生体会到数学在生活中的重要作用,并在实际课堂教学中规范学生的习惯,培养严谨的思考习惯和代数与几何相结合的习惯,为后面学习打下基础.。
2.1.1向量的物理背景与概念教学目标:1.知识与技能目标了解向量的实际背景,掌握向量的有关概念及几何表示。
2.过程与方法目标通过解决实际问题,提高依据具体问题背景分析问题、解决问题的能力。
3.情感、态度与价值观目标体会数学在生活中重要作用,培养严谨的思维习惯。
问题提出1.在物理中,位移与距离是同一个概念吗?为什么?2.现实世界中有各种各样的量,如年龄、身高、体重、力、速度、面积、体积、温度等,在数学上,为了正确理解、区分这些量,我们引进向量的概念。
探究(一):向量的物理背景与概念思考1:在物理中,怎样区分作用于同一点的两个力?力的大小和力的方向思考2:物体受到的重力、物体在液体中受到的浮力的方向分别如何?受力的大小分别与哪些因素有关?思考3:在如图所示的弹簧中,被拉长或压缩的弹簧的弹力方向如何?在弹性限度内,弹力的大小与什么因素有关?思考4:力既有大小,又有方向,在物理学中称为矢量,你还能指出哪些物理量是矢量吗?1.向量(1)数学中,我们把这种既有大小,又有方向的量叫做向量,向量的大小,也叫做向量的模。
(2)向量的两个要素:向量的大小和向量的方向。
思考5:向量与数量有什么联系和区别?思考6:数量之间有大小关系,如5>3 ,0>﹣2;如何定义向量之间的大小?问题1:判断题1.身高是一个向量。
﹙﹚2.温度含零上和零下温度,所以温度是向量。
()问题2:下列物理量中,不能称为向量的是()A.质量B.速度C.位移D.力2.1.1向量的物理背景与概念教学目标:1.知识与技能目标了解向量的实际背景,掌握向量的有关概念及几何表示。
2.过程与方法目标通过解决实际问题,提高依据具体问题背景分析问题、解决问题的能力。
3.情感、态度与价值观目标体会数学在生活中重要作用,培养严谨的思维习惯。
问题提出1.在物理中,位移与距离是同一个概念吗?为什么?2.现实世界中有各种各样的量,如年龄、身高、体重、力、速度、面积、体积、温度等,在数学上,为了正确理解、区分这些量,我们引进向量的概念。
教学准备
1. 教学目标
向量及向量的基本运算
2. 教学重点/难点
向量及向量的基本运算
3. 教学用具
4. 标签
教学过程
③单位向量:模为1个单位长度的向量。
④平行向量(共线向量):方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上。
⑤相等向量:长度相等且方向相同的向量。
相等向量经过平移后总可以重合,记为
注:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。
(2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。
4)实数与向量的积
②数乘向量满足交换律、结合律与分配律。
5)两个向量共线定理
6)平面向量的基本定理
7)特别注意:
(1)向量的加法与减法是互逆运算。
(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件。
(3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况。
(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关。
【例题选讲】
例1、判断下列各命题是否正确。
平面向量的实际背景及基本概念教学理念新的课程标准要求我们创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、合作交流和创新等过程,获得知识、能力、情感的全面发展.本节课将充分体现以“学生为本”的教学观念,实现课程理念、教学方式和学生学习方式的转变.教学内容《普高中课程标准数学教科书数学必修四》(人教A版)教学目标1。
通过力和力的分析等实例,了解向量的实际背景;理解向量的概念.2。
