2011年全国各地模拟考试分类汇编之——导数
- 格式:pdf
- 大小:361.18 KB
- 文档页数:21
2011年高考数学真题分类汇编——函数与导数 (4)一、选择题1.(全国Ⅱ理8)曲线21xy e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为 (A)13 (B)12 (C)23 (D)12.(全国Ⅱ理9)设()f x 是周期为2的奇函数,当01x ≤≤时,()2(1)f x x x =-,则5()2f -=(A)12-(B)14-(C)14 (D)123.(山东理9)函数2sin 2xy x =-的图象大致是4.(山东理10)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )95.(山东文4)曲线311y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是 (A )-9 (B )-3 (C )9 (D )156.(陕西理3)设函数()f x (x ∈R )满足()()f x f x -=,(2)()f x f x +=,则函数()y f x =的图像是 ( )7.(陕西文4) 函数13y x =的图像是 ( )8.(上海理16)下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数是( )(A )1ln||y x =. (B )3y x =. (C )||2x y =. (D )cos y x =.9.(上海文15)下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是( )(A )2y x -= (B )1y x -= (C )2y x = (D )13y x =10.(四川理7)若()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图象大致是11.(四川文4)函数1()12x y =+的图象关于直线y=x 对称的图象像大致是 12.(天津理2)函数()23x f x x=+的零点所在的一个区间是( ). A.()2,1--B.()1,0- C.()0,1D.()1,2二、填空题13.(陕西文11)设lg ,0()10,0xx x f x x >⎧=⎨⎩…,则((2))f f -=______. 14.(陕西理11)设20lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = .15.(陕西理12)设n N +∈,一元二次方程240x x n -+=有整数根的充要条件是n = .16.(山东理16)已知函数f x ()=log (0a 1).a x xb a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .三、选做题:17.(广东文19) 设0>a ,讨论函数x a x a a x x f )1(2)1(ln )(2---+=的单调性. 18.(湖北理17)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度v 是车流密度x 的一次函数.(Ⅰ)当2000≤≤x 时,求函数()x v 的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()x v x x f ⋅=可以达到最大,并求出最大值.(精确到1辆/小时) 17.解:函数f(x)的定义域为(0,+∞)本题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力.解析:(Ⅰ)由题意:当200≤≤x 时,()60=x v ;当20020≤≤x 时,设()b ax x v +=,显然()b ax x v +=在[]200,20是减函数,由已知得⎩⎨⎧=+=+60200200b a b a ,解得⎪⎪⎩⎪⎪⎨⎧=-=320031b a 故函数()x v 的表达式为()x v =()⎪⎩⎪⎨⎧≤≤-<≤.20020,20031,200,60x x x(Ⅱ)依题意并由(Ⅰ)可得()=x f ()⎪⎩⎪⎨⎧≤≤-<≤.20020,20031,200,60x x x x x当200≤≤x 时,()x f 为增函数,故当20=x 时,其最大值为12002060=⨯;当20020≤≤x 时,()()()310000220031200312=⎥⎦⎤⎢⎣⎡-+≤-=x x x x x f ,当且仅当x x -=200,即100=x 时,等号成立.所以,当100=x 时,()x f 在区间[]200,20上取得最大值310000. 综上,当100=x 时,()x f 在区间[]200,0上取得最大值3333310000≈,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.18221212122(1)2(1)1'(),112(1)2(1)1012(1)()310,'()23110,220'()0,()(0,)(,)a a x a x f x xa a a x a x a a a f x x x a a x x x x f x f x x x ---+=≠---+=∆=--<∆>=>=<<>>+∞当时,方程的判别式①当0<时,有个零点且当或时,在与内为增函数121212'()0,(),)110,'()0,()(0,)311'()0(0),()(0,)1110,0,0,'()22x x x f x f x x x a f x f x a f x x f x xa x x f x x a a <<<≤<∆≤≥+∞==>>+∞>∆>==+;当时,在(内为减函数当时,在内为增函数;当时,在内为增函数;当时,所以在定义域内有唯一零点②③④11111;0'()0,()(0,)'()0,()(,)x x f x f x x x x f x f x x <<>><+∞且当时,在内为增函数;当时,在内为减函数;综(其中121122x x a a ==)。
