5.2不等式的基本性质
- 格式:ppt
- 大小:337.50 KB
- 文档页数:10
不等式的性质教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,举例说明。
解释不等式中的大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等符号。
1.2 不等式的基本性质性质1:如果a > b,a + c > b + c(两边加或减去同一个数,不等号方向不变)。
性质2:如果a > b且c > 0,ac > bc(两边乘以正数,不等号方向不变)。
性质3:如果a > b且c < 0,ac < bc(两边乘以负数,不等号方向改变)。
性质4:如果a > b且c > d,a + c > b + d(两边加或减去不同的数,不等号方向不变)。
第二章:不等式的运算规则2.1 加减法规则介绍不等式加减法的基本规则,举例说明。
强调在运算过程中保持不等号方向不变。
2.2 乘除法规则介绍不等式乘除法的基本规则,举例说明。
强调在运算过程中注意乘除数的正负性对不等号方向的影响。
第三章:不等式的解法3.1 简单不等式的解法介绍解简单不等式的方法,如a > b,解得x > b/a。
举例说明解简单不等式的步骤。
3.2 一元一次不等式的解法介绍解一元一次不等式的方法,如ax > b,解得x > b/a。
强调解一元一次不等式时要注意系数的正负性对解集的影响。
第四章:不等式的应用4.1 实际问题中的应用举例说明不等式在实际问题中的应用,如速度、距离、温度等问题。
引导学生将实际问题转化为不等式问题,并解决。
4.2 线性不等式组的应用介绍线性不等式组的概念,举例说明。
讲解如何解线性不等式组,并应用到实际问题中。
第五章:不等式的进一步性质5.1 不等式的反转性质介绍不等式的反转性质,如如果a > b,b < a。
举例说明并证明不等式的反转性质。
5.2 不等式的传递性质介绍不等式的传递性质,如如果a > b且b > c,a > c。
5.2不等式的基本性质教学目的:1.使学生理解不等式的概念,初步掌握不等式的三条基本性质;2.培养学生对比以及观察、分析问题的能力,并初步领会对比的思想方法.教学重点:不等式的三条基本性质.教学难点:不等式的基本性质3.教学过程:引言:运用对比的方法,引导学生猜想出不等式的三条基本性质,并通过实例加以验证首先,让学生用“>”或“<”号填空:(1)7+3______4+3; (2)7+(-3)______ 4+(-3);(3)7×3 ______ 4×3; (4)7×(-3)______ 4×(-3).然后,启发学生由上面第(1)、(2)小题猜想出与等式的基本性质类似的不等式的性质.并请学生叙述不等式的基本性质1.此时,教师应抓住学生叙述中的问题予以纠正.即不能笼统地说“仍是不等式”,要改为书中所说的“不等号的方向不变”.对比等式中关于两边都乘以或除以同一个数的性质,让学生思考不等式类似的性质.引导学生观察上述第(3)、(4)小题,并将题中的3换成5,-3换成-5,按题中的要求再做一遍,并猜想出结论.然后让学生试着叙述所得到的不等式的基本性质2,3.(在观察上述练习题时,引导学生注意不等号的方向,并用彩色粉笔标出来,并问原因是什么?当学生在叙述不等式的基本性质感到困难时,教师应作适当的引导,启发.并依次板书这几条基本性质)不等式基本性质:1.不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变.3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变.此时,教师要特别强调不等式基本性质3,并举例:若a <b ,c <0,则ac >bc(或c a >c b) 然后,让学生用不等式-2<4两边都分别加上5,-6,两边都分别乘以3, -3来验证上述不等式的三条基本性质.问题:(1)在不等式 -2<6两边都乘以m 后,结论将会怎样?(当字母m 的取值不明确时,需对m 分情况讨论)(2)比较等式性质与不等式的基本性质的异同.(问这两个问题的目的在于,强化学生对不等式基本性质的理解,特别是对不等式基本性质3的理解)五、应用举例,变式练习例1 根据不等式基本性质,把下列等式化成x >a 或x <a 的形式:(1)x-2<3; (2)6x <5x-1;解:(1)由不等式的基本性质1可知,不等式的两边都加上2,不等号的方向不变,所以x-2+2<3+2,x <5.(2)、(3)、(4)题略.(解题时,要求学生要联想解一元一次方程的思想方法,并将原题与x >a 或x <a 对照着用哪条基本性质能达到题目要求.同时强调推理的根据,尤其要注意不等式基本性质3和基本性质2的区别,解题书写要规范)例2 设a >b ,用“<”或“>”号填空:(3)-4a ______ -4b ; (4)ma ______mb .