理解向量的几何表示;掌握零向量、单位向量、平行向量等概念;3.理解相等向量和共线向量等概念,并会辨认图形中的相等向量或作出与某一已知向量的相等向量.教学重点、难点:1、通过学生自主探究,并在教师的引导下,使学生理解向量的概念,相等向量等相关的概念,向量的几何表示等是本节课的重点.2、难点是学生对向量的概念和共线向量的概念的理解.学情和教材分析向量是近代数学中重要和基本的概念之一,有深刻的几何背景及代数意义,因此向量具有数形结合的特征,是深入学习数学及解决各类数学问题的有效工具,在其他学科中也有广泛应用。
所以向量是历年高考的必考内容,本节课是向量的第一节课,是新知识的一个起点,所以这是十分关键、重要的一节课。
本节教学内容的特点是:概念多,有向量、平行向量、相等向量、单位向量等相关概念及向量的几何表示。
学生在学习过程中,诸多概念容易混淆,它们之间关系不易理清,这些是学习中的难点.鉴于以上分析,我认为本课的教学方法应采用“指导学生自主学习”方式,以培养学生的阅读能力、独立学习能力,又可以避免满堂灌及学习死记硬背的学习方法.教学准备:多媒体课件。
教学过程一、导入新课1.我们知道物理中的力、速度,位移等都是矢量,他们具有共同的特征是什么?………………………(学生讨论回答)2.你能举出几个具有以上特征的量吗?岁数、身高、面积具有这些特征吗?3.在数学上,我们把具有这种特征的量称为向量,(引导学生看书P85)二、推进新课提出问题:本课的概念较多,课本中对这些概念的表述清楚,容易读懂,下面请同学们阅读课本,然后对所学的内容作一个归纳,并完成课后的练习师:1。
2.1平面向量的实际背景及基本概念一、教学目标(一)核心素养向量是近代数学最重要和最基本的数学概念之一,它是沟通代数、几何与三角函数的桥梁,对更新和完善中学数学知识结构起着重要的作用.通过本节课的学习,理解向量的基本概念,掌握向量的几何表示,培养学生认识客观事物的数学本质的能力.(二)学习目标1.了解向量的实际背景以及向量的概念;2.掌握向量的几何表示以及零向量、单位向量、平行向量的概念;3.理解相等向量与共线(平行)向量的概念.(三)学习重点理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量. (四)学习难点平行向量、相等向量和共线向量的区别和联系.二、教学设计(一)课前设计1.预习任务:(1)读一读:阅读教材第74页至第76页.(2)想一想:给出下列命题:①平行向量的方向一定相同;②共线向量一定在同一条直线上;③不平行的向量一定不相等;④与任意向量平行的向量是零向量;⑤平行于同一个非零向量的向量是平行向量;其中,所有正确命题的序号是③④⑤.2.预习自测:(1)在正方形ABCD中,AC与BD相交于点O,则与OA相等的向量是()A.OCB.ODC.OBD.CO答案:D.(2)命题“若a∥b,b∥c,则a∥c”()A.恒成立B.当a≠0时成立C.当b≠0时成立D.当c≠0时成立答案:C.(3)给出下列4个条件:①a=b;②|a|=|b|;③a与b方向相反;④|a|=0或|b|=0,其中能使a∥b成立的条件是_____________答案:①③④.(二)课堂设计1.问题探究探究一结合实例,引入向量,理解向量在生活中的应用性●活动结合实例,理解向量的概念在现实生活中,我们会遇到很多量,其中一些量在取定单位后用一个实数就可以表示出来,如长度、质量等.还有一些量,如我们在物理中所学习的位移、力是一个既有大小又有方向的量,例如:物体受到的重力是竖直向下的(图2.1-1),物体的质量越大,它受到的重力越大;物体在液体中受到的浮力是竖直向上的(图2.1-2),物体浸在液体中的体积越大,它受到的浮力越大;被拉长的弹簧的弹力是向左的(图2.1-3),被压缩的弹簧的弹力是向右的(图2.1-4),并且在弹性限度内,弹簧拉长或压缩的长度越大,弹力越大.向量的概念:我们把既有大小又有方向的量叫向量(物理学中常称为矢量)(而把那些只有大小,没有方向的量如:年龄、身高长度、面积、体积、质量等,称为数量.物理学中常称为标量)注意:数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.【设计意图】通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质能力.探究二向量的几何表示以及基本概念●活动①让学生练习力的表示,进一步过渡到如何表示向量有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量的表示方法:①用有向线段表示;②用字母a、b、c(印刷用黑体a,书写用a)等表示;③用有向线段的起点与终点字母:AB;④向量AB的大小(长度)称为向量的模,记作AB;⑤向量和有向线段的区别:1.