北京市各区11年二模文导数试题集锦18. (本小题满分14分)(昌平区11年二模文)设函数R b a b ax x a x x f ∈+++-=、其中,4)1(3)(23(Ⅰ)若函数)(x f 在3=x 处取得极小值是21,求b a 、的值; (Ⅱ)求函数)(x f 的单调递增区间;(Ⅲ)若函数()f x 在)1,1(-上有且只有一个极值点, 求实数a 的取值范围. 解:(I ) a x a x x f 4)1(2)(2'++-= .......3分04)1(69)3('=++-=∴a a f 得 23=a ......4分 21)3(=f 解得: 4-=b ………5分 (II ))2)(2(4)1(2)(2'--=++-=x a x a x a x x f令22,0)('===x a x x f 或即 …..7分当2,21<>>x a x a 时,,即)(x f 的单调递增区间为),2)2,(+∞-∞a 和(….8分 当0)2()(12'≥-==x x f a 时,,即)(x f 的单调递增区间为),(+∞-∞….9分当2,21><<x a x a 时,,即)(x f 的单调递增区间为),2)2,(+∞-∞和(a …..10分(Ⅲ)由题意可得:⎩⎨⎧<∙-<0)1()1(1''f f a ……12分 a ∴的取值范围)21,21(- ……14分(18)(本小题共13分)(东城区11年二模文)已知函数x a x x f ln )(2-=(R a ∈).(Ⅰ)若2=a ,求证:)(x f 在(1,)+∞上是增函数; (Ⅱ)求)(x f 在[1,)+∞上的最小值.证明(Ⅰ):当2=a 时,x x x f ln 2)(2-=,当),1(+∞∈x 时,0)1(2)(2>-='xx x f ,所以)(x f 在),1(+∞上是增函数. ……………………5分(Ⅱ)解:)0(2)(2>-='x xax x f , 当0a ≤时,'()0f x >,()f x 在[1,)+∞上单调递增,最小值为(1)1f =.当0a >,当)2,0(ax ∈时,)(x f 单调递减; 当),2(+∞∈ax 时,)(x f 单调递增. 若12≤a,即02a <≤时,)(x f 在),1[+∞上单调递增, 又1)1(=f ,所以)(x f 在),1[+∞上的最小值为1. 若12>a ,即2>a 时,)(x f 在)2,1[a 上单调递减; 在),2(+∞a上单调递增.又ln 222a a a f =-, 所以)(x f 在),1[+∞上的最小值为ln 222a a a-. 综上,当2a ≤时,()f x 在[1,)+∞上的最小值为1; 当2a >时,()f x 在[1,)+∞上的最大值为ln 222a a a-.………13分 18.(本小题共14分)(丰台区11年二模文)已知函数21(),(0)2af x x a x=+≠. (Ⅰ)当1x =时函数()y f x =取得极小值,求a 的值; (Ⅱ)求函数()y f x =的单调区间.解:(Ⅰ)函数()f x 的定义域为(,0)-∞∪(0,)+∞, ………………1分2()af x x x '=-. ………………3分 ∵1x =时函数()y f x =取得极小值,∴(1)0f '=. ………………4分∴1a =. ………………5分 当1a =时,在(0,1)内()0f x '<,在(1,)+∞内()0f x '>, ………………6分 ∴1x =是函数()y f x =的极小值点.∴1a =有意义. ………………7分 (Ⅱ)()f x 的定义域为(,0)-∞∪(0,)+∞,322()a x af x x x x-'=-=.令()0f x '=,得x = ………………9分(ⅰ)当0a <时,………………11分(ⅱ)当0a >时,综上所述: ………………13分当0a <时,函数()y f x =的单调递减区间为(-∞,单调递增区间为,(0,)+∞;当0a >时,函数()y f x =的单调递减区间为(,0)-∞,,单调递增区间为)+∞.………………14分18. (本小题共14分)(海淀区11年二模文) 已知函数321().3f x x ax bx =-+ (,)a b ∈R (I )若'(0)'(2)1f f ==,求函数()f x 的解析式;(II )若2b a =+,且()f x 在区间(0,1)上单调递增,求实数a 的取值范围.解:(Ⅰ)因为2'()2f x x ax b =-+ , …………………2分由'(0)'(2)1f f ==即1441b a b =⎧⎨-+=⎩得11a b =⎧⎨=⎩, …………………4分所以()f x 的解析式为321()3f x x x x =-+. …………………5分(Ⅱ)若2b a =+,则2'()22f x x ax a =-++,244(2)a a ∆=-+ , …………………6分 (1)当0∆≤,即12a -≤≤时,'()0f x ≥恒成立,那么()f x 在R 上单调递增, 所以,当12a -≤≤时,()f x 在区间(0,1)上单调递增; …………………8分 (2)解法1:当0∆>,即2a >或1a <-时,令2'()220f x x ax a =-++=解得1x a =2x a =+ …9分 列表分析函数()f x 的单调性如下:…………………10分要使函数()f x 在区间(0,1)上单调递增,只需210'(0)0a a a f ><-⎧⎪<⎨⎪≥⎩或或211'(1)0a a a f ><-⎧⎪>⎨⎪≥⎩或,解得21a -≤<-或23a <≤. …………………13分 解法2:当0∆>,即2a >或1a <-时,因为2'()22f x x ax a =-++的对称轴方程为x a = …………………9分要使函数()f x 在区间(0,1)上单调递增,需1'(0)0a f <-⎧⎨≥⎩或2'(1)0a f >⎧⎨≥⎩解得21a -≤<-或23a <≤. …………………13分综上:当[2,3]a ∈-时,函数()f x 在区间(0,1)上单调递增. …………………14分 18.(本小题满分14分)(西城区11年二模文)设函数()e xf x =,其中e 为自然对数的底数.(Ⅰ)求函数()()e g x f x x =-的单调区间;(Ⅱ)记曲线()y f x =在点00(,())P x f x (其中00x <)处的切线为l ,l 与x 轴、y 轴所围成的三角形面积为S ,求S 的最大值.解:(Ⅰ)由已知()e e xg x x =-,所以()e e xg x '=-, ……………2分由()e e 0xg x '=-=,得1x =, ……………3分所以,在区间(,1)-∞上,()0g x '<,函数()g x 在区间(,1)-∞上单调递减; ……………4分 在区间(1,)+∞上,()0g x '>,函数()g x 在区间(1,)+∞上单调递增; ……………5分 即函数()g x 的单调递减区间为(,1)-∞,单调递增区间为(1,)+∞. (Ⅱ)因为()e xf x '=,所以曲线()y f x =在点P 处切线为l :000ee ()x x y x x -=-. ……………7分切线l 与x 轴的交点为0(1,0)x -,与y 轴的交点为000(0,e e )xxx -, ……………9分 因为00x <,所以002000011(1)(1)e (12)e 22x x S x x x x =--=-+, ……………10分 0201e (1)2x S x '=-, ……………12分在区间(,1)-∞-上,函数0()S x 单调递增,在区间(1,0)-上,函数0()S x 单调递减.