2015年高考数学理真题分类汇编:专题15 复数 Word版含解析
- 格式:doc
- 大小:429.85 KB
- 文档页数:6
2015年全国统一高考数学试卷(理科)(新课标II)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()∴=35.(5分)设函数f(x)=,则f(﹣2)+f(log212)=(),=12×=66.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()B正方体切掉部分的体积为1==.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|= 2,则2.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥=10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f (x)的图象大致为()B时,AP==,+tanx≤≤≤≠时,PA+PB=2≤﹣x=对称,)>)时的解析式是解决本11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶B在双曲线﹣,a在双曲线=1﹣=1,==.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′=,则=====0或,二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.λ+与+2,不平行,向量λ+与+2λ++2),解得;故答案为:.,使得14.(5分)若x,y满足约束条件,则z=x+y的最大值为.);故答案为:.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=3.16.(5分)设S n是数列{a n}的前n项和,且a1=﹣1,a n+1=S n S n+1,则S n=﹣.{∴﹣=,即={∴,.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.B=C=从而得解∵=2=,∴B==,∴C=;∴=.×.∴=2由余弦定理可得:=的长为18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的频率,求C的概率.,发生的频率为,,,,,=,=×+×=0.4819.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.,根据即可求出法向量,坐标可以求出,可设直线即可求得直线∴∴,则=所成角的正弦值为20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.==+b==过点(,即,b=,=2×,﹣,或时,四边形21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.DM=MN=,∴AB=的面积为×××=选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.cos=2.可得直角坐标方程:,,.:(B选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.++++)由于()=a+b+2+=c+d+2>+)+++若>+,则()>()a+b+2c+d+2,+)+综上可得,++。
2015年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分.1.若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =A .∅B .{}1,4--C .{}0D .{}1,4 2.若复数z=i ( 3 – 2 i ) ( i 是虚数单位 ),则z =A .3-2iB .3+2iC .2+3iD .2-3i 3.下列函数中,既不是奇函数,也不是偶函数的是A .xe x y += B .x x y 1+= C .x xy 212+= D .21x y += 4.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球。
从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为 A .1 B.2111 C. 2110 D. 215 5.平行于直线012=++y x 且与圆522=+y x 相切的直线的方程是A .052=+-y x 或052=--y x B. 052=++y x 或052=-+y x C. 052=+-y x 或052=--y x D. 052=++y x 或052=-+y x6.若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x 则y x z 23+=的最小值为A .531 B. 6 C. 523 D. 4 7.已知双曲线C :12222=-by a x 的离心率e =45,且其右焦点F 2( 5 , 0 ),则双曲线C 的方程为A .13422=-y x B. 191622=-y x C. 116922=-y x D. 14322=-y x 8.若空间中n 个不同的点两两距离都相等,则正整数n 的取值A .大于5 B. 等于5 C. 至多等于4 D. 至多等于3 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9-13题)9.在4)1(-x 的展开式中,x 的系数为 。
2015年全国各地高考数学试题及解答分类大全(数系的扩充与复数的引入)一、选择题:1.(2015安徽文)设i 是虚数单位,则复数()()112i i -+=( )(A )3+3i (B )-1+3i (C )3+i (D )-1+i2.(2015安徽理)设i 是虚数单位,则复数21ii-在复平面内所对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】B【名师点睛】复数的四则运算问题主要是要熟记各种运算法则,尤其是除法运算,要将复数分母实数化(分母乘以自己的共轭复数),这也历年考查的重点;另外,复数z a bi =+在复平面内一一对应的点为(,)Z a b . 3.(2015北京理)复数()i 2i -=( )A .12i +B .12i -C .12i -+D .12i --【答案】A【解析】试题分析:(2)12i i i -=+考点:复数运算4.(2015福建文)若(1)(23)i i a bi ++-=+(,,a b R i ∈是虚数单位),则,a b 的值分别等于( ) A .3,2- B .3,2 C .3,3- D .1,4- 【答案】A【解析】试题分析:由已知得32i a bi -=+,所以3,2a b ==-,选A . 考点:复数的概念.5.(2015福建理)若集合{}234,,,A i i i i= (i 是虚数单位),{}1,1B =- ,则A B 等于 ( )A .{}1-B .{}1C .{}1,1-D .φ【答案】C 【解析】试题分析:由已知得{},1,,1A i i =--,故A B ={}1,1-,故选C .考点:1、复数的概念;2、集合的运算.6. (2015广东文) 已知i 是虚数单位,则复数()21i +=( ) A .2- B .2 C .2i - D .2i 【答案】D考点:复数的乘法运算.7.(2015广东理)若复数()32z i i =- ( i 是虚数单位 ),则z =( ) A .32i - B .32i + C .23i + D .23i - 【答案】D .【解析】因为()3223z i i i =-=+,所以z =23i -,故选D .【考点定位】本题考查复数的基本运算,属于容易题.8. (2015湖北文、理)i 为虚数单位,607i =( )A .i -B .iC .1-D .1 【答案】A .【考点定位】本题考查复数的概念及其运算,涉及分数指数幂的运算性质.【名师点睛】将复数的幂次运算和分数指数幂运算结合在一起,不仅考查了复数的概念,也考查了分数指数幂的运算性质,充分体现了学科内知识之间的联系性,能够较好的反应学生基础知识的识记能力和计算能力.10. (2015湖南文、理)已知()211i i z-=+(i 为虚数单位),则复数z =( ) A. 1i + B.1i - C.1i -+ D.1i --【答案】D.试题分析:.由题根据所给复数式子进行化简即可得到复数z 的代数式;由题22(1)(1)22(1i)1,1112i i i i i z i z i i -----=+∴====--++ ,故选D. 【考点定位】复数的计算.【名师点睛】本题主要考查了复数的概念与基本运算,属于容易题,意在考查学生对复数代数形式四则运算的掌握情况,基本思路就是复数的除法运算按“分母实数化”原则,结合复数的乘法进行计算,而复数的乘法则是按多项式的乘法法则进行处理.11、(2015全国新课标Ⅰ卷文)已知复数z 满足(1)1z i i -=+,则z =( ) (A ) 2i -- (B )2i -+ (C )2i - (D )2i +12.(2015全国新课标Ⅰ卷理)设复数z 满足1+z1z-=i ,则|z|=( ) (A )1 (B )2 (C )3 (D )2【答案】A考点:1.复数的运算;2.复数的模.13. (2015全国新课标Ⅱ卷文)若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .4【答案】D【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D. 考点:复数运算.14.(2015全国新课标Ⅱ卷理)若a 为实数且(2)(2)4ai a i i +-=-,则a =( ) A .1- B .0 C .1 D .2 【答案】B 【解析】试题分析:由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B . 考点:复数的运算.16.(2015山东文、理)若复数z 满足1zi i=-,其中i 为虚数为单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+【答案】A【考点定位】复数的概念与运算.【名师点睛】本题考查复数的概念和运算,采用复数的乘法和共轭复数的概念进行化简求解. 本题属于基础题,注意运算的准确性.17. (2015陕西文、理)设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率为( )A.3142π+ B.1142π- C.112π- D.112π+【答案】B【解析】试题分析:2222(1)||(1)1(1)1z x yi z x y x y=-+⇒=-+≤⇒-+≤如图可求得(1,1)A,(1,0)B,阴影面积等于21111114242ππ⨯-⨯⨯=-若||1z≤,则y x≥的概率是211142142πππ-=-⨯,故选B.考点:1、复数的模;2、几何概型.19、(2015上海理)已知点A的坐标为()43,1,将OA绕坐标原点O逆时针旋转3π至OB,则点B 的纵坐标为()A.332B.532C.112D.132【答案】D【解析】133313(cos sin)(43)()332222OB OA i i i iππ=⋅+=+⋅+=+,即点B的纵坐标为132【考点定位】复数几何意义20.(2015四川理)设i是虚数单位,则复数32ii-( )(A)-i (B)-3i (C)i. (D)3i【答案】C【考点定位】复数的基本运算.【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二、填空题:1、(2015北京文)复数()1i i +的实部为 . 【答案】-1【解析】试题分析:复数(1)11i ii i +=-=-+,其实部为-1. 考点:复数的乘法运算、实部.2. (2015江苏)设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______. 【答案】5【解析】试题分析:22|||34|5||5||5z i z z =+=⇒=⇒= 考点:复数的模3. (2015上海文、理)若复数z 满足i z z +=+13,其中i 是虚数单位,则=z .【答案】i 2141+ 【解析】设),(R ∈+=b a bi a z ,则bi a z -=,因为i z z +=+13,所以i bi a bi a +=-++1)(3,即i bi a +=+124,所以⎩⎨⎧==1214b a ,即⎪⎪⎩⎪⎪⎨⎧==2141b a ,所以i z 2141+=.【考点定位】复数的概念,复数的运算.4、(2015四川文)设i 是虚数单位,则复数1i i-=_____________.【答案】2i【考点定位】本题考查复数的概念,复数代数形式的四则运算等基础知识.【名师点睛】解决本题的关键取决于对复数运算的熟练程度,也就是=-i 的运算,容易误解为=i ,从而导致答案错误.一般地,i 4n=1,i 4n +1=i ,i4n +2=-1,i4n +3=-i ,而=i -1=-i .属于容易题5. (2015天津文) i 是虚数单位,计算12i2i-+ 的结果为 . 【答案】-i 【解析】试题分析:()2i i 212i i 2i i 2i 2i 2i-+---===-+++.考点:复数运算.6.(2015天津理)i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 . 【答案】2- 【解析】试题分析:()()()12212i a i a a i -+=++-是纯度数,所以20a +=,即2a =-. 考点:1.复数相关定义;2.复数运算.7.(2015重庆理)设复数a +bi (a ,b ∈R )的模为3,则(a +bi )(a -bi )=________. 【答案】3【考点定位】复数的运算.8.(2015重庆文)复数(12i)i 的实部为________. 【答案】-2考点:复数运算.。
专题15 复数
1. 【2005高考重庆理第2题】
()
A.B.-C.D.-
【答案】A
2. 【2008高考重庆理第1题】复数1+= ( )
(A)1+2i (B)1-2i (C)-1 (D)3 【答案】A
考点:复数的概念与运算。
3. 已知复数的实部为,虚部为2,则=()
A. B. C.D.
【答案】A
4. 【2011高考重庆理第1题】复数( )
(A) (B)
(C) (D)
【答案】B.