向量是自由向量,只有大小和方向两个要素,与起点无关;只要大小和方向相同,则这两个向量就是相同的向量.2.有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.【设计意图】让学生先练习力的表示,让错误呈现,激发认知冲突.●活动②探究零向量、单位向量、平行向量的定义零向量:长度为0的向量叫做零向量,记做0;单位向量:长度等于1个单位的向量叫做单位向量;平行向量:方向相同或相反的非零向量叫做平行向量,向量a、b平行,通常记作a∥b;规定:零向量与任一向量平行.说明:零向量、单位向量的定义都是只限制大小,不确定方向.【设计意图】让学生掌握向量的基本概念.探究三如何理解相等向量与共线向量●活动①通过具体问题探究归纳相等向量的概念设O是正六边形ABCDEF的中心,分别写出图中与OA、OB、OC相等的向量.OA CB DO====OB DC EO===OC AB ED FO总结:长度相等且方向相同的向量叫做相等向量.记:a=b【设计意图】学生分组讨论,找到思维上的不足,层层递进总结相等向量的概念.●活动②领悟共线向量的含义思考:回顾平行向量的概念,两向量平行,那么这两向量所在的直线一定平行吗?平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).【设计意图】对数学概念的理解一定要深入,全面,把握数学概念的形成过程.●活动③快速抢答以下说法正确的是__________(1)平行向量一定方向相同;(2)不相等的向量一定不平行;(3)共线向量一定在同一直线上;(4)若两个向量在同一直线上,则这两个向量一定是平行向量;(5)相等向量一定是共线向量.答案:(4)(5)【设计意图】通过抢答环节,让学生迅速掌握向量的基本概念.●活动④巩固基础,检查反馈例1.下列说法中正确的个数是()(1)身高是一个向量;(2)AOB的两条边都是向量;(3)温度含零上和零下温度,所以温度是向量;(4)物理学中的加速度是向量.A.0 B.1 C.2 D.3【知识点】考察了向量的概念【数学思想】归纳推理思想【解题过程】身高只有长度,没有方向,不是向量,角的边是没有大小和方向的,温度只有数值,没有方向【思路点拨】抓住向量的两个要素:大小和方向【答案】B同类训练下列说法正确的是()A.数轴是向量B.方向不同的向量不能比较大小,但同向的向量可以比较大小C.单位向量的模都相等D.零向量没有方向答案:C解析:【知识点】向量、零向量、单位向量的概念【数学思想】归纳推理思想【解题过程】模长为1个单位的向量叫做单位向量点拨:理解向量的相关概念例2.给出下列命题:①向量AB和向量BA的长度相等;②方向不相同的两个向量一定不平行;③向量就是有向线段;④向量0=0;⑤向量AB大于向量CD.其中正确的个数是()A.0 B.1 C.2 D.3【知识点】向量有关概念【数学思想】归纳推理思想【解题过程】平行向量的方向相同或者相反;向量用有向线段表示,但两者不是同一概念;向量不能比较大小.【思路点拨】注意向量和数量的区别【答案】B同类训练.下列命题:①向量可以比较大小;②向量的模可以比较大小;③若a b=,则一定有|a|=|b|,且a与b方向相同;④对于一个向量,只要不改变它的大小和方向,是可以任意平行移动的.其中正确的个数是()A.1B.2C.3D.4答案:C解析:【知识点】向量及其基本概念【数学思想】归纳推理思想【解题过程】向量不能比较大小点拨:数量可以比较大小,向量不能比较大小;理解向量的含义●活动⑤强化提升、灵活应用例3.给出下列六个命题:①两个向量相等,则它们的起点相同,终点相同;②若|a|=|b|,则a b=,则四边形ABCD是平行四边形;=;③若AB DC④平行四边形ABCD中,一定有AB=DC;⑤若m n=,则m k=;⑥若=,n ka c.其中不正确的命题个数是()b c,则//a b,////A.2B.3C.4D.5答案:C解析:【知识点】向量的有关概念【数学思想】归纳推理思想【解题过程】由相等向量的概念可判断①不正确;②模相等但方向不同的向量也不是相等向量,故错误;③AB DC,A、B、C、D四点可能在同一直线上,故错误;⑥如果b是零向量则错误点拨:切勿混淆向量的有关概念同类训练下列说法中错误的是()A.