…………13分所以,当01x =-时,S 有最大值,此时2eS =, 所以,S 的最大值为2e. ……………14分 18. (本小题满分13分)(顺义区11年二模文)设函数c x b ax x f +-=232)(,其图像过点(0,1). (1)当方程01)('=+-x x f 的两个根分别为是21,1时,求f(x)的解析式;(2)当0,32≠=b a 时,求函数f(x)的极大值与极小值.解:由题意可知,f(0)=1所以c=1 ………… ………………………. ……………………….1分(Ⅰ)由,12)(23+-=x b ax x f 得bxax x f -=2'3)(.因为01)('=+-x x f ,即0132=+--x bx ax 的两个根分别为1,21 所以⎪⎩⎪⎨⎧=+--=+--⨯011301212413b a b a 解得⎪⎩⎪⎨⎧==232b a 故132)(23+-=x x x f ………… ………………………. ……………………….6分 (Ⅱ)c x b x x f +-=23232)(所以,)2(22)(2'b x x bx x x f -=-=………… ………………………. ……………………….7分①若b>0,则当)0,(-∞∈x 时,0)('>x f 函数f(x)单调递增当)2,0(b x ∈时,0)('<x f 函数f(x)单调递减当),2(+∞∈b x 时,0)('>x f 函数f(x)单调递增因此,f(x)的极大值为f (0)=c=1,f(x)的极小值为241)23b b f -=( ……… ………………………. ……………………….10分②若b<0,则当)2,(b x -∞∈时,0)('>x f 函数f(x)单调递增当)0,2(b x ∈时,0)('<x f 函数f(x)单调递减当),0(+∞∈x 时,0)('>x f 函数f(x)单调递增因此,f(x)的极大值为241)23b b f -=(f(x)的极小值为f (0)=1.综上所述,当b>0时, f(x)的极大值为1, 极小值为2413b -,当b<0时, f(x)的极大值为2413b -, 极小值为 1. ………………. ……………………….13分20.(本小题满分13分)若函数)(x f 对任意的x ∈R ,均有)(2)1()1(x f x f x f ≥++-,则称函数)(x f 具有性质P . (Ⅰ)判断下面两个函数是否具有性质P ,并说明理由.①(1)xy a a =>; ②3y x =.(Ⅱ)若函数)(x f 具有性质P ,且(0)()0f f n ==(2,n >n ∈*N ),求证:对任意{1,2,3,,1}i n ∈-有()0f i ≤;(Ⅲ)在(Ⅱ)的条件下,是否对任意[0,]x n ∈均有0)(≤x f .若成立给出证明,若不成立给出反例. 证明(Ⅰ):①函数)1()(>=a a x f x具有性质P . ……………1分111(1)(1)2()2(2)x x x x f x f x f x a a a a a a-+-++-=+-=+-,因为1>a ,1(2)0x a a a+->, ……………3分 即)(2)1()1(x f x f x f ≥++-, 此函数为具有性质P .②函数3)(x x f =不具有性质P . ……………4分 例如,当1x =-时,(1)(1)(2)(0)8f x f x f f -++=-+=-,2()2f x =-, ……………5分所以,)1()0()2(-<+-f f f , 此函数不具有性质P . (Ⅱ)假设)(i f 为(1),(2),,(1)f f f n -中第一个大于0的值, ……………6分则0)1()(>--i f i f , 因为函数()f x 具有性质P ,所以,对于任意n ∈*N ,均有(1)()()(1)f n f n f n f n +-≥--,所以0)1()()2()1()1()(>--≥≥---≥--i f i f n f n f n f n f , 所以()[()(1)][(1)()]()0f n f n f n f i f i f i =--+++-+>,与0)(=n f 矛盾, 所以,对任意的{1,2,3,,1}i n ∈-有()0f i ≤. ……………9分(Ⅲ)不成立. 例如2()()x x n x f x xx -⎧=⎨⎩为有理数,为无理数.……………10分证明:当x 为有理数时,1,1x x -+均为有理数,222(1)(1)2()(1)(1)2(112)2f x f x f x x x x n x x x -++-=-++---++-=,当x 为无理数时,1,1x x -+均为无理数,所以,函数)(x f 对任意的x ∈R ,均有)(2)1()1(x f x f x f ≥++-,即函数)(x f 具有性质P . ……………12分 而当],0[n x ∈(2n >)且当x 为无理数时,0)(>x f .所以,在(Ⅱ)的条件下,“对任意[0,]x n ∈均有0)(≤x f ”不成立.……………13分 (其他反例仿此给分.如()()0()1x x f x ⎧=⎨⎩为有理数为无理数,()()0()1x x f x ⎧=⎨⎩为整数为非整数,2()()()x x f x x⎧=⎨⎩为整数为非整数,等.)20. (本小题满分14分)(顺义区11年二模文)对于定义域分别为N M ,的函数)(),(x g y x f y ==,规定:函数⎪⎩⎪⎨⎧∈∉∉∈∈∈⋅=,),(,),(,),()()(N x M x x g N x M x x f N x M x x g x f x h 且当且当且当 (1) 若函数R x x x x g x x f ∈++=+=,22)(,11)(2,求函数)(x h 的取值集合; (2) 若)()(α+=x f x g ,其中α是常数,且[]πα2,0∈,请问,是否存在一个定义域为R 的函数)(x f y =及一个α的值,使得x x h cos )(=,若存在请写出一个)(x f 的解析式及一个α的值,若不存在请说明理由。
2011年高考理科函数解答题一.北京18.(本小题共13分)已知函数2()()x kf x x k e =-。