5. 【2014高考重庆理第1题】复平面内表示复数的点位于( )
第一象限第二象限
第三象限第四象限
【答案】A
考点:1、复数的运算;2、复平面.
6. 【2006高考重庆理第11题】复数的值是。
【答案】
7. 【2007高考重庆理第11题】复数的虚部为________.
【答案】
8. 【2010高考重庆理第11题】已知复数z=1+i,则-z=__________.
【答案】-2i
9. 【2012高考重庆理第11题】若,其中为虚数单位,则;
【答案】4
10. 【2013高考重庆理第11题】已知复数(i是虚数单位),则|z|=__________.
【答案】
11. 【2015高考重庆,理11】设复数a+bi(a,bR)的模为,则(a+bi)(a-bi)=________. 【答案】3
【考点定位】复数的运算.。
2015年普通高等学校招生全国统一考试(湖北卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【2015年湖北,理1,5分】i 为虚数单位,607i 的共轭复数....为( ) (A )i (B )i - (C )1 (D )1- 【答案】A【解析】60741513i i i i ⨯=⋅=-,共轭复数为i ,故选A .【点评】本题考查复数的基本运算,复式单位的幂运算以及共轭复数的知识,基本知识的考查.(2)【2015年湖北,理2,5分】我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) (A )134石 (B )169石 (C )338石 (D )1365石 【答案】B【解析】依题意,这批米内夹谷约为281534169254⨯=石,故选B .【点评】本题考查利用数学知识解决实际问题,考查学生的计算能力,比较基础.(3)【2015年湖北,理3,5分】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) (A )122(B )112 (C )102 (D )92【答案】D 【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以37n n C C =,解得10n =,所以二项式(1)n x + 中奇数项的二项式系数和为1091222⨯=,故选D .【点评】本题考查二项式定理的应用,组合数的形状的应用,考查基本知识的灵活运用 以及计算能力.(4)【2015年湖北,理4,5分】设211(,)X N μσ,222(,)Y N μσ,这两个正态分布密度曲线如图所示.下列结论中正确的是( )(A )21()()P Y P Y μμ≥≥≥ (B )21()()P X P X σσ≤≤≤(C )对任意正数t ,()()P X t P Y t ≤≥≤ (D )对任意正数t ,()()P X t P Y t ≥≥≥ 【答案】C【解析】正态分布密度曲线图象关于x μ=对称,所以12μμ<,从图中容易得到()()P X t P Y t ≤≥≤,故选C .【点评】本题考查了正态分布的图象与性质,学习正态分布,一定要紧紧抓住平均数μ和标准差σ这两个关键量,结合正态曲线的图形特征,归纳正态曲线的性质.(5)【2015年湖北,理5,5分】设12,,,n a a a ∈R ,3n ≥.若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( ) (A )p 是q 的充分条件,但不是q 的必要条件 (B )p 是q 的必要条件,但不是q 的充分条件 (C )p 是q 的充分必要条件 (D )p 既不是q 的充分条件,也不是q 的必要条件 【答案】A【解析】对命题12:,,,n p a a a 成等比数列,则公比()13n n aq n a -=≥且0n a ≠;对命题q ,①当时,成立;②当时,根据柯西不等式,等式成立,则,所以成等比数列,所以p 是q 的充分条件,但不是q 的必要 0=n a 22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++0≠n a 22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++nn a a a a a a 13221-=⋅⋅⋅==12,,,n a a a条件.故选A .(6)【2015年湖北,理6,5分】已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )(A )sgn[()]sgn g x x = (B )sgn[()]sgn g x x =- (C )sgn[()]sgn[()]g x f x = (D )sgn[()]sgn[()]g x f x =- 【答案】B【解析】因为()f x 是R 上的增函数,令()f x x =,所以()()1g x a x =-,因为1a >,所以()g x 是R 上的减函数,由符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩知,1,0,sgn 0,0,sgn 1,0.x x x x x >⎧⎪===-⎨⎪-<⎩,故选B .(7)【2015年湖北,理7,5分】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则( ) (A )123p p p << (B )231p p p << (C )312p p p << (D )321p p p << 【答案】B【解析】因为[],0,1x y ∈,对事件“12x y -≥”如图(1)阴影部分1S , 对事件“12x y -≤”,如图(2)阴影部分2S ,对事件“12xy ≤”,如图(3)阴影部分3S ,由图知,阴影部分的面积从下到大依次是231S S S <<,正方形的面积为111⨯=,根据几何概型公式可得231p p p <<,故选B .【点评】本题主要考查几何概型的概率计算,利用数形结合是解决本题的关键.本题也可以直接通过图象比较面积的大小即可比较大小.(8)【2015年湖北,理8,5分】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )(A )对任意的,a b ,12e e > (B )当a b >时,12e e >;当a b <时,12e e <(C )对任意的,a b ,12e e < (D )当a b >时,12e e <;当a b <时,12e e > 【答案】D【解析】依题意,22211a b b e a +⎛⎫==+ ⎪⎝⎭,()()22221a m b m b m e a m ++++⎛⎫==+ ⎪+⎝⎭,因为()()()m b a b b m ab bm ab am a a m a a m a a m -++---==+++,由于0m >,0a >,0b >, 当a b >时,01b a <<,01b m a m +<<+,b b m a a m +<+,22b b m a a m +⎛⎫⎛⎫< ⎪ ⎪+⎝⎭⎝⎭,所以12e e <;当a b <时,1b a >,1b m a m +>+,而b b m a a m +>+,所以22b b m a a m +⎛⎫⎛⎫> ⎪ ⎪+⎝⎭⎝⎭,所以12e e >.所以当a b >时,12e e <,当a b <时,12e e >,故选D .【点评】本题考查双曲线的性质,考查学生的计算能力,比较基础.(9)【2015年湖北,理9,5分】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B⊕中元素的个数为( )(A )77 (B )49 (C )45 (D )30 【答案】C【解析】因为集合(){}22,1,,A x y xy x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111A B C D中的整点(除去四个顶点),即77445⨯-=个,故选C .【点评】本题以新定义为载体,主要考查了几何的基本定义及运算,解题中需要取得重复的元素.(10)【2015年湖北,理10,5分】设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立....,则正整数n 的最大值是( ) (A )3 (B )4 (C )5 (D )6 【答案】B【解析】由[]1t =得12t ≤<,由2[]2t =得223t ≤<,由43t ⎡⎤=⎣⎦得445t ≤<,可得225t ≤<,所以225t ≤<; 由3[]3t =得334t ≤<,所以5645t ≤<,由55t ⎡⎤=⎣⎦得556t ≤<,与5645t ≤<矛盾,故正整数n 的最大值是4,故选B .【点评】本题考查简单的演绎推理,涉及新定义,属基础题.二、填空题:共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上....答错位置,书写不清,模棱两可均不得分. (一)必考题(11-14题)(11)【2015年湖北,理11,5分】已知向量OA AB ⊥,||3OA =,则OA OB ⋅= . 【答案】9 【解析】因为OA AB ⊥,3OA =,()22239OA OB OA OA OB OA OA OB OA ⋅=⋅+=+⋅===.【点评】本题考查了平面向量的数量积运算,考查了向量模的求法,是基础的计算题.(12)【2015年湖北,理12,5分】函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 . 【答案】2 【解析】因为()()()()()24cos cos 2sin ln 121cos sin 2sin ln 1sin 2ln 122x x f x x x x x x x x x x ⎛⎫=----=+--+=-+ ⎪⎝⎭,所以函数()f x 的零点个数为函数sin 2y x =与()ln 1y x =+图像如图,由图知,两函数图像右2个交点,所以函数()f x 由2个零点.【点评】本题考查三角函数的化简,函数的零点个数的判断,考查数形结合与转化思想的应用.(13)【2015年湖北,理13,5分】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD = m .【答案】1006【解析】依题意,30BAC ∠=︒,105ABC ∠=︒,在ABC ∆中,由180ABC BAC ACB ∠+∠+∠=︒,所以45ACB ∠=︒,因为600AB =,由正弦定理可得600sin 45sin30BC-=︒︒,即3002BC =m ,在Rt BCD ∆中,因为30CBD ∠=︒,3002BC =,所以tan303002CD BC ︒==,所以1006CD =m . 【点评】本题主要考查了解三角形的实际应用.关键是构造三角形,将各个已知条件向这个主三角形集中,再通过正弦、余弦定理或其他基本性质建立条件之间的联系,列方程或列式求解.(14)【2015年湖北,理14,5分】如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A的上方),且2AB =.(1)圆C 的标准..方程为 ;(2)过点A 任作一条直线 与圆22:1O x y +=相交于,M N 两点,下列三个结论: ①NA MA NBMB=; ②2NB MA NAMB-=; ③22NB MA NAMB+=.其中正确结论的序号是 . (写出所有正确结论的序号) 【答案】(1)()()22122x y -+-=;(2)①②③【解析】(1)依题意,设()1,C r (r 为圆的半径),因为2AB =,所以22112r =+=,所以圆心()1,2C ,故圆的标准方程为()()22122x y -+-=.(2)解法一:联立方程组()()22122x x y =⎧⎪⎨-+-=⎪⎩,解得021x y =⎧⎪⎨=-⎪⎩或021x y =⎧⎪⎨=+⎪⎩,因为B 在A 的上方,所以()0,21A -,()0,21B +,领直线MN 的方程为0x =,此时()0,1M -,()0,1N ,所以2MA =,22MB =+,22NA =-,2NB =,因为22212NA NB-==-,22122MA MB==-+,所以NA MA NBMB =所以()22212122222NB MA NAMB-=-=+--=-+,()222121222222NB MA NAMB+=+=++-=-+,正确结论的序号是①②③.