零向量是没有方向的B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向是任意的答案:A解析:【知识点】零向量的概念【数学思想】归纳推理思想【解题过程】长度为0的向量叫做零向量点拨:理解零向量的概念2.课堂总结知识梳理我们把既有大小又有方向的量叫向量(物理学中常称为矢量);(1)零向量:长度为0的向量叫做零向量,记做0;(2)单位向量:长度等于1个单位的向量叫做单位向量;(3)平行向量:方向相同或相反的非零向量叫做平行向量,向量a、b平行,通常记作a∥b;规定:零向量与任一向量平行.重难点归纳(1)通过生活中的实例,了解数量和向量的区别.(2)掌握向量的表示方法以及和有向线段的区别.(3)理解零向量、单位向量、共线向量(平行向量)的概念.(4)相等向量一定是共线向量,共线向量不一定是相等向量.(三)课后作业基础型自主突破1.正n边形有n条边,他们对应的向量依次为,,,⋅⋅⋅a a a a,则这n个向量123n()A.都相等B.都共线C.都不共线D.模都相等答案:D解析:【知识点】共线向量、相等向量的概念【数学思想】数形结合思想【解题过程】这n个向量大小相同,方向不同点拨:理清向量的基本概念2.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是()A.一条线段B.一段圆弧C.圆上一群孤立点D.一个单位圆答案:D解析:【知识点】单位向量的概念【数学思想】数形结合思想【解题过程】长度为一个单位的向量叫做单位向量点拨:根据单位向量的定义判断3.如图,在四边形ABCD中,AB DC=,则必有()A.AD CB=B.OA OC=C.AC DB=D.DO OB=答案:D解析:【知识点】相等向量的概念【数学思想】数形结合思想【解题过程】长度相等,方向相同的向量叫做相等向量点拨:向量具有大小和方向4.在△ABC中, AB=AC, D、E分别是AB、AC的中点,则()A.AB与AC共线B.DE与CB共线C.AD与AE相等D.AD与BD相等答案:B解析:【知识点】共线向量和相等向量的概念【数学思想】数形结合思想【解题过程】共线向量的方向相同或相反;相等向量的方向和模长相等点拨:对概念的理解要全面5.下列命题正确的是()A.向量AB与BA是两平行向量B.若a、b都是单位向量,则a=bC.若AB=DC,则A、B、C、D四点构成平行四边形D.两向量相等的充要条件是它们的始点、终点相同答案:A解析:【知识点】向量的有关概念【数学思想】归纳推理思想【解题过程】AB与BA大小相同,方向相反点拨:不能混淆向量的有关概念能力型师生共研6.已知A、B、C是不共线的三点,向量m与向量AB是平行向量,与向量BC是共线向量,则m=_________答案:0.解析:【知识点】向量的有关概念【数学思想】隐含条件思想【解题过程】零向量与任何向量平行点拨:抓住题目中A、B、C是不共线的三点这一条件7.下列命题正确的是()A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行【知识点】向量的有关概念【数学思想】归纳推理思想【解题过程】由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B 不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确. 点拨:对向量的有关概念要重点理解答案:C.探究型 多维突破8.设数轴上有四个点A 、B 、C 、D ,其中A 、C 对应的实数分别是1和3-,且AC CB =,CD 为单位向量,则点B 对应的实数为________;点D 对应的实数为__________;_____BC =.答案:7-;4-或2-;4.解析:【知识点】向量的有关概念【数学思想】数形结合思想【解题过程】在数轴上按照相等向量和单位向量的概念确定B 、D 两点 点拨:画数轴,使得解题更加直观自助餐1.下列物理量中,不能称为向量的是( )A .质量B .速度C .位移D .力答案:A解析:【知识点】向量的概念【数学思想】建模思想【解题过程】质量只有大小,没有方向,不是向量点拨:注意数学在生活中的运用2.在下列说法中,正确的是( )A .