(Ⅰ)求()f x 的单调区间;(Ⅱ)若对于任意的(0,)x ∈+∞,都有()f x ≤1e,求k 的取值范围。
解:(Ⅰ).)(1)(122xe k x kx f -=' 令()00='f ,得k x ±=.当k>0时,)()(x f x f '与的情况如下 x(k -∞-,)k -(k -,k) k ),(+∞k)(x f ' + 0— 0 + )(x f↗124-e k↘↗所以,)(x f 的单调递减区间是(k -∞-,)和),(+∞k ;单高层区间是),(k k -当k<0时,)()(x f x f '与的情况如下 x(k -∞-,)k -(k -,k) k ),(+∞k)(x f '— 0 + 0— )(x f↘↗124-e k↘所以,)(x f 的单调递减区间是(k -∞-,)和),(+∞k ;单高层区间是),(k k -(Ⅱ)当k>0时,因为e e k f k1)1(11>=++,所以不会有.1)(),,0(ex f x ≤+∞∈∀ 当k<0时,由(Ⅰ)知)(x f 在(0,+∞)上的最大值是.4)(2ek k f =- 所以ex f x 1)(),,0(≤+∞∈∀等价于.14)(2e e k k f ≤=-- 解得021<≤-k . 故当.1)(),,0(e x f x ≤+∞∈∀时,k 的取值范围是).0,21[-二.湖北21.(本小题满分14分)(Ⅰ)已知函数()()ln 1,0,f x x x x =-+∈+∞求函数()f x 的最大值; (Ⅱ)设(),1,2,,k k a b k n = 均为正数,证明:(1)若112212n n n a b a b a b b b b +++≤+++ ,则12121nb bbn a a a ∴≤(2) 若121n b b b +++= ,则1222212121n b b b n n b b b b b b n≤≤+++ 。
1. (2011·贵州四校一联)函数1ln(1)(1)2x y x +-=>的反函数是( B )A.211(0)x y e x +=->B.)(112R x e y x ∈-=+C.)0(112>+=-x e y xD.)(112R x e y x ∈+=-2. (2011·贵州四校一联)函数)1(log )(++=x a x f a x 在[0,1]上的最大值与最小值之和为a ,则a 的值为( C)A.41 B.4 C.21 D.23. (2011·贵州四校一联)若函数)(),(x g x f 分别是R 上的奇函数、偶函数,且满足x e x g x f =-)()(,则有( D )A .)0()3()2(g f f <<B .)2()3()0(f f g <<C .)3()0()2(f g f <<D .)3()2()0(f f g <<4.(2011·贵州四校一联)给出以下四个命题:①若函数32()2f x x ax =++的图象关于点(1,0)对称,则a 的值为3-; ②若1(2)0()f x f x ++=,则函数()y f x =是以4为周期的周期函数;③在数列{}n a 中,11a =,n S 是其前n 项和,且满足1122n n S S +=+,则数列{}n a 是等比数列; ④函数33(0)xxy x -=+<的最小值为2.则正确命题的序号是 ①,② 。
5.(2011·贵州四校一联)(12分)已知函数0,1)63()1(3)(23<++++-=m x m x m mxx f 其中。
(1)若)(x f 在区间),和(∞+-∞1)0,(上是减函数,在区间(0,1)上是增函数,求m 的值。
(6分)(2)当]1,1[-∈x 时,函数)(x f y =的图象上任意一点的切线斜率恒大于m 3,求m 的取值范围。
【数学理】2011届高考模拟题(课标)分类汇编:函数与导数4.(2011北京朝阳区期末)下列函数中,在(1, 1)-内有零点且单调递增的是 (B)(A )12log y x = (B )21x y =- (C )212y x =- (D) 3y x =- 2.(2011北京朝阳区期末)已知函数1()ln 1af x x ax x-=-+- ()a R ∈. (Ⅰ)当1a =-时,求曲线()y f x =在点(2, (2))f 处的切线方程;(Ⅱ)当102a ≤<时,讨论()f x 的单调性. 解:(Ⅰ)当1a =-时,2()ln 1f x x x x=++-,(0,)x ? .所以222()x x f x x+-=′,(0,)x ? . ………(求导、定义域各一分) 2分因此(2)1f =′. 即曲线()y f x =在点(2, (2))f 处的切线斜率为1. ………… 3分 又(2)ln 22f =+, …………………………………………………… 4分 所以曲线()y f x =在点(2, (2))f 处的切线方程为ln 20x y -+=. ……… 5分 (Ⅱ)因为11ln )(--+-=xaax x x f , 所以211()a f x a x x -=-+′221xa x ax -+--=,(0,)x ? . ………… 7分令2()1g x ax x a =-+-,(0,)x ? ,①当0a =时,()1g x x =-+,(0,)x ? ,当(0,1)x Î时,()0g x >,此时()0f x ′<,函数()f x 单调递减;……… 8分 当(1,)x ∈+∞时,()0g x <,此时()0f x ′>,函数()f x 单调递增. …… 9分 ②当102a <<时,由()0f x ′=即210ax x a -+-=解得11x =,211x a=-.此时1110a->>, 所以当(0,1)x Î时,()0g x >,此时()0f x ′<,函数()f x 单调递减;…10分 1(1,1)x a∈-时,()0g x <,此时'()0f x >,函数()f x 单调递增;……11分 1(1, )x a∈-+∞时,()0g x >,此时'()0f x <,函数()f x 单调递减. …12分综上所述:当0a =时,函数()f x 在(0,1)上单调递减,在(1,)+ 上单调递增; 当102a <<时,函数()f x 在(0,1)上单调递减,在1(1, 1)a -上单调递增;在1(1,)a-+ 上单调递减. …………………………………… 3.(2011北京朝阳区期末)已知函数2()1f x ax bx =++(, a b 为实数,0a ≠,x ∈R ),()0,()() 0.f x x F x f x x >⎧=⎨-<⎩(Ⅰ)若(1)0f -=, 且函数()f x 的值域为[0, )+∞,求()F x 的表达式;(Ⅱ)在(Ⅰ)的条件下,当[2, 2]x ∈-时,()()g x f x kx =-是单调函数,求实数k的取值范围;(Ⅲ)设0mn <,0m n +>,0a >,且函数()f x 为偶函数,判断()()F m F n +是否大于0?