解法二:因为圆心()1,2C ,()0,2E ∴,又2AB =,且E 为AB 中点,∴()0,21A -,()0,21B +,M ,N 在圆22:1O x y +=,∴可设()cos ,sin M αα,()cos ,sin N ββ,()()22cos 0sin 21NA ββ⎡⎤∴=-+--⎣⎦()22cos sin 221sin 322βββ=+--+-()()()422221sin 2221221sin ββ=---=---()()2212sin β=--,()()22cos 0sin 21NB ββ⎡⎤∴=-+-+⎣⎦()22cos sin 221sin 322βββ=+-+++()()()422221sin 2221221sin ββ=+-+=+-+()()2212sin β=+-,()()()()2212sin 2121212212sin NA NBββ---∴===-++-,同理21MA MB=-.所以NA MA NBMB=,所以()22212122222NB MA NA MB -=-=+--=-+,()222121222222NB MA NAMB+=+=++-=-+,正确结论的序号是①②③.【点评】本题考查求圆的标准方程,用三角函数值表示单位圆上点的坐标是解决本题的关键,注意解题方法的积累,属于难题.(一)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑,如果全选,则按第15题作答结果计分.)(15)【2015年湖北,理15,5分】(选修4-1:几何证明选讲)如图,P A 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=_______.【答案】12【解析】因为PA 是圆的切线,A 为切点,PBC 是圆的割线,由切割定理知,()2PA PB PC PB PB BC =⋅=+,因为3BC PB =,所以224PA PB =,即2PA PB =,由A PAB PC ∆∆∽,所以12AB PB AC PA ==. 【点评】本题考查切割线定理以及相似三角形的判定与应用,考查逻辑推理能力.(16)【2015年湖北,理16,5分】(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以O 为极点,x轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l 与C 相交于A ,B 两点,则||AB =.【答案】25【解析】因为()sin 3cos 0ρθθ-=,所以sin 3cos 0ρθρθ-=,所以30y x -=,即3y x =;由11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩,消去t 得224y x -=,联立方程组2234y x y x =⎧⎨-=⎩,解得2232x y ⎧=⎪⎪⎨⎪=⎪⎩或2232x y ⎧=-⎪⎪⎨⎪=-⎪⎩,即232,A ⎛⎫ ⎪ ⎪⎝⎭,232,B ⎛⎫-- ⎪ ⎪⎝⎭,由两点间的距离公式得22223232252222AB ⎛⎫⎛⎫=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查极坐标方程化直角坐标方程,参数方程化普通方程,考查了直线和圆锥曲线的位置关系,是基础的计算题.三、解答题:共6题,共75分.解答应写出文字说明,演算步骤或证明过程.(17)【2015年湖北,理17,11分】某同学用“五点法”画函数()sin()f x A x ωϕ=+π(0,||)2ωϕ><在某一个周期(1...........(2)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象. 若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值.解:(1)根据表中已知数据,解得π5,2,A ωϕ===-.数据补全如下表:且函数表达式为()5sin(2)6f x x =-.(2)由(1)知 π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-. 因为sin y x =的对称中心为(π,0)k ,k ∈Z .令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z . 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6. 【点评】本题主要考查了由()sin y A x ωϕ=+的部分图象确定其解析式,函数()sin y A x ωϕ=+的图象变换规律的应用,属于基本知识的考查.(18)【2015年湖北,理18,12分】设等差数列{}n a 的公差为d 前n 项和为n S ,等比数列{}n b 的公、比为q .已知11b a =,22b =,q d =,10100S =.(1)求数列{}n a ,{}n b 的通项公式;(2)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .解:(1)由题意知:1110451002a d a d -=⎧⎨=⎩,即1129202a d a d +=⎧⎨=⎩,得112a d =⎧⎨=⎩或1929a d =⎧⎪⎨=⎪⎩,故1212n n na nb -=-⎧⎪⎨=⎪⎩或()112799299n n n a n b -⎧=+⎪⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩. (2)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=, 于是2341357921122222n n n T --=+++++ ① 2345113579212222222n n n T -=+++++ ② 由①-②可得234521111111212323222222222n n n n n n T --+=++++++-=-,故12362nn n T -+=-. 【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.(19)【2015年湖北,理19,12分】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于点F ,连接,,,.DE DF BD BE .(1)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.解:解法一:(1)因为PD ⊥底面ABCD ,所以PD BC ⊥,由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,所以BC PCD ⊥平面. 而DE PCD ⊂平面,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点, 所以DE PC ⊥. 而PC BC C =,所以DE ⊥平面PBC . 而PB PBC ⊂平面,所以PB DE ⊥. 又PB EF ⊥,DE EF E =,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形, 即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)如图1,在面PBC 内,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD 的交线.由(1)知,PB DEF ⊥平面,所以PB DG ⊥. 又因为PD ⊥底面ABCD ,所以 PD DG ⊥. 而PD PB P =,所以DG PBD ⊥平面.故BDF ∠是面DEF 与面ABCD 所成二面角的平面角,设1PD DC ==,BC λ=,有21BD λ=+,在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=,则 2πtan tan 133BD DPF PD λ=∠==+=, 解得2λ=.所以12.DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,22DC BC =. 解法二:(1)如图2,以D 为原点,射线,,DA DC DP 分别为,,x y z 轴的正半轴,建立空间直角坐标系. 设1PD DC ==,BC λ=,则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B C λ,(,1,1)PB λ=-,点E 是PC 的中点,所以11(0,,)22E ,11(0,,)22DE =,于是0PB DE ⋅=,即PB DE ⊥. 又已知EF PB ⊥,而DE EF E =,所以PB DEF ⊥平面. 因(0,1,1)PC =-, 0DE PC ⋅=, 则DE PC ⊥, 所以DE PBC ⊥平面.由DE ⊥平面 PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑, 四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)由PD ABCD ⊥平面,所以(0,0,1)DP =是平面ABCD 的一个法向量;由(1)知,PB DEF ⊥平面,所以(,1,1)BP λ=--是平面DEF 的一个法向量. 若面DEF 与面ABCD 所成二面角的大小为π3,则2π11cos 32||||2BP DP BP DP λ⋅===⋅+, 解得2λ=. 所以12.DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,2DC BC =. 【点评】本题综合考查了空间直线平面的垂直问题,直线与直线,直线与平面的垂直的转化,空间角的求解,属于难题.(20)【2015年湖北,理20,12分】某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产,A B 两种产品时间之和不超过12小时.Z (单位:元)是一个随机变量.(1)求Z 的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.解:(1)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ (1) 目标函数为 10001200z x y =+.当12W =时,(1)表示的平面区域如图1,三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当 2.4, 4.8x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,(1)表示的平面区域如图2,三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当3, 6x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=.当18W =时,(1)表示的平面区域如图3,四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D . 将10001200z x y =+变形为561200zy x =-+,当6,4x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=.(2)由(1)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为()3311110.30.973p p =--=-=.【点评】本题考查离散型随机变量的分布列以及期望的求法,线性规划的应用,二项分布概率的求法,考查分析问题解决问题的能力.(21)【2015年湖北,理21,14分】一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(1)求曲线C 的方程;(2)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探 究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.解:(1)设点(,0)(||2)D t t ≤,00(,),(,)N x y M x y ,依题意,2MD DN =,且||||1DN ON ==,所以00(,)2(,)t x y x t y --=-,且22002200()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩ 即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -= 由于当点D 不动时,点N也不动,所以t 不恒等于0,于是02t x =,故00,42x y x y ==-,代入22001x y +=,可得221164x y +=,即所求的曲线C 的方程为22 1.164x y +=(2)①当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.