两个有公共起点且共线的向量,其终点必相同B .模为0的向量与任一非零向量平行C .向量就是有向线段D .若||||a b =,则a b =答案:B解析:【知识点】向量的有关概念【数学思想】归纳推理思想【解题过程】共线向量的方向相同或者相反,A不正确向量用有向线段表示,两者不能混为一谈,C不正确相等向量的方向相同,D不正确点拨:零向量与任何向量平行3.下列各说法中,其中错误的个数为()(1)向量AB的长度与向量BA的长度相等;(2)两个非零向量a与b平行,则a 与b的方向相同或相反;(3)两个有公共终点的向量一定是共线向量;(4)共线向量是可以移动到同一条直线上的向量;(5)平行向量就是向量所在直线平行A.2个B.3个C.4个D.5个答案:A解析:【知识点】向量的基本概念【数学思想】归纳推理思想【解题过程】终点相同并不能说明向量共线,共线的充要条件是方向相同或相反,由于向量可以平移,平行向量和共线向量是同一概念,故(3)(5)不正确点拨:认真理解向量的基本概念4.ABC中,D、E、F分别为BC、CA、AB的中点,在以A、B、C、D、E、F为端点的有向线段所表示的向量中,与EF共线的向量有()A.2个B.3个C.6个D.7个答案:D解析:【知识点】共线向量的概念【数学思想】数形结合思想【解题过程】与EF 共线的向量有,,,,,,BD DB DC CD BC CB FE 点拨:共线向量的概念5.已知|AB |=1,|AC |=2,若∠BAC =60°,则|BC |=_______.解析:【知识点】向量模长的概念以及余弦定理【数学思想】建模思想 【解题过程】2222cos 3BC AB AC AB AC BAC =+-⋅∠= 3BC = 点拨:向量的模长等于其对应的有向线段的长度6.在下列结论中,正确的结论为( )(1)a ∥b 且|a |=|b |是a =b 的必要不充分条件(2)a ∥b 且|a |=|b |是a =b 的既不充分也不必要条件(3)a 与b 方向相同且|a |=|b |是a =b 的充要条件(4)a 与b 方向相反或|a |≠|b |是a ≠b 的充分不必要条件A .(1)(3)B .(2)(4)C .(3)(4)D .(1)(3)(4)答案:D解析:【知识点】平行向量和相等向量的概念【数学思想】归纳推理思想【解题过程】a ∥b 且|a |=|b |是a =b 的必要不充分条件 点拨:解题时逻辑清晰,不能混淆概念。
2.1《平面向量的实际背景及基本概念(1)》教学案 学习目标
1、通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
2、通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力
学习重点
向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.; 学习难点
平行向量、相等向量和共线向量的区别和联系。
教学设计
一、目标展示
二、自主学习
预习教材P 74~ P 75,找出疑惑之处,完成下列问题。
[读教材·填要点]
1.向量的定义
既有 ,又有 的量称为向量.
2.向量的表示方法
(1)用有向线段表示:
带有 的线段叫做有向线段,以A 为起点,B 为终点的有向线段记作 .
(2)用字母表示:
通常在印刷时,用黑体小写字母a ,b ,c ,…表示向量,书写时用带箭头的小写字母a ,b ,c ,…表示向量.
3.向量的长度(模)
|AB |(或|a |)表示向量AB (或a )的 ,即长度(或称模). 4.向量的有关概念
探究1.“向量就是有向线段,有向线段就是向量”这一说法对吗?
探究2.单位向量都是相等向量对吗?
探究3.零向量没有方向是否正确?
四、精讲点拨
[例1] 有下列说法:
①若a ≠b ,则a 一定不与b 共线;
②若AB =DC ,则A ,B ,C ,D 四点是平行四边形的四个顶点;
③在▱ABCD 中,一定有AD =BC ; ④若a =b ,b =c ,则a =c ;
⑤共线向量是在一条直线上的向量.
其中,正确的说法是________.
[悟一法]
1.解决此类问题的关键是准确理解相关概念,并注意零向量的特殊性.
2.两向量平行(共线),有两向量所在的直线平行或重合两种可能.
[通一类]
1.判断下列说法是否正确.