解:(Ⅰ)因为(1)0f -=,所以10a b -+=.因为()f x 的值域为[0,)+∞,所以20,40.a b a >⎧⎨∆=-=⎩ ……………………… 2分 所以24(1)0b b --=. 解得2b =,1a =. 所以2()(1)f x x =+.所以22(1) 0,()(1) 0.x x F x x x ⎧+>⎪=⎨-+<⎪⎩ …………………………………… 4分 (Ⅱ)因为22()()21(2)1g x f x kx x x kx x k x =-=++-=+-+=222(2)()124k k x --++-, ………………………… 6分所以当222k -≥或222k --≤时()g x 单调. 即k 的范围是(, 2]-?或[6,)+ 时,()g x 是单调函数. …………… 8分(Ⅲ)因为()f x 为偶函数,所以2()1f x ax =+.所以220,() 0.ax x F x ax x ⎧>⎪=⎨-<⎪⎩ ……………………………………………… 10分 因为0mn <, 依条件设0m >,则0n <.又0m n +>,所以0m n >->.所以m n >-. ………………………………………………………… 12分 此时22()()()()11F m F n f m f n am an +=-=+--22()0a m n =->.即()()0F m F n +>. ………………………………………………… 13分4.(2011北京丰台区期末)设偶函数()f x 在[0)+∞,上为增函数,且(2)(4)0f f ⋅<,那么下列四个命题中一定正确的是(D )A .(3)(5)0f f ⋅≥B .(3)(5)f f ->-C .函数在点(4(4))f --,处的切线斜率10k < D .函数在点(4(4))f ,处的切线斜率20k ≥ 5.(2011北京丰台区期末)定义方程()()f x f x '=的实数根x 0叫做函数()f x 的“新驻点”,如果函数()g x x =,()ln(1)h x x =+,()cos x x ϕ=(()x π∈π2,)的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是(γ>α>β).6. (2011北京丰台区期末)设函数2()(1)2ln(1)f x x x =+-+. (I )求()f x 的单调区间;(II )当0<a <2时,求函数2()()1g x f x x ax =---在区间[03],上的最小值. 解:(I )定义域为(1,)-+∞.12(2)()2(1)11x x f x x x x +'=+-=++. 令()0f x '>,则2(2)01x x x +>+,所以2x <-或0x >. 因为定义域为(1,)-+∞,所以0x >. 令()0f x '<,则2(2)01x x x +<+,所以20x -<<.因为定义域为(1,)-+∞,所以10x -<<.所以函数的单调递增区间为(0,)+∞,单调递减区间为(1,0)-. ………………………7分(II )()(2)2ln(1)g x a x x =--+ (1x >-).2(2)()(2)11a x ag x a x x x--'=--=++. 因为0<a <2,所以20a ->,02aa >-. 令()0g x '> 可得2ax a >-.所以函数()g x 在(0,)2a a -上为减函数,在(,)2a a+∞-上为增函数. ①当032a a <<-,即302a <<时, 在区间[03],上,()g x 在(0,)2a a -上为减函数,在(,3)2a a-上为增函数. 所以min 2()()2ln 22a g x g a a a==---. ②当32a a ≥-,即322a ≤<时,()g x 在区间(03),上为减函数. 所以min ()(3)632ln 4g x g a ==--. 综上所述,当302a <<时,min 2()2ln 2g x a a=--; 当322a ≤<时,min ()632ln 4g x a =--. ………………………14分7.(2011北京西城区期末)对于函数①1()45f x x x=+-,②21()log ()2x f x x =-,③()cos(2)cos f x x x =+-,判断如下两个命题的真假:命题甲:()f x 在区间(1,2)上是增函数;命题乙:()f x 在区间(0,)+∞上恰有两个零点12,x x ,且121x x <. 能使命题甲、乙均为真的函数的序号是(D) (A )① (B )②(C )①③(D )①②8. (2011北京西城区期末)已知函数21()(21)2ln ()2f x ax a x x a =-++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.解:2()(21)f x ax a x'=-++(0)x >. ………………2分 (Ⅰ)(1)(3)f f ''=,解得23a =. ………………3分 (Ⅱ)(1)(2)()ax x f x x--'=(0)x >. ………………5分①当0a ≤时,0x >,10ax -<,在区间(0,2)上,()0f x '>;在区间(2,)+∞上()0f x '<,故()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞. ………………6分 ②当102a <<时,12a>, 在区间(0,2)和1(,)a+∞上,()0f x '>;在区间1(2,)a上()0f x '<,故()f x 的单调递增区间是(0,2)和1(,)a +∞,单调递减区间是1(2,)a. …………7分③当12a =时,2(2)()2x f x x-'=, 故()f x 的单调递增区间是(0,)+∞. ………8分④当12a >时,102a <<, 在区间1(0,)a和(2,)+∞上,()0f x '>;在区间1(,2)a上()0f x '<,故()f x 的单调递增区间是1(0,)a 和(2,)+∞,单调递减区间是1(,2)a. ………9分 (Ⅲ)由已知,在(0,2]上有max max ()()f x g x <. ………………10分 由已知,max ()0g x =,由(Ⅱ)可知, ①当12a ≤时,()f x 在(0,2]上单调递增, 故max ()(2)22(21)2ln 2222ln 2f x f a a a ==-++=--+, 所以,222ln 20a --+<,解得ln 21a >-,故1ln 212a -<≤. ……………11分 ②当12a >时,()f x 在1(0,]a 上单调递增,在1[,2]a上单调递减, 故max 11()()22ln 2f x f a aa==---. 