②当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22,416,y kx m x y =+⎧⎨+=⎩消去y ,可得222(14)84160k x kmx m +++-=.因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩可得2(,)1212m m P k k --;同理可得2(,)1212m m Q k k -++.由原点O 到直线PQ 的距离为21d k =+和2||1||P Q PQ k x x =+-,可得22111222||||||||222121214OPQ P Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-. ②将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--. 因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQS k ∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.【点评】本题主要考查椭圆方程的求解,以及直线和圆锥曲线的位置关系的应用,结合三角形的面积公式是解决本题的关键.综合性较强,运算量较大.(22)【2015年湖北,理22,14分】已知数列{}n a 的各项均为正数,1(1)()n n n b n a n n+=+∈N ,e 为自然对数的底数.(1)求函数()1e x f x x =+-的单调区间,并比较1(1)n n+与e 的大小;(2)计算11b a ,1212b ba a ,123123b b b a a a ,由此推测计算1212n n b b b a a a 的公式,并给出证明;(3)令112()nn n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T ,证明:e n n T S <.解:(1)()f x 的定义域为(,)-∞+∞,()1e x f x '=-.当()0f x '>,即0x <时,()f x 单调递增;当()0f x '<,即0x >时,()f x 单调递减. 故()f x 的单调递增区间为(,0)-∞,单调递减区间为(0,)+∞.当0x >时,()(0)0f x f <=,即1e xx +<. 令1x n=,得111e n n +<,即1(1)e n n +<. ①(2)11111(1)1121b a =⋅+=+=;22212121212122(1)(21)32b b b b a a a a =⋅=⋅+=+=;2333123312123123133(1)(31)43b b b b b b a a a a a a =⋅=⋅+=+=. 由此推测:1212(1).n n nb b b n a a a =+ ② 下面用数学归纳法证明②.①当1n =时,左边=右边2=,②成立.②假设当n k =时,②成立,即1212(1)k kk b b b k a a a =+. 当1n k =+时,1111(1)(1)1k k k b k a k +++=+++,由归纳假设可得 111211211211211(1)(1)(1)(2)1k k k k k k k k k k k b b b b b b b b k k k a a a a a a a a k ++++++=⋅=+++=++.所以当1n k =+时,②也成立.根据(1)(2),可知②对一切正整数n 都成立.(3)由n c 的定义,②,算术-几何平均不等式,n b 的定义及①得123n n T c c c c =++++=111131211212312()()()()nn a a a a a a a a a ++++111131212312112()()()()2341nn b b b b b b b b b n =+++++ 121111111[][]1223(1)2334(1)(1)n b b b n n n n n n =+++++++++⋅⨯⨯+⨯⨯++ 1211111(1)()()1211n b b b n n n n =-+-++-+++1212n b b b n <+++1212111(1)(1)(1)12n n a a a n =++++++12e e e n a a a <+++=e n S . 即e n n T S <.【点评】本题主要考查导数在研究函数中的应用,考查利用归纳法证明与自然数有关的问题,考查推理论证能力、运算求解能力、创新知识,考查了利用放缩法法证明数列不等式,是压轴题.。
2015年普通高等学校招生全国统一考试理 科 数 学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=( )(A ){-1,0} (B ){0,1} (C ){-1,0,1} (D ){0,1,2}(2)若a 为实数且(2+ai )(a-2i )=-4i,则a=( )(A )-1 (B )0 (C )1 (D )2(3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是( )(A ) 逐年比较,2008年减少二氧化硫排放量的效果最显著 (B ) 2007年我国治理二氧化硫排放显现(C ) 2006年以来我国二氧化硫年排放量呈减少趋势 (D ) 2006年以来我国二氧化硫年排放量与年份正相关(4)等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )(A )21 (B )42 (C )63 (D )84 (5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )(A )3 (B )6 (C )9 (D )12(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为(A )81 (B )71 (C )61 (D )51 (7)过三点A (1,3),B (4,2),C (1,-7)的圆交于y 轴于M 、N 两点,则MN =(A )26 (B )8 (C )46 (D )10(8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。
执行该程序框图,若输入a,b 分别为14,18,则输出的a=A.0B.2C.4D.14 (9)已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为A .36π B.64π C.144π D.256π10.如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x .将动点P 到A 、B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为(11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM为等腰三角形,且顶角为120°,则E 的离心率为(A(B )2 (C(D(12)设函数f’(x)是奇函数()()f x x R ∈的导函数,f (-1)=0,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是A .(,1)(0,1)-∞-UB .(1,0)(1,)-+∞UC .(,1)(1,0)-∞--UD .(0,1)(1,)+∞U二、填空题(13)设向量a r ,b r 不平行,向量a b λ+r r 与2a b +r r平行,则实数λ=_________. (14)若x ,y 满足约束条件1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则z x y =+的最大值为____________.(15)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. (16)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. 三.解答题(17)∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 是∆ADC 面积的2倍。
数学L单元算法初步与复数L1 算法与程序框图13.L1[2015·安徽卷] 执行如图1-3所示的程序框图(算法流程图),输出的n为________.图1-313.4[解析] a=1,n=1,|a-1.414|=0.414≥0.005;a=1+11+a=32,n=2,|a-1.414|=0.086≥0.005;a=1+11+a=75,n=3,|a-1.414|=0.014≥0.005;a=1+11+a=1712,n=4,|a-1.414|≈0.002 7<0.005,输出n=4.8.L1[2015·全国卷Ⅱ] 如图1-3所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a =()图1-3A .0B .2C .4D .148.B [解析] 逐一写出循环:a =14,b =18→a =14,b =4→a =10,b =4→a =6,b =4→a =2,b =4→a =2,b =2,结束循环.故选B.9.L1[2015·全国卷Ⅰ] 执行图1-3所示的程序框图,如果输入的t =0.01,则输出的n =( )A .5B .6C .7D .89.C [解析] 逐次写出循环过程:S =1-12=12,m =14,n =1,S >0.01; S =12-14=14,m =18,n =2,S >0.01; S =14-18=18,m =116,n =3,S >0.01; S =18-116=116,m =132,n =4,S >0.01; S =116-132=132,m =164,n =5,S >0.01; S =132-164=164,m =1128,n =6,S >0.01; S =164-1128=1128,m =1256,n =7,S <0.01,循环结束.故输出的n 值为7. 3.L1[2015·北京卷] 执行如图1-1所示的程序框图,输出的结果为( )图1-1A.(-2,2) B.(-4,0)C.(-4,-4) D.(0,-8)3.B[解析] 当k=0,x=1,y=1时,s=0,t=2;当k=1,x=0,y=2时,s=-2,t=2;当k=2,x=-2,y=2时,s=-4,t=0,此时x=-4,y=0,k=3,输出的结果为(-4,0).6.L1[2015·福建卷] 阅读如图1-1所示的程序框图,运行相应的程序,则输出的结果为()图1-1A.2 B.1 C.0 D.-16.C[解析] 第一次循环,S=0,i=2;第二次循环,S=-1,i=3;第三次循环,S =-1,i=4;第四次循环,S=0,i=5;第五次循环,S=0,i=6>5,结束循环.故输出的结果为0.L2 基本算法语句4.L2[2015·江苏卷] 根据如图1-1所示的伪代码,可知输出的结果S为________.S←1I←1While I<8S←S+2I←I+3End WhilePrint S图1-14.7 [解析] 第一次循环得S =1+2=3,I =1+3=4<8;第二次循环得S =3+2=5,I =4+3=7<8;第三次循环得S =5+2=7,I =7+3=10>8,退出循环,故输出的S =7.L3 算法案例L4 复数的基本概念与运算1.L4[2015·安徽卷] 设i 是虚数单位,则复数2i 1-i在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限1.B [解析] 因为 2i 1-i =2i (1+i )(1-i )(1+i )=2i +2i 22=-1+i ,所以2i 1-i在复平面内所对应的点为(-1,1),位于第二象限,故选B.2.L4[2015·广东卷] 若复数z =i(3-2i)(i 是虚数单位),则z =( )A .2-3iB .2+3iC .3+2iD .3-2i2.A [解析] z =i(3-2i)=2+3i ,∴z =2-3i.3.B4[2015·广东卷] 下列函数中,既不是奇函数,也不是偶函数的是( )A .y =1+x 2B .y =x +1xC .y =2x +12xD .y =x +e x 1.L4[2015·湖北卷] i 为虚数单位,i 607的共轭复数....为( )A .iB .-iC .1D .-11.A [解析] i 607=i 151×4+3=i 3=-i ,其共轭复数为i.故选A.3.L4[2015·江苏卷] 设复数z 满足z 2=3+4i(i 是虚数单位),则z 的模为________. 3.5 [解析] 因为z 2=3+4i ,所以|z 2|=|z |2=|3+4i|=9+16=5,所以|z |= 5.2.L4[2015·全国卷Ⅱ] 若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( )A .