(1)若向量a =AB ,b =BA ,则|a |=|b |;
(2)若a 是单位向量,b 也是单位向量,则a 与b 的方向相同或相反;
(3)若向量AB 是单位向量,则BA 也是单位向量;
(4)以坐标平面上的定点A 为起点,所有单位向量的终点P 的集合是以A 为圆心的单位圆.
[例2] 已知汽车从A 地按北偏东30°的方向行驶200 km 到达B 地,再从B 地按南偏东30°的方向行驶200 km 到达C 地,再从C 地按西南方向行驶100 km 到达D 地,作出向量AB ,BC ,CD
(用1 cm 表示100 km )
例2中汽车的实际位移可用图中的哪个向量表示?
[悟一法]
画出向量的方法是先确定向量的起点,再确定向量的方向,最后根据向量的大小确定终点标出箭头方向.
[通一类]
2.在如图所示的坐标纸(每个方格的边长均为1)中,用直尺和圆规画出下列向量.
(1)| OA |=3,点A 在点O 正西方向;
(2)| OB |=32,点B 在点O 北偏西45°方向;
(3)| OC |=2,点C 在点O 南偏东60°方向.
[例3] 如图, D 、E 、F 分别是正三角形ABC 各边的中点.
(1)写出图中所示向量中与向量DE 长度相等的向量;
(2)写出图中所示向量中与向量FD 相等的向量;
(3)分别写出图中所示向量中与向量DE 、FD
共线的向量.
[悟一法]
判断一组向量是否相等,关键是看这组向量是否方向相同,长度相等,与起点和终点的位置无关.而对于共线向量,则只要判断它们是否同向或反向即可.
[通一类]
3.如图,△ABC 和△A′B′C′是在各边的13处相交的两个全等的等边三角形,设△ABC 的边长为a ,图中列出了长度均为a 3的若干个向量,则
(1)与向量GH 相等的向量是________;
(2)与向量GH 共线,且模相等的向量是________;
(3)与向量EA
共线,且模相等的向量是________.
例4.如下图,试根据图中的比例尺以及三地的位置,
在图中分别用向量表示A 地至B 、C 两地的位移,并求
出A 地至B 、C 两地的实际距离.(精确到1km ).
五、达标检测
1.有下列说法:
①若向量a 与向量b 不平行,则a 与b 方向一定不相同;
②若向量AB ,CD 满足|AB |>|CD |,且AB 与CD 同向,则AB >CD ;
③若|a |=|b |,则a ,b 的长度相等且方向相同或相反;
④由于零向量方向不确定,故其不能与任何向量平行.
其中,正确说法的个数是( )
A .1
B .2
C .3
D .4 2.若|AB |=|AD |且BA =CD
,则四边形ABCD 的形状为( )
A .平行四边形
B .矩形
C .菱形
D .等腰梯形
3.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则如图所示的向量中相等向量有( )
A .一组
B .二组
C .三组
D .四组 4.已知非零向量a ∥b ,若非零向量c ∥a ,则c 与b 必定____________.
5.当向量a 与任一向量都平行时,向量a 一定是________.
6.如图,四边形ABCD 和四边形ABD E 都是平行四边形.
(1)写出与向量ED 相等的向量;
(2)写出与向量ED
共线的向量. 六、课堂小结
1. 向量的相关概念;
2. 向量的两种表示法;
3. 两个特殊的向量,尤其要注意零向量的方向.
拓展提高(同样的结果,不一样的过程,节省解题时间,也是得分!)
在蔚蓝的大海上,有一艘巡逻艇在执行巡逻任务,它从A 点出发向西航行了200 km 到达B 点,然后改变方向,向西偏北50°航行了400 km 到达C 点,最后又改变方向,向东航行了2
00 km 到达D 点,此时,它完成了此片海区的巡逻任务.请你回答下列问题:
(1)作出向量AB ,BC ,CD ;
(2)求|AD |.
课后作业
1. 某人从A 点出发向西走了200m 到达B 点,然后改变方向向西偏北
60 走了400m 到达C 点,最后又改变方向,向东走了200m 到达D 点,作出向量AB 、BC 、CD (1cm 表示200m );
2. 在正方体''''ABCD A B C D 中,与AB 平行的向量有哪些?
教后反思。