由12a >可知11ln ln ln 12ea >>=-,2ln 2a >-,2ln 2a -<, 所以,22ln 0a --<,max ()0f x <, ………………13分 综上所述,ln 21a >-.9. (2011巢湖一检)下列函数中,在其定义域内既是增函数又是奇函数的是(B)A .1y x=- B .333x x y x -=+- C .3log y x =D .3x y =10.(2011巢湖一检)已知函数2()l o g 16)f x =,命题p :“2000,()()10x R f x af x ∃∈++=使”,则在区间[]4,1-上随机取一个数a ,命题p 为真命题的概率为(B)A .13B .16C .23D .5611. (2011巢湖一检)求定积分2132x dx -=⎰12. 12. (2011巢湖一检)已知()sin f x x a x =+.(Ⅰ)若()f x 在(,)-∞+∞上为增函数,求实数a 的取值范围;(Ⅱ)当常数0a >时,设()()f x g x x =,求()g x 在5,66ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值. 解:(Ⅰ)∵()f x 在( )-∞+∞,上为增函数, ∴()1cos 0f x a x '=+≥对( )x ∈-∞+∞,恒成立. ……………………2分令cos t x =,则10at +≥对[1 1]t ∈-,恒成立, ∴1(1)0110a a +⋅-≥⎧⎨+⋅≥⎩,解得11a -≤≤,∴实数a 的取值范围是[1 1]-,. ……………………6分 (Ⅱ)当0a >时,()sin ()1f x a x g x x x ==+,∴2(cos sin )()a x x x g x x -'=,…………………8分 记()cos sin (0)h x x x x x π=-∈,,,则()sin 0h x x x '=-<对(0)x π∈,恒成立, ∴()h x 在(0)x π∈,上是减函数,∴()(0)0h x h <=,即()0g x '<,∴当0a >时,()()f x g x x =在()π0,上是减函数,得()g x 在5 66ππ⎡⎤⎢⎥⎣⎦,上为减函数. ∴当6x π=时,()g x 取得最大值31a π+;当56x π=时,()g x 取得最小值315aπ+.13. (2011承德期末)函数1212)(2--+=x x x x f 的定义域是( D ) A.⎭⎬⎫⎩⎨⎧-≠21x x B.⎭⎬⎫⎩⎨⎧->21x x C.⎭⎬⎫⎩⎨⎧≠-≠121x x x 且 D.⎭⎬⎫⎩⎨⎧≠->121x x x 且14. (2011承德期末)曲线x x y ln =在点()e e ,处的切线方程为(A )A.e x y -=2B. e x y --=2C. e x y +=2D. 1--=x y15.(2011承德期末)若mn -表示[])(,n m n m <的区间长度,函数=)(x f )0(>+-a x x a 的值域区间长度为)12(2-,则实数a 的值是( A )A .4B .2C .2D .1 16. (2011承德期末)设定义在R 上的函数)(x f 满足:①对任意的实数R y x ∈,,有);()()(y f x f y x f =+②当1)(0>>x f x 时,.数列{}n a 满足)()1(1)(),0(11*+∈--==N n a f a f f a n n 且.(Ⅰ)求证:)(1)(x f x f -=,并判断函数)(x f 的单调性;(Ⅱ)令n b 是最接近n a 的正整数,即)(21*∈<-N b b a n n n ,设)(11121*∈+++=N n b b b T nn,求 1000T ;解:(1)令1,0==x y,0))0(1)(1(=-f f . 1)1(>f ∴1)0(=f .∵1)(0>>x f x 时,.∴)()()()0(1x f x f x x f f -=+-==.∴)(1)(x f x f -=…………… 3分∴1)(00<<<x f x 时, ∴0)(>∈x f R x 时,设()[]()()121121221)(,x x f x f x x x f x f x x -=-+=<而1)(,01212>->-x x f x x ∴)()()()(11212x f x x f x f x f >-=∴)(x f 在R 上是增函数. ………………6分(2))1()(,1)0(11+===+n n a f a f f a∴11+=+n n a a , )(*∈=N n n a n .令2121),(+<<-∈=*k n k N k k b n 即414122++<<+-k k n k k .∵n k ,都是正整数,∴k k n k k +≤≤+-221.∴满足k b n=的正整数n ,有()k k k k k 21122=++--+(个)2232100031<< 993132322=+-4162321831162316214121111000211000=⨯+⨯++⨯+⨯+⨯=+++=b b b T ……12分17. (2011承德期末)已知函数223241)(234--++-=x ax x x x f 在区间[]1,1-上单调递减,在区间[]2,1上单调递增.(Ⅰ)求实数a 的值; (Ⅱ)若关于x 的方程m f x =)2(有三个不同实数解,求实数m 的取值范围; (Ⅲ)若函数[]p x f y +=)(log 2的图象与坐标轴无交点,求实数p 的取值范围.解:(Ⅰ)∵函数)(x f 在区间[]1,1-上单调递减,在区间[]2,1上单调递增,∴1=x为其极小值点,0)1(='f ,21=a …………… 3分 (Ⅱ)由(1)得22213241)(234--++-=x x x x x f()()()12122)(23+---=-++-='x x x x x x x f可得函数)(x f 的极大值为38)2(,125)1(-=-=-f f ,极小值为1237)1(-=f∵关于x 的方程m f x =)2(有三个不同实数解,令)0(2>=t t x ,即关于t 的方程mt f =)(在()+∞∈,0t 上有三个不同实数解,即)(t f y =的图象与直线m y =在()+∞∈,0t 上有三个不同的交点,画出)(t f y =的图像,观察可得381237-<<-m 综合①②得 1217125<<p ……………18.