-1B .0C .1D .22.B [解析] 因为(2+a i)(a -2i)=4a +(a 2-4)i =-4i ,所以4a =0,且a 2-4=-4,解得a =0,故选B.1.L4[2015·全国卷Ⅰ] 设复数z 满足1+z 1-z=i ,则|z |=( )A .1 B. 2 C. 3 D .21.A [解析] 由1+z 1-z =i ,得z =-1+i 1+i=i ,所以||z =1. 1.L42015·北京卷复数i(2-i)=( )A .1+2iB .1-2iC .-1+2iD .-1-2i1.A [解析] i(2-i)=2i -i 2=1+2i ,故选A.L5 单元综合7.[2015·郑州质检] 在复平面内与复数z =5i 1+2i所对应的点关于虚轴对称的点为A ,则A 对应的复数为( )A .1+2iB .1-2iC .-2+iD .2+i7.C [解析] z =5i 1+2i =5i (1-2i )(1+2i )(1-2i )=2+i ,故点A 对应的复数为-2+i. 8.[2015·合肥质检] 执行如图K548所示的程序框图,则输出的结果为________.图K5488.8 [解析] 由程序框图可知,变量的取值情况如下:第一次循环,i =4,S =14; 第二次循环,i =5,S =14+15=920; 第三次循环,i =8,S =920+18=2340; 第四次循环,S =2340不满足S <12,结束循环,输出i =8. 10.[2015·宁波二模] 已知复数z 满足|z -1|=|z -i|,其中i 为虚数单位,且z +1z为实数,则z =( )A .-22+22i 或-22-22i B .-22+22i 或-22+22i C.22+22i 或-22-22iD.22+22i 或22-22i 10.C [解析] 设z =a +b i ,a ,b ∈R ,则(a -1)2+b 2=(b -1)2+a 2,即a =b .又因为z +1z =a +b i +1a +b i =a +a a 2+b 2+b (a 2+b 2-1)a 2+b 2i ,所以b (a 2+b 2-1)a 2+b 2=0,解得b =0(舍)或a 2+b 2-1=0,即a =b =±22.故z =±22(1+i). 7.[2015·武汉调研] 执行如图K547所示的程序框图,若输入a =1,b =2,则输出的a 的值为________.图K5477.32 [解析] 第一次循环,输入a =1,b =2,判断a ≤31,则a =1×2=2; 第二次循环,a =2,b =2,判断a ≤31,则a =2×2=4;第三次循环,a =4,b =2,判断a ≤31,则a =4×2=8;第四次循环,a =8,b =2,判断a ≤31,则a =8×2=16;第五次循环,a =16,b =2,判断a ≤31,则a =16×2=32;第六次循环,a =32,b =2,满足a >31,输出a =32.。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B = ( ) A .{}1,0A =- B .{}0,1 C .{}1,0,1- D .{}0,1,2 【答案】A考点:集合的运算.2.若a 为实数且(2)(2)4ai a i i +-=-,则a =( ) A .1- B .0 C .1 D .2 【答案】B 【解析】试题分析:由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B . 考点:复数的运算.3.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现C .2006年以来我国二氧化硫年排放量呈减少趋势2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年D .2006年以来我国二氧化硫年排放量与年份正相关 【答案】D 【解析】试题分析:由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选D . 考点:正、负相关.4.等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )A .21B .42C .63D .84 【答案】B考点:等比数列通项公式和性质.5.设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( ) A .3 B .6 C .9 D .12 【答案】C 【解析】试题分析:由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=,故选C .考点:分段函数.6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51【答案】D 【解析】试题分析:由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A AB D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51,故选D .考点:三视图.CBADD 1C 1B 1A 17.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .10 【答案】C【解析】由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得2y =±,所以MN =,故选C .考点:圆的方程.8.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的―更相减损术‖.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .14 【答案】B 【解析】 试题分析:程序在执行过程中,a ,b 的值依次为14a =,18b =;4b =;10a =;6a =;2a =;2b =,此时2a b ==程序结束,输出a 的值为2,故选B . 考点:程序框图.9.已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B.64π C.144π D.256π 【答案】C 【解析】试题分析:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C . 考点:外接球表面积和椎体的体积.BOAC10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为( )【答案】B 【解析】考点:函数的图象和性质.11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) AB .2 CD【答案】D 【解析】试题分析:设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,0120ABM ∠=,过点M 作MN x ⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,DPCx,故点M 的坐标为(2)M a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以e =,故选D .考点:双曲线的标准方程和简单几何性质.12.设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞ 【答案】A 【解析】试题分析:记函数()()f x g x x=,则''2()()()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x R ∈是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递减,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞- ,故选A .考点:导数的应用、函数的图象与性质.第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分。
2015年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(每小题 5分,共40分)1. ( 5 分)(2015?北京)复数 i (2- i )=( )A . 1+2iB . 1 - 2iC . - 1+2iD . - 1 - 2i考点:复数代数形式的乘除运算. 专题:数系的扩充和复数. 分析:利用复数的运算法则解答.解答:解:原式=2i - i 2=2i -( - 1) =1+2i ;故选:A .点评:本题考查了复数的运算;关键是熟记运算法则•注意i 2= - 1.垃-2.( 5分)(2015?北京)若x , y 满足-x+y<^L ,贝U z=x+2y 的最大值为()A . 0B . 1C . JD . 2考点:简单线性规划. 专题:不等式的解法及应用.分析:作出题中不等式组表示的平面区域,再将目标函数z=x+2y 对应的直线进行平移,即可求出z 取得最大值. 解答:*,*),目标函数z=x+2y ,将直线z=x+2y 进行平移,当I 经过点A 时,目标函数z 达到最大值• • • z 最大值=故选:C .解:作出不等式组K -” x+y<l 表示的平面区域,Co得到如图的三角形及其内部阴影部分,由X- y=0解得A点评:本题给出二元一次不等式组,求目标函数z=x+2y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.3. ( 5分)(2015?北京)执行如图所示的程序框图,输出的结果为( )/輸出0』/| (S)A . ( - 2, 2) B. ( - 4, 0) C. ( - 4, - 4) D. (0,- 8)考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的x, y, k的值,当k=3时满足条件k為, 退出循环,输出(-4,0).解答:解:模拟执行程序框图,可得x=1 , y=1 , k=0s=0, i=2x=0 , y=2 , k=1不满足条件k為,s=- 2, i=2 , x= - 2, y=2 , k=2不满足条件k為,s= - 4, i=0 , x= - 4, y=0, k=3满足条件k為,退出循环,输出(-4, 0),故选:B.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的x, y, k的值是解题的关键,属于基础题.4. (5分)(2015?北京)设a, B是两个不同的平面,m是直线且m? a, m H B是“a B” 的()A .充分而不必要条件B .必要而不充分条件C .充分不要条件D .既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:m// B并得不到all B,根据面面平行的判定定理,只有a内的两相交直线都平行于B,而a// B,并且m? a,显然能得到m// B,这样即可找出正确选项.解答:解:m? a, m// B得不到a// B,因为a , B可能相交,只要m和a, B的交线平行即可得到m // B;a// B, m? a, ••• m 和B没有公共点,m // B,即all B能得到m// B;••• m//B是“a B的必要不充分条件.故选B.点评:考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念.5. (5分)(2015?北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A . 2+J 二B . 4+ .二C . 2+2 .口D . 5考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据三视图可判断直观图为:A丄面ABC , AC=AB , E为BC中点,EA=2 , EA=EB=1 , OA=1,: BC 丄面AEO , A C W5, OE=V^判断几何体的各个面的特点,计算边长,求解面积.解答:解:根据三视图可判断直观图为:OA 丄面ABC , AC=AB , E 为BC 中点,EA=2, EC=EB=1 , OA=1 ,•••可得 AE 丄 BC , BC 丄 OA , 运用直线平面的垂直得出:BC 丄面AEO , AC= 口,OE=-xVs •2 2考点:等差数列的性质.专题:计算题;等差数列与等比数列. 分析:对选项分别进行判断,即可得出结论.