(m ≠0)解:(1)因为a >b ,两边都减去3,所以由不等式基本性质1,得a-3>b-3.(2),(3)题略.(4)因为a>b,两边都乘以m.当m>0时,由不等式基本性质2,得ma>mb,当m<0时,由不等式基本性质3,得ma<mb.(解题时,要让学生明白推理要有根据,并要求以后做类似的习题时,都要写出根据,逐步培养学生逻辑思维的能力)练习(投影)1.根据不等式的基本性质,把下列不等式化成x>a或x<a的形式:(1)x+1>2; (2)4x<3x-5;(5)3x<x+4; (6)x<3x+4.2.设a<b,用“>”或“<”号填空:(1)a+5______ b+5; (2)2a ______ 2b;3. 7页 1.2.3六、小结七、作业1.根据不等式的基本性质,把下列不等式化成x>a或x<a的形式:(5)4x<2x+6.2.设 a>b,用“>”或“<”号填空:(1)a+3 ______ b+3; (2)5a ______ 5b;(5)ma______ mb(m≠0).3.8页3题,4题4.9页B组,C组做书上。
不等式的性质及解法不等式是数学中的一种重要的数值关系表示形式,与等式相比,不等式更能反映数值大小之间的差异。
在实际问题中,我们经常会遇到需要确定数值范围的情况,而不等式的性质和解法则帮助我们进行准确的数值分析和解决问题。
一、不等式的基本性质1. 传递性:如果 a<b,b<c,则有 a<c。
这一性质表明不等式的关系可以在数轴上进行传递,简化了分析比较的步骤。
2. 加减性:如果 a<b,则有 a±c<b±c。
对于不等式两边同时加减同一个数,不等式的关系保持不变。
3. 乘除性:如果 a<b 并且 c>0,则有 ac<bc;如果 a<b 并且 c<0,则有ac>bc。
这一性质需要注意,当乘以负数时,不等式的关系需要取反。
4. 对称性:如果a<b,则有b>a。
不等式两边的大小关系可以互换。
二、一元不等式的解法1. 加减法解法:通过加减法将不等式转化为更简单的形式。
例如:对于不等式 2x+3>7,我们可以先减去3,得到 2x>4,再除以2,得到x>2,即解集为 x>2。
2. 乘除法解法:通过乘除法将不等式转化为更简单的形式。
同样以不等式 2x+3>7 为例,我们可以先减去3,得到 2x>4,再除以2,得到x>2,即解集为 x>2。
3. 移项解法:利用不等式的基本性质,将所有项移到同一边,得到一个结果。
例如:对于不等式 3(x-2)>4x-7,我们可以先将右边的项移动到左边,得到 3x-6>4x-7,然后将 x 的系数移到一侧,得到 3x-4x>-7+6,化简得到 -x>-1,再乘以 -1,注意需要反转不等式的关系,得到x<1,即解集为 x<1。
4. 系数法解法:当不等式中存在系数时,我们可以通过判断系数的正负来确定解的范围。
例如:对于不等式 2x-3>0,我们观察到系数2>0,说明 x 的取值范围为正数,即解集为 x>3/2。
不等式的基本性质与解法不等式是数学中常见的一种数学关系,它描述了两个数之间的大小关系。
在解决实际问题中,经常需要研究不等式的基本性质和解法。
本文将介绍不等式的基本性质以及解决不等式的方法,并且给出一些例子来说明。
一、不等式的基本性质1. 加减性性质:对于两个不等式,如果它们的左右两边分别相加或相减,那么它们的不等关系不变。
例如:对于不等式 2x < 6 和 3x > 9,我们可以将两个不等式的左右两边分别相加得到 2x + 3x < 6 + 9,即 5x < 15。
不等式的不等关系保持不变。
2. 乘除性性质:对于不等式,如果两边都乘以一个正数,则不等关系保持不变;如果两边都乘以一个负数,则不等关系发生改变。
例如:对于不等式 2x < 6,如果两边同时乘以一个正数 3,我们得到 3 * 2x < 3 * 6,即 6x < 18,不等关系保持不变。
但如果两边同时乘以一个负数 -3,我们得到 -3 * 2x > -3 * 6,即 -6x > -18,不等关系发生改变。
3. 反号性质:对于不等式,如果两边同时取负号,不等关系发生改变。
例如:对于不等式 2x < 6,如果两边同时取负号,我们得到 -2x > -6,不等关系发生改变。
4. 绝对值性质:对于不等式,如果绝对值符号"|" 出现在不等式中,我们需要分别讨论绝对值大于零和绝对值小于零的情况。
例如:对于不等式|2x - 4| < 6,我们可以将其分为两个部分来讨论。
当 2x - 4 > 0 时,不等式简化为 2x - 4 < 6,解得 x < 5;当 2x - 4 < 0 时,不等式简化为 -(2x - 4) < 6,解得 x > -1。
二、不等式的解法1. 图像法:对于一些简单的一元不等式,我们可以使用图像法来解决。
将不等式转化为图像表示,通过观察图像来确定不等式的解集。