(2011东莞期末)已知函数()f x 是定义域为R 的奇函数,且()f x 的图象关于直线1x =对称,那么下列式子中对任意x R ∈恒成立的是 (D) A . (1)()f x f x += B . (2)()f x f x += C . (3)()f x f x += D . (4)()f x f x +=19.(2011东莞期末)为了预防流感,某段时间学校对教室用药熏消毒法进行消毒. 设药物开始释放后第t 小时教室内每立方米空气中的含药量为y 毫克.已知药物释放过程中,教室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为132t ay +⎛⎫= ⎪⎝⎭(a 为常数).函数图象如图所示.根据图中提供的信息,解答下列问题:(1)求从药物释放开始每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式; (2)按规定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过多少时间,学生才能回到教室?解: (1)解:函数图象由两线段与一段指数函数图象组成,两曲线交于点(0.1,1),故t ∈(0,0.1]时,由y (毫克)与时间t (小时)成正比,可设y kt =, ……………………………2分所以有10.1k =,即10k =,y =10t ; ……………………………4分t ∈[0.1,+∞)时,将(0.1,1)代入132t ay +⎛⎫= ⎪⎝⎭,得1101132a +⎛⎫=⎪⎝⎭,即得110a =-. ……………………………6分 故所求函数关系为:(][)110100,0.110.1,32t t t y t -⎧∈⎪=⎨⎛⎫∈+∞⎪ ⎪⎝⎭⎩. ……………………………8分(2)令11105()210120.25232t t ----⎛⎫=<= ⎪⎝⎭, ……………………………10分得,15()210t --<-,12t >,即0.5小时以后. ……………………………11分答:至少30分钟后,学生才能回到教室. ……………………………12分20.(2011东莞期末)已知函数22()2ln f x a x x =-(常数0)a >.(1)求证:无论a 为何正数,函数()f x 的图象恒过点(1,1)A -; (2) 当1a =时,求曲线()y f x =在1x =处的切线方程;(3)讨论函数()f x 在区间2(1,)e 上零点的个数(e 为自然对数的底数)解:(1)∵2(1)2ln11011f a =-=-=-(第17题图)∴无论a 为何正数,函数()f x 的图象恒过点(1,1)A -. ……………………………2分(2)当 1a =时,2()2ln f x x x =-,2()2f x x x'∴=-. (1)0f '∴=. ……………………………3分又(1)1f =-,∴曲线()y f x =在点1x =处的切线方程为10y +=. ……………………………4分(3) 22()2ln f x a x x =-,所以222222()2a a x f x x x x-'=-=2()()x a x a x--+=. ……………………………5分因为0x >,0a >,于是当0x a <<时,()0f x '>,当x a >时,()0f x '<. ……………………………6分所以()f x 在(]0,a 上是增函数,在[),a +∞上是减函数. ……………………………7分 所以,2ma x ()(f x f ==……………………………8分 讨论函数()f x 的零点情况如下.①当2(2ln 1)0a a -<,即0a <<函数()f x 无零点,在2(1,)e 上也无零点;…………9分②当2(2ln 1)0a a -=,即a =()f x 在(0,)+∞内有唯一零点a ,而 21a e <=,∴()f x 在2(1,)e 内有一个零点; ……………………………10分③当2(2ln 1)0a a ->,即a >由于(1)10f =-<,2()(2ln 1)0f a a a =->,22242422()2ln 4(2)(2)f e a e e a e a e a e =-=-=-+,当220a e -<22e a <<时,2212e a e <<<<,2()0f e <,由单调性可知,函数()f x 在(1,)a 内有唯一零点1x 、在2(,)a e 内有唯一零点2x 满足,()f x 在2(1,)e 内有两个零点;…11分当220a e -≥时,即22e a ≥>2()0f e ≥,而且221202f a e a e =⋅-=->,(1)10f =-<由单调性可知,无论2a e ≥还是2a e <,()f x 在内有唯一的一个零点,在2)e 内没有零点,从而()f x 在2(1,)e 内只有一个零点; ……………………………13分(注:这一类的讨论中,若没有类似“0f >来说明唯一零点在内”的这一步,则扣去这2分)综上所述,有:当0a <<()f x 无零点;当a =22e a ≥时,函数()f x 有一个零点;22e a <<时,函数()f x 有两个零点. ……………………………21.(2011佛山一检)已知三次函数()()32,,f x ax bx cx a b c R =++∈.(Ⅰ)若函数()f x 过点(1,2)-且在点()()1,1f 处的切线方程为20y +=,求函数()f x 的解析式;(Ⅱ)在(Ⅰ)的条件下,若对于区间[]3,2-上任意两个自变量的值12,x x 都有12()()f x f x t -≤,求实数t 的最小值;(Ⅲ)当11x -≤≤时,1)(≤'x f ,试求a 的最大值,并求a 取得最大值时()f x 的表达式.