解答:解:若a i +a 2>0,则2a i +d > 0, a 2+a 3=2a i +3d >2d , d >0时,结论成立,即A 不正确; 若 a i +a 2< 0,贝U2a i +d <0, a 2+a 3=2a i +3d < 2d , d < 0 时,结论成立,即 B 不正确; {a n }是等差数列,0<a i < a 2, 2a 2=a i +a 3>2 - . ., • a 2> . .「即卩 C 正确; 若 a i < 0,则(a 2- a i ) (a 2 - a 3) = - d 2< 0, 即卩 D 不正确.故选:C .点评:本题考查等差数列的通项,考查学生的计算能力,比较基础.7. ( 5分)(2015?北京)如图,函数f (x )的图象为折线 ACB ,则不等式f (x ) ^g 2 (x+1 ) 的解集是()•- S A ABC =「2X?=2 , S A OAC =S A OAB 2S A BCO =-2x =;故该三棱锥的表面积是2丨:,",点评:本题考查了空间几何体的三视图的运用, 图,得出几何体的性质.空间想象能力,计算能力,关键是恢复直观6. ( 5分)(2015?北京)设{a n }是等差数列, A .若 a i +a 2>0,贝U a 2+a 3>0若若 0v a i < a 2,贝U a 2F 列结论中正确的是( )B .若 a i +a 3< 0,则若 a i +a 2< 0,D .若 a i < 0 ,则(a 2 - a i ) (a 2 - a 3)> 0/'-1or-_2—rA . {x|—1v xO} B. {x| —1 纟<1} C. {x|—1 v x W} D. {x| - 1v x€}考点:指、对数不等式的解法.专题:不等式的解法及应用.分析:在已知坐标系内作出y=log 2(x+1)的图象,利用数形结合得到不等式的解集. 解答:解:由已知f (x)的图象,在此坐标系内作出y=log2 (x+1)的图象,如图满足不等式f (x) ^og2 (x+1 )的x范围是-1 v x<;所以不等式f (x) ^og2 (x+1) 的解集是{x| - 1 v x<};故选C.点评:本题考查了数形结合求不等式的解集;用到了图象的平移.& ( 5分)(2015?北京)汽车的燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油考点:函数的图象与图象变化.专题:创新题型;函数的性质及应用.分析:根据汽车的燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.解答:解:对于选项A,消耗1升汽油,乙车行驶的距离比5小的很多,故A错误;对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B错误,对于选项C,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,对于选项D,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D 正确.点评:本题考查了函数图象的识别,关键掌握题意,属于基础题.二、填空题(每小题5分,共30分)9. (5分)(2015?北京)在(2+x)5的展开式中,x3的系数为40 (用数字作答)考点:二项式定理的应用.专题:二项式定理.分析:写出二项式定理展开式的通项公式,利用x的指数为3,求出r,然后求解所求数值.解答:解:(2+x)5的展开式的通项公式为:Tr+仁C^25 r x r,J所求x3的系数为:eg2,=40.故答案为:40.点评:本题考查二项式定理的应用,二项式系数的求法,考查计算能力.10. (5分)(2015?北京)已知双曲线王㊁-y2=1 (a> 0)的一条渐近线为V3x+y=0,则a=_Vs3 —考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:运用双曲线的渐近线方程为y= ±,结合条件可得丄=.一;,即可得到a的值.a a解答:2解:双曲线二7 —y2=1的渐近线方程为y= ±,J 3由题意可得一=•、: '■;,解得a= ■3故答案为::;.3点评:本题考查双曲线的方程和性质,主要考查双曲线的渐近线方程的求法,属于基础题.■"l-!-11. (5分)(2015?北京)在极坐标系中,点(2,二~)到直线P(cos sin 0)=6的距离J为1 .考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:化为直角坐标,再利用点到直线的距离公式距离公式即可得出.解答:解:点P (2,)化为P -.31直线p (cos0+J5sin 0)=6 化为_20.11+3 - E|•••点P到直线的距离d= =1.^1+ (V3)2故答案为:1.点评:本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.12. (5 分)(2015?北京)在△ ABC 中,a=4, b=5, c=6,则斗罟■ = 1 .sinC考点:余弦定理;二倍角的正弦;正弦定理.专题:计算题;解三角形.分析:利用余弦定理求出cosC, cosA,即可得出结论.解答:解:•/△ ABC 中,a=4, b=5, c=6 ,• sinC亍,sinA=(,si nC故答案为:1.点评:本题考查余弦定理,考查学生的计算能力,比较基础.13. (5分)(2015 ?北京)在△ ABC中,点M, N满足八「=2旷,m,若Vx^+y厂, 贝卩x= , y= -—.—2- ------------考点:平面向量的基本定理及其意义. 专题:平面向量及应用.分析:首先利用向量的三角形法则,将所求用向量[了表示,然后利用平面向量基本定理得到x , y 值.解答:解:由已知得到r'.-".:':'戶二苜二厂:〜厂-二:厂- << 丄对一二广;由平面向量基本定理,得到x=—, y=「3 I 1故答案为:丄一 _.2 6点评:本题考查了平面向量基本定理的运用,一个向量用一组基底表示,存在唯一的实数对(x , y )使,向量等式成立.① 若a=1,则f (x )的最小值为 - 1;② 若f (x )恰有2个零点,则实数 a 的取值范围是二Wav 1或a 丝£考点:函数的零点;分段函数的应用. 专题:创新题型;函数的性质及应用.分析:① 分别求出分段的函数的最小值,即可得到函数的最小值;② 分别设h (x ) =2x - a , g (x ) =4 (x - a ) (x - 2a ),分两种情况讨论,即可求出 a 的范围.3,f (x ) min =f (=) = - 1 ,②设 h (x ) =2 - a , g (x ) =4 (x - a ) (x - 2a ) 若在x v 1时,h (x )=与x 轴有一个交点, 所以 a >0,并且当 x=1 时,h (1) =2 - a > 0,所以 0 v a v 2,而函数g (x ) =4 (x - a ) (x - 2a )有一个交点,所以 2a 》,且a v 1, 所以丄1,2若函数h (x ) =2x - a 在x v 1时,与x 轴没有交点,14. ( 5分)(2015?北京)设函数解答:解:①当a=1时,f (x )=y<l4 (x _ 1) (K _ 23,葢>1当 x v 1 时,f (x )当 x >1 时,f (x )=2x - 1 为增函数,f (x )>- 1,=4 (x - 1) (x - 2) =4 (x 2- 3x+2) =4 (x -—)当1v xv —时,函数单调递减,当 x,函数单调递增,故当贝U 函数g (x ) =4 (x - a ) (x - 2a )有两个交点,当aO 时,h (x )与x 轴无交点,g (x )无交点,所以不满足题意(舍去),当h (1) =2 - a W 时,即卩a ^2时,g (x )的两个交点为x i =a , x 2=2a ,都是满足题意的, 综上所述a 的取值范围是丄毛V 1,或a^2.2点评:本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能 力以及分类能力,属于中档题.三、解答题(共6小题,共80分)15. (13 分)(2015?北京)已知函数 f (x ) M^si£co 愛-逅sin 2— I ^3 (I )求f (x )的最小正周期;(H )求f (x )在区间[-n, 0]上的最小值.值.解: ( I ) f (x )=『!si2cof -'sin2 2则有f ( x )在区间[-n, 0]上的最小值为-1 -工2.2本题考查二倍角公式和两角和的正弦公式,同时考查正弦函数的周期和值域,考查运 算能力,属于中档题.16. (13分)(2015?北京)A , B 两组各有7位病人,他们服用某种药物后的康复时间(单 位:天)记录如下: A 组:10, 11, 12, 13, 14, 15, 16 B 组;12, 13, 15, 16, 17, 14, a假设所有病人的康复时间相互独立,从 A , B 两组随机各选1人,A 组选出的人记为甲,B组选出的人记为乙.考点:两角和与差的正弦函数;三角函数的周期性及其求法; 专题:计算题;三角函数的求值;三角函数的图像与性质. 分析:三角函数的最值. (I )运用二倍角公式和两角和的正弦公式,化简 即可得到所求;f ( x ),再由正弦喊话说的周期,(n )由x 的范围,可得x+的范围,再由正弦函数的图象和性质,即可求得最小解答:=_ sinx -2(1 - cosx ) =sin xcos =sin 71 +cosxs in-4斗-垃-)八(x )的最小正周期为)由-n 奚切,可得(x+2 n;点评: 1,(I )求甲的康复时间不少于14天的概率;(H )如果a=25,求甲的康复时间比乙的康复时间长的概率;(川)当a为何值时,A , B两组病人康复时间的方差相等?(结论不要求证明)考点:极差、方差与标准差;古典概型及其概率计算公式.专题:概率与统计.分析:设事件A i为甲是A组的第i个人”事件B i为乙是B组的第i个人”,由题意可知P(A i) =P ( B i)=丄,i=1 , 2, ?? , 7(I )事件等价于甲是A组的第5或第6或第7个人”,由概率公式可得;(I )设事件甲的康复时间比乙的康复时间长”>A4B1U A5B1U A6B1U A7B1U A5B2U A6B2U A7B2U A7B3U A6B6U A7B6,易得P(C) =10P (A4B1),易得答案;(川)由方差的公式可得.解答: 解:设事件A i为甲是A组的第i个人”,事件B i为乙是B组的第i个人”,由题意可知P (A i) =P ( B i)=二,i=1 , 2 , ?? , 7(I)事件甲的康复时间不少于14天”等价于甲是A组的第5或第6或第7个人”•••甲的康复时间不少于14天的概率P (A5U A6U A7) =P (A5) +P (A6) +P (A7)37 ;(n)设事件C为甲的康复时间比乙的康复时间长”,贝y C=A4B1 U A5B1U A6B1U A7B1 U A5B2U A6B2U A7B2U A7B3U A6B6U A7B6,• P (C) =P (A4B1) +P (A5B1) +P (A6B1) P+ (A7B1) +P (A5B2) +p (A6B2) +P (A7B2) +P (A7B3) +P (A6B6) +P (A7B6)=10P (A4B1) =10P (A4) P ( B1) -4 y(川)当a为11或18时,A , B两组病人康复时间的方差相等.点评:本题考查古典概型及其概率公式,涉及概率的加法公式和方差,属基础题.17. (14分)(2015?北京)如图,在四棱锥A - EFCB中,△ AEF为等边三角形,平面AEF丄平面EFCB , EF// BC , BC=4 , EF=2a, / EBC= / FCB=60 ° O 为EF 的中点.(I )求证:AO丄BE.(II )求二面角F- AE - B的余弦值;(川)若BE丄平面AOC,求a的值.B考点:二面角的平面角及求法;直线与平面垂直的判定;直线与平面垂直的性质. 专题:空间位置关系与距离;空间角.分析:(I)根据线面垂直的性质定理即可证明AO丄BE .(II )建立空间坐标系,利用向量法即可求二面角F- AE - B的余弦值;(川)利用线面垂直的性质,结合向量法即可求a的值解答:证明:(I) •••△AEF为等边三角形,0为EF的中点,••• A0 丄EF ,•/平面AEF丄平面EFCB , A0?平面AEF ,•A0丄平面EFCB•A0 丄BE .(I )取BC的中点G,连接0G,••• EFCB是等腰梯形,•0G 丄EF ,由(I )知A0丄平面EFCB ,•/ 0G?平面EFCB , • 0A 丄0G,建立如图的空间坐标系,贝U 0E=a, BG=2 , GH=a , BH=2 - a, EH=BHtan60 丄「一 - ■, 则E (a, 0, 0), A (0, 0,听a), B (2,亦(2一色),0),EA= (- a, 0, a), BE = (a- 2,- ^3(2 _ 巴),0),设平面AEB的法向量为i= (x, y, z),则n*EA=0,即 f "站血昭0:n*BE=0((a- 2) K+-/3 fa - 2)令z=1,贝U x=订E, y= - 1, 即n=(.