不等式的四条基本性质
不等式的四条基本性质是数学中一种重要的概念,它是解决方程的基础,是一门数学的基本知识。
归纳一下,不等式的四条基本性质包括:转置法则、结合率、分配法则、乘法法则。
首先,不等式的转置法则表明当两个不等式之间没有任何改动时,它们保持其相等状态。
例如,对于x>y,则y<x恒成立。
其次,不等式的结合率表明将二元不等式(即只包含两个未知量的不等式)通过乘以一个正实数结合到一起,它不会改变不等式的解的乘法,即任何一个二元不等式的乘法都是它的解的结合率。
例如,若x>0,不论乘以多少正实数都会使x
的大小保持不变,最终仍然>0。
再次,不等式的分配法则表明,当将一个正实常数分别与不等式的两边相乘时,它将被均匀地分配到不等式的两边。
例如,我们如果将2x与3x分别乘以k,那么可以得到(2kx + 3kx)>0,原来的不等式不变,同时常数k也是均匀地分配到不等式的两边。
最后,不等式的乘法法则表明,当将一个变量和一个正实常数相乘时,不等式的大小状态将保持不变。
例如,当我们将一个变量x和c乘起来,x>0时,必然有cx>0,而x<0时,有cx<0,因此这条不等式的大小状态不变。
总的来说,不等式的四条基本性质是探究方程解的根基,由它们可以更进一步地求解数学方程,对学习数学解题技巧再次有所帮助。
课题不等式的基本性质教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,理解“大于”、“小于”、“大于等于”、“小于等于”等基本不等关系。
举例说明不等式的形式,如a > b、a ≥b 等。
1.2 不等式的基本性质性质1:如果a > b,a + c > b + c(其中c 是任意实数)。
性质2:如果a > b 且c > 0,a + c > b + c。
性质3:如果a > b 且c < 0,a + c < b + c。
性质4:如果a > b 且c ≠0,a/c > b/c(其中c ≠0)。
第二章:不等式的运算规则2.1 加减法规则如果a > b 且c > d,a + c > b + d。
如果a > b 且c < d,a + c < b + d。
2.2 乘除法规则如果a > b 且c > 0,ac > bc。
如果a > b 且c < 0,ac < bc。
如果a > b 且c ≠0,a/c > b/c(其中c ≠0)。
第三章:不等式的比较与排序3.1 两个不等式的比较如果a > b 且c > d,a + c > b + d。
如果a > b 且c < d,a + c < b + d。
3.2 多个不等式的排序如果a > b 且c > d,a + c > b + d > c + d。
如果a > b 且c < d,a + c > b + d > c + d。
第四章:不等式的解法与应用4.1 不等式的解法介绍解不等式的方法,如移项、合并同类项、系数化等。
举例说明解不等式的步骤和技巧。
4.2 不等式的应用介绍不等式在实际问题中的应用,如优化问题、经济问题等。
举例说明如何将实际问题转化为不等式问题,并求解。
不等式总结不等式在数学中占据着重要的地位,是解决许多实际问题的有力工具。
不等式可以帮助我们描述数值之间的关系,刻画数学问题的特点,以及分析解决问题的方法。
接下来,我将对不等式进行总结,深入探讨其性质、解法和应用。
一、不等式的基本性质1. 不等式的传递性:对于任意实数a、b、c,如果a<b且b<c,那么a<c。
2. 不等式的加法性质:对于任意实数a、b、c,如果a<b,那么a+c<b+c。
3. 不等式的乘法性质:对于任意实数a、b、c,如果a<b且c>0(或c<0),那么ac<bc(或ac>bc);如果a<b且c<0(或c>0),那么ac>bc(或ac<bc)。
二、不等式的解法1. 图解法:将不等式转化为区间的表示形式,然后用图形表示出来,通过观察和推理找到解的范围。
2. 试值法:将不等式中的未知数取一些特殊的值,代入不等式中,判断不等式是否成立,从而确定解的范围。
3. 分类讨论法:将不等式中的未知数分类讨论,找出每一类的解的范围,最后合并得到总的解的范围。
4. 推导法:通过变换不等式的形式,重写成更简单的形式,最终得到解的范围。
三、基本不等式1. 三角不等式:对于任意实数a、b,有|a+b|≤|a|+|b|。
2. 平凡不等式:对于任意实数a,有a≤a。
3. 同侧不等式:对于任意实数a、b、c,如果a<b且c<0(或c>0),那么ac>bc(或ac<bc)。
4. 反侧不等式:对于任意实数a、b、c,如果a<b且c>0(或c<0),那么ac<bc(或ac>bc)。
四、常见不等式1. 一元一次不等式:ax+b>0,ax+b≤0,ax+b≥0,ax+b<0。
2. 二次不等式:ax^2+bx+c>0,ax^2+bx+c≤0,ax^2+bx+c≥0,ax^2+bx+c<0。