二-1, 1),平面AEF的法向量为■;,>I Dn5cFEBzFGE18 5贝 Ucosvlln即-『=0,----- * ----- *o-''=-2 (a — 2 — 3 (a — 2) =0,解得a=-.贝U BE 丄OC•••=F = (a — 2,—:—厂;,0), 56= (— 2,衍 C2-a),0),点评:本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.(I )求曲线y=f (x )在点(0, f (0))处的切线方程;3(n )求证,当x € (0, 1)时,f (x )〔玄+专);即二面角F - AE — B 的余弦值为 (川)若BE 丄平面AOC , (13分)(2015?北京)已知函数 f (x ) =ln —-1 一工3(川)设实数k 使得f (x ) >比(时兰一)对x € (0, 1)恒成立,求k 的最大值.考点:利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用. 专题:导数的综合应用. 分析:(1)利用函数的导数求在曲线上某点处的切线方程.(2) 构造新函数利用函数的单调性证明命题成立. (3)对k 进行讨论,利用新函数的单调性求参数k 的取值范围. 解答:解答:(1)因为 f (x ) =ln (1+x )- In (1- x )所以f y X)叮J ‘严(0)弍1+x 1 _ x又因为f (0) =0,所以曲线y=f (x )在点(0, f (0))处的切线方程为 y=2x .I 3(2)证明:令 g (x ) =f (x )- 2 (x+:'),贝U| 3 |22 Jg' (x ) =f (x )- 2 (1+x )=…一,1- d当 k >2 时,令 h (x ) =f (x )-上「-h (x )V h (0) =0,即 f (x )V,:芒'T _ !所以当k >2时,f (x )>忙.,.[.并非对x € (0, 1)恒成立.3 综上所知,k 的最大值为2.点评:本题主要考查切线方程的求法及新函数的单调性的求解证明•在高考中属常考题型, 难度适中.和点A (m , n ) ( m #))都在椭圆C 上,直线PA 交x 轴于点M .因为 所以 g' ( x )> 0 ( 0V x V 1),所以g (x )在区间(0, 1) 上单调递增. g (x )> g (0) =0, x € (0, 1),3即当 x € (0, 1)时,f (x )> 2 (x+[).(3)由(2)知,当k 电时,f (x)>J :, ' :对x € (0, 1)恒成立.所以当 减.V 0,因此h (x )在区间(0,'■) 上单调递19. (14分)(2015?北京)已知椭圆 ,点 P (0, 1)2h' (x ) =f (x )- k (1+x )h' (x ) C:=1 (a > b > 0)的离心率为(I )求椭圆C 的方程,并求点 M 的坐标(用m , n 表示);(H )设0为原点,点B 与点A 关于x 轴对称,直线 PB 交x 轴于点N ,问:y 轴上是否 存在点Q ,使得/OQM= / ONQ ?若存在,求点 Q 的坐标,若不存在,说明理由.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:创新题型;圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题. 分析:(I )根据椭圆的几何性质得出a 2la求解即可.ID0) , N (. 1 -n |H-n,0),运用图形得出 tan / OQM=tan / ONQ ,2,求解即可得出即 y Q =X M ?X N ,+n 2,根据m , m 的关系整体求解.解答:解:(I )由题意得出b=l c V2 a - 22. 1 I呂-b +c解得:a= :, b=1, c=1• +y2=1,••• P (0 , 1)和点 A• PA 的方程为:y -(m , n ), — 1 v n v 1n _ 1 um x , y=0 时,x M =m1 _ n••• M ——0)1 _ nT 点B 与点A 关于x 轴对称,点 A ( m , n ) (m#))B (m , — n ) (m 崔))(II ) •••点 •••直线PB 交x 轴于点N ,••• N (0),(II )求解得出M (1一—-■^**-*-L%•^―丿23 A/ iX-1\-2•••存在点 Q ,使得/ OQM= / ONQ , Q (0, y Q ),/• tan / OQM=tan / ONQ ,.\—=^'J ,g 卩 y Q 2=x M ?X N ,丄 + n 2=1% % 2I 2小2y Q = --------- =2,1- n 2二y Q =丨.爲故 y 轴上存在点 Q ,使得/ OQM= / ONQ , Q (0, . ■:)或 Q (0, -:?)点评:本题考查了直线圆锥曲线的方程,位置关系,数形结合的思想的运用,运用代数的方法求解几何问题,难度较大,属于难题.20. (13 分)(2015?北京)已知数列{a n }满足:a i €N *, ai<36,且 a n+i = (n=1 , 2,…),记集合 M={a 叫n€N }.(I )若a i =6,写出集合 M 的所有元素;(n )如集合M 存在一个元素是3的倍数,证明:M 的所有元素都是 3的倍数; (川)求集合M 的元素个数的最大值.考点:数列递推式.专题:创新题型;点列、递归数列与数学归纳法. 分析:(I ) a i =6,利用 a n+i =24 ;(n )因为集合M 存在一个元素是3的倍数,所以不妨设 a k 是3的倍数,由36, ^>18(川)分a i 是3的倍数与a i 不是3的倍数讨论,即可求得集合 M 的元素个数的最大 值.『%^>18「如 ^<18可求得集合M 的所有元素为6, 12,a n+1=*(n=1, 2,…),可归纳证明对任意 n 冰,a n 是3的倍数;故集合M 的所有元素为6, 12, 24;(n )因为集合M 存在一个元素是3的倍数,所以不妨设a k 是3的倍数,由如果k=1 , M 的所有元素都是 3的倍数;如果k > 1,因为a k =2a k -1,或a k =2a k -1- 36,所以2a k -1是3的倍数;于是 a k -1是3 的倍数; 类似可得,a k -2,…,a 1都是3的倍数; 从而对任意 n N, a n 是3的倍数;综上,若集合M 存在一个元素是3的倍数,则集合M 的所有元素都是3的倍数IfSaa-l- a n <18(川)对a 1W 36, ai={(n=1,2,…)可归纳证明对任意 n 沫,a n v 36 (n=2 , 3, ••)r2ai ! a |^18因为a 1是正整数,a 2= .. ,所以a 2是2的倍数.2aj - 36, &!>18从而当n 绍时,a n 是2的倍数.如果a 1是3的倍数,由(n )知,对所有正整数 n , a n 是3的倍数. 因此当n 绍时,a n €{12 , 24, 36},这时M 的元素个数不超过 5. 如果a 1不是3的倍数,由(n )知,对所有正整数 n , an 不是3的倍数.因此当n 绍时,an€{4 , 8, 16, 20, 28, 32},这时M 的元素个数不超过 & 当 a 1=1 时,M={1 , 2,4, 8, 16, 20, 28, 32},有 8 个元素.综上可知,集合M 的元素个数的最大值为 &点评:本题考查数列递推关系的应用,突出考查分类讨论思想与等价转化思想及推理、运算 能力,属于难题.解答:2%解:(I )右 a i =6,由于 a n+1 =2a… - 36, IL n 务6^>18(n =1, 2,…),M={a n |n€N *}.a n+1 =务a^>18(n=1, 2,…),可归纳证明对任意n 冰,a n 是3的倍数.。
数学L单元算法初步与复数L1 算法与程序框图9.L1[2015·全国卷Ⅰ] 执行图1-3所示的程序框图,如果输入的t=0.01,则输出的n=()图1-3A.5 B.6C.7 D.89.C[解析] 经推理分析可知,若程序能满足循环,则每循环一次,S的值减少一半,循环6次后S的值变为126=164>0.01,循环7次后S的值变为127=1128<0.01,此时不再满足循环的条件,所以结束循环,于是输出的n=7.8.L1[2015·全国卷Ⅱ] 下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()图1-3A.0 B.2C.4 D.148.B[解析] 输入的a,b分别为14,18,程序依次运行:14≠18(是),14>18(否),b=4;14≠4(是),14>4(是),a=10;10≠4(是),10>4(是),a=6;6≠4(是),6>4(是),a=2;2≠4(是),2>4(否),b=2;2≠2(否),输出a=2.5.L1[2015·北京卷] 执行如图1-1所示的程序框图,输出的k 值为( )图1-1A .3B .4C .5D .65.B [解析] 初值为a =3,k =0,进入循环体后a =32,k =1;a =34,k =2;a =38,k =3;a =316,k=4,此时a <14,退出循环,则输出k =4,故选B.4.L1[2015·福建卷] 阅读如图1-1所示的程序框图,运行相应的程序,若输入x 的值为1,则输出y 的值为( )图1-1A .2B .7C .8D .1284.C [解析] 若输入x 的值为1,则不满足“x ≥2”,所以y =9-1=8. 11.L1[2015·山东卷] 执行图1-2所示的程序框图,若输入的x 的值为1,则输出的y 的值是________.图1-211.13 [解析] 第一次循环,得x =2;第二次循环,不满足x <2,执行y =3×22+1=13,然后输出y .故输出的y 的值为13.7.L1[2015·陕西卷] 根据下面框图,当输入x 为6时,输出的y =( )图1-3A .1B .2C .5D .107.D [解析] 循环体的执行情况是x =3→x =0→x =-3,结束循环,故输出的y =(-3)2+1=10.6.L1[2015·四川卷] 执行如图1-1所示的程序框图,输出S 的值为( )图1-1A .-32 B.32 C .-12 D.126.D [解析] 依据框图循环结构逐次计算.第一次进入循环,运行后,k =2,不满足k >4;第二次进入循环,运行后,k =3,不满足k >4;第三次进入循环,运行后,k =4,不满足k >4;第四次进入循环,运行后k =5,满足k >4,输出S =sin 5π6=12.3.L1[2015·天津卷] 阅读下面的程序框图,运行相应的程序,则输出i 的值为( )A .2B .3C .4D .53.C [解析] 当i =1时,S =9;当i =2时,S =7;当i =3时,S =4;当i =4时,S =0,此时满足条件,故选C.8.L1[2015·重庆卷] 执行如图1-3所示的程序框图,则输出s 的值为( )图1-3A.34B.56C.1112D.25248.D [解析] 第一次循环,得k =2,s =12;第二次循环,得k =4,s =12+14=34;第三次循环,得k =6,s =16+34=1112;第四次循环,得k =8,s =18+1112=2524,退出循环,输出s 的值为2524.故选D.7.L1[2015·安徽卷] ),输出的n 为( )图1-1A .3B .4C .5D .67.B [解析] 初始值,a =1,n =1,|a -1.414|=0.414≥0.005,执行第一次循环,a =1+11+a =32,n =2; |a -1.414|=0.086≥0.005,执行第二次循环,a =1+11+a =75,n =3; |a -1.414|=0.014≥0.005,执行第三次循环,a =1+11+a =1712,n =4;|a -1.414|≈0.002 7<0.005,跳出循环,输出n =4.L2 基本算法语句 L3 算法案例L4 复数的基本概念与运算 1.L4[2015·安徽卷] 设i 是虚数单位,则复数(1-i)·(1+2i)=( )A .3+3iB .-1+3iC .3+iD .-1+i1.C [解析] 由(1-i)(1+2i)=1+2i -i -2i 2=3+i 得C 正确. 2.L4[2015·广东卷] 已知i 是虚数单位,则复数(1+i)2=( ) A .2i B .-2i C .2 D .-22.A [解析] (1+i)2=1+i 2+2i =2i. 1.L4[2015·湖北卷] i 为虚数单位,i 607=( )A .-iB .iC .-1D .11.A [解析] i 607=i 4×151+3=i 3=-i.故选A. 3.L4[2015·全国卷Ⅰ] 已知复数z 满足(z -1)i =1+i,则z =( ) A .-2-i B .-2+i C .2-i D .2+i3.C [解析] 设复数z =a +b i(a ,b ∈R ),代入(z -1)i =1+i 得(a -1+b i)i =1+i,即-b +(a -1)i =1+i.根据复数相等可得⎩⎪⎨⎪⎧-b =1,a -1=1,得a =2,b =-1,所以复数z =2-i.2.L4[2015·全国卷Ⅱ] 若a 为实数,且2+a i1+i =3+i,则a =( )A .-4B .-3C .3D .42.D [解析] 由2+a i1+i =3+i 得2+a i =(3+i)(1+i)=2+4i,根据复数相等的意义知a =4.9.L4[2015·北京卷] 复数i(1+i)的实部为________.9.-1 [解析] i(1+i)=i +i 2=-1+i,所以答案是-1. 1.L42015·福建卷若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( )A .3,-2B .3,2C .3,-3D .-1,41.A [解析] (1+i)+(2-3i)=3-2i,所以a =3,b =-2.1.L4[2015·湖南卷] 已知(1-i )2z=1+i(i 为虚数单位),则复数z =( )A .1+iB .1-iC .-1+iD .-1-i1.D [解析] 由题得z =(1-i )21+i =-2i1+i=-i(1-i)=-1-i,故选D.2.L4[2015·山东卷] 若复数z 满足z-1-i =i,其中i 为虚数单位,则z =( )A .1-iB .1+iC .-1-iD .-1+i2.A [解析] ∵z -1-i=i ,∴z -=i(1-i)=1+i ,即z =1-i.12.K3、L4[2015·陕西卷] 设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A.34+12π B.12+1π C.14-12π D.12-1π12.C [解析] 由|z |≤1得(x -1)2+y 2≤1,其表示圆心为(1,0),半径为1的圆及其内部.在此区域内y ≥x 表示的区域为图中的阴影部分,其面积为圆(x -1)2+y 2=1面积的四分之一减去一个等腰直角三角形的面积,即为π4-12,故y ≥x 的概率为π4-12π=14-12π.11.L4[2015·四川卷] 设i 是虚数单位,则复数i -1i =________.11.2i [解析] i -1i=i +i =2i.9.L4[2015·天津卷] i 是虚数单位,计算1-2i2+i的结果为________.9.-i [解析] 1-2i 2+i =(1-2i )(2-i )(2+i )(2-i )=-5i5=-i.11.L4[2015·重庆卷] 复数(1+2i)i 的实部为________.11.-2 [解析] 因为(1+2i)i =-2+i,所以该复数的实部为-2.L5 单元综合 8.[2015·广东实验中学模拟] 已知复数z 1,z 2在复平面上对应的点分别为A (1,2),B (-1,3),则z 2z 1=( ) A .1+i B .i C .1-i D .-i8.A [解析] 由复数的几何意义可知,z 1=1+2i,z 2=-1+3i, ∴z 2z 1=-1+3i 1+2i =(-1+3i )(1-2i )(1+2i )(1-2i )=5+5i 5=1+i. 5.[2015·石室中学诊断] 若某程序框图如图K524所示,则执行该程序输出P 的值是( )A .21B .26C .30D .55K5245.C [解析] 依次执行循环体,第一次执行,n =2,P =5;第二次执行,n =3,P =14;第三次执行,n =4,P =30.30>20,所以输出P 的值为30.11.2015·浙江诸暨中学高三期末已知复数z 的共轭复数是z ,且z +|(2+i )2(3+i )|z =3(2+i),求复数z .11.解:设z =a +b i(a ,b ∈R ),z =a -b i,则由题可得a -b i +10a +b i =6+3i,即a 2+b 2+10=(6+3i)(a +b i),即⎩⎪⎨⎪⎧a 2+b 2+10=6a -3b ,0=3a +6b ,解得⎩⎪⎨⎪⎧a =2,b =-1或⎩⎪⎨⎪⎧a =4,b =-2, 所以z =2-i 或z =4-2i.K5256.[2015·安徽江南十校联考] 如图K525所示,若输入的x=log43,则程序框图的输出结果为________.6.8 3[解析] 因为0<log43<1,所以y=23+log43=8 3.。
专题十五 复数
1.【2015高考新课标2,理2】若a 为实数且(2)(2)4ai a i i +-=-,则a =( )
A .1-
B .0
C .1
D .2
【答案】B
【解析】由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B .
【考点定位】复数的运算.
【名师点睛】本题考查复数的运算,要利用复数相等列方程求解,属于基础题.
2.【2015高考四川,理2】设i 是虚数单位,则复数32i i
-( ) (A )-i (B )-3i (C )i. (D )3i
【答案】C
【解析】
32222i i i i i i i i
-=--=-+=,选C. 【考点定位】复数的基本运算.
【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.
3.【2015高考广东,理2】若复数()32z i i =- ( i 是虚数单位 ),则z =( )
A .
32i - B .32i + C .23i + D .23i - 【答案】D .
【解析】因为()3223z i i i =-=+,所以z =23i -,故选D .
【考点定位】复数的基本运算,共轭复数的概念.
【名师点睛】本题主要考查复数的乘法运算,共轭复数的概念和运算求解能力,属于容易题;复数的乘法运算应该是简单易解,但学生容易忘记和混淆共轭复数的概念,z a bi =+的共轭复数为z a bi =-.
4.【2015高考新课标1,理1】设复数z 满足11z z
+-=i ,则|z|=( )
(A )1 (B (C (D )2
【答案】A
【解析】由11z i z +=-得,11i z i -+=+=(1)(1)(1)(1)
i i i i -+-+-=i ,故|z|=1,故选A. 【考点定位】本题主要考查复数的运算和复数的模等.
【名师点睛】本题将方程思想与复数的运算和复数的模结合起来考查,试题设计思路新颖,本题解题思路为利用方程思想和复数的运算法则求出复数z ,再利用复数的模公式求出|z|,本题属于基础题,注意运算的准确性.
5.【2015高考北京,理1】复数()i 2i -=( )
A .12i +
B .12i -
C .12i -+
D .12i --
【答案】A
考点定位:本题考查复数运算,运用复数的乘法运算方法进行计算,注意21i =-.
【名师点睛】本题考查复数的乘法运算,本题属于基础题,数的概念的扩充部分主要知识点有:复数的概念、分类,复数的几何意义、复数的运算,特别是复数的乘法与除法运算,运算时注意21i =-,
注意运算的准确性,近几年高考主要考查复数的乘法、除法,求复数的模、复数的虚部、复数在复平面内对应的点的位置等.
6.【2015高考湖北,理1】 i 为虚数单位,607i 的共轭复数....
为( ) A .i B .i - C .1 D .1-
【答案】A
【解析】i i i i -=⋅=⨯31514607,所以607i 的共轭复数....
为i ,选A . 【考点定位】共轭复数.
【名师点睛】复数中,i 是虚数单位,24142434111()n n n n i i i i i i i n +++=-==-=-=∈Z ;,,,
7.【2015高考山东,理2】若复数z 满足1z i i
=-,其中i 为虚数为单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+
【答案】A 【解析】因为1z i i
=-,所以,()11z i i i =-=+ ,所以,1z i =- 故选:A. 【考点定位】复数的概念与运算.
【名师点睛】本题考查复数的概念和运算,采用复数的乘法和共轭复数的概念进行化简求解. 本题属于基础题,注意运算的准确性.
8.【2015高考安徽,理1】设i 是虚数单位,则复数21i i
-在复平面内所对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限
【答案】B 【解析】由题意22(1)2211(1)(1)2
i i i i i i i i +-+===-+--+,其对应的点坐标为(1,1)-,位于第二象限,故选B.
【考点定位】1.复数的运算;2.复数的几何意义.
【名师点睛】复数的四则运算问题主要是要熟记各种运算法则,尤其是除法运算,要将复数
分母实数化(分母乘以自己的共轭复数),这也历年考查的重点;另外,复数z a bi =+在复平面内一一对应的点为(,)Z a b .
9.【2015高考重庆,理11】设复数a +bi (a ,b ∈R ,则(a +bi )(a -bi )=________.
【答案】3
【解析】由a +=,即223a b +=,所以22()()3a bi a bi a b +-=+=. 【考点定位】复数的运算. 【名师点晴】复数的考查核心是代数形式的四则运算,即使是概念的考查也需要相应的运算
支持.本题首先根据复数模的定义得a +,复数相乘可根据平方差公式求得()()a bi a bi +-22()a bi =-
22a b =+,也可根据共轭复数的性质得()()a bi a bi +-22a b =+.
10.【2015高考天津,理9】i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 .
【答案】2-
【解析】()()()12212i a i a a i -+=++-是纯虚数,所以20a +=,即2a =-.
【考点定位】复数相关概念与复数的运算.
【名师点睛】本题主要考查复数相关概念与复数的运算.先进行复数的乘法运算,再利用纯虚数的概念可求结果,是容易题.
11.【2015江苏高考,3】设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.
【解析】22|||34|5||5||z i z z =+=⇒=⇒=
【考点定位】复数的模
【名师点晴】在处理复数相等的问题时,一般将问题中涉及的两个复数均化成一般形式,利用复数相等的充要条件“实部相等,虚部相等”进行求解.本题涉及复数的模,利用复数模的性质求解就比较简便:
2211121222||||||||||||.||z z z z z z z z z z ==⋅=,, 12.【2015高考湖南,理1】已知()211i i z -=+(i 为虚数单位)
,则复数z =( ) A.1i + B.1i - C.1i -+ D.1i --
【答案】D.
【考点定位】复数的计算.
【名师点睛】本题主要考查了复数的概念与基本运算,属于容易题,意在考查学生对复数代
数形式四则运
算的掌握情况,基本思路就是复数的除法运算按“分母实数化”原则,结合复数的乘法进行
计算,而复数
的乘法则是按多项式的乘法法则进行处理.
13.【2015高考上海,理2】若复数z 满足31z z i +=+,其中i 为虚数单位,则z = .
【答案】
1142i +
【解析】设(,)z a bi a b R =+∈,则113()1412142
a bi a bi i a
b z i ++-=+⇒==⇒=
+且 【考点定位】复数相等,共轭复数 【名师点睛】研究复数问题一般将其设为(,)z a bi a b R =+∈形式,利用复数相等充要条件:实部与实部,虚部与虚部分别对应相等,将复数相等问题转化为实数问题:解对应方程组问题.
复数问题实数化转化过程中,需明确概念,如(,)z a bi a b R =+∈的共轭复数为(,)z a bi a b R =-∈,复数加法为实部与实部,虚部与虚部分别对应相加.
【2015高考上海,理15】设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( )
A .充分非必要条件
B .必要非充分条件
C .充要条件
D .既非充分又非必要条件
【答案】B
【解析】若1z 、2z 皆是实数,则12z z -一定不是虚数,因此当12z z -是虚数时,则“1z 、2z 中至少有一个数是虚数”成立,即必要性成立;当1z 、2z 中至少有一个数是虚数,12z z -不一定是虚数,如12z z i ==,即充分性不成立,选B.
【考点定位】复数概念,充要关系
【名师点睛】形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.判断概念必须从其定义出发,不可想当然.。