解:(Ⅰ)∵函数()f x 过点(1,2)-,∴(1)2f a b c -=-+-=, ①又2()32f x ax bx c '=++,函数()f x 点(1,(1))f 处的切线方程为20y +=,∴(1)2(1)0f f =-⎧⎨'=⎩,∴2320a b c a b c ++=-⎧⎨++=⎩, ②由①和②解得1a =,0b =,3c =-,故 3()3f x x x =-; ---------------------------------------4分(Ⅱ)由(Ⅰ)2()33f x x '=-,令()0f x '=,解得1x =±,∵(3)18f -=-,(1)2f -=,(1)2f =-,(2)2f =, ∴在区间[]3,2-上max ()2f x =,min ()18f x =-,∴对于区间[]3,2-上任意两个自变量的值12,x x ,12|()()|20f x f x -≤,∴20t ≥,从而t 的最小值为20; ---------------------------------------8分 (Ⅲ)∵2()32f x ax bx c '=++,则 (0)(1)32(1)32f c f a b c f a b c '=⎧⎪'-=-+⎨⎪'=++⎩,可得6(1)(1)2(0)a f f f '''=-+-.∵当11x -≤≤时,1)(≤'x f ,∴(1)1f '-≤,(0)1f '≤,(1)1f '≤, ∴6||(1)(1)2(0)a f f f '''=-+-(1)(1)2(0)4f f f '''≤-++≤,∴23a ≤,故a 的最大值为23, 当23a =时,(0)1(1)221(1)221f c f b c f b c '⎧==⎪'-=-+=⎨⎪'=++=⎩,解得0b =,1c =-,∴a 取得最大值时()323f x x x =-. ---------------------------------------14分22.(2011福州期末)如图,有一直角墙角,两边的长度足够长,在P 处有一棵树与两墙的距离分别是(012),4am a m <<,不考虑树的粗细,现在用16m 长的篱笆,借助墙角围成一个矩形的花圃ABCD 。
2011年高考数学试题分类汇编:函数与导数一、选择题1.(安徽理3) 设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2=2-,则()f 1= (A )-3 (B) -1 (C)1 (D)3 【答案】A【命题意图】本题考查函数的奇偶性,考查函数值的求法.属容易题.【解析】2(1)(1)[2(1)(1)]3f f =--=----=-.故选A. 2.(安徽理10) 函数()()m nf x ax x =1-g 在区间〔0,1〕上的图像如图所示,则m ,n 的值可能是(A )1,1m n == (B) 1,2m n == (C) 2,1m n == (D) 3,1m n ==【答案】B 【命题意图】本题考查导数在研究 函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当1,2m n ==,()()()f x ax x n x x x 232=1-=-2+g ,则 ()()f x a x x 2'=3-4+1,由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫ ⎪⎝⎭递增,在1,13⎛⎫ ⎪⎝⎭递减,即在13x =取得最大值,由 ()()f a 21111=⨯1-=3332g ,知a 存在.故选B.3.(安徽文5)若点(a,b)在lg y x = 图像上,a ≠1,则下列点也在此图像上的是(A )(a 1,b ) (B) (10a,1-b) (C) (a 10,b+1) (D)(a2,2b)【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系.【解析】由题意lg b a =,lg lg b a a 22=2=,即()2,2a b 也在函数lg y x = 图像上. 4.(安徽文10) 函数()()n f x ax x 2=1-g 在区间〔0,1〕上的图像如图所示,则n 可能是(A )1 (B) 2 (C) 3 (D) 4【答案】A 【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大. 【解析】代入验证,当1n =时,()()()f x ax x a x x x 232=1-=-2+g,则()()f x a x x 2'=3-4+1, 由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫ ⎪⎝⎭递增,在1,13⎛⎫ ⎪⎝⎭递减,即在13x =取得最大值,由()()f a 21111=⨯1-=3332g ,知a 存在.故选A.5.(北京理6)根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为()x A f x x A <=≥(A ,c 为常数)。
2011年高考数学试题分类汇编:函数与导数一、导数与切线方程 1. (重庆文3)曲线在点,处的切线方程为 (A ), (B ),(C ),(D),【答案】 A2。
(湖南文7)曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .12-B .12 C .22 D 22【答案】B【解析】22cos (sin cos )sin (cos sin )1'(sin cos )(sin cos )x x x x x x y x x x x +--==++,所以2411'|2(sincos )44x y πππ===+。
3。
(江西文4)曲线xy e =在点A (0,1)处的切线斜率为( )A.1, B 。
2, C 。
e, D 。
1/e【答案】A【解析】1,0,0'===e x e y x 4.(全国Ⅰ文4)曲线2y 21x x =-+在点(1,0)处的切线方程为 (A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+ 【答案】A5.(全国Ⅱ理8)曲线21x y e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为(A)13 (B)12 (C )23 (D )1【答案】A6。
(山东文4)曲线311y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是 (A )-9 (B )-3 (C )9 (D )15【答案】C7。
(湖北文20)设函数32()2f x x a x b x a =+++,2()32gx x x =-+,其中x R ∈,a 、b为常数,已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l 。
(I) 求a 、b 的值,并写出切线l 的方程;(II)若方程()()f x g x m x +=有三个互不相同的实根0、x 、x ,其中12x x <,且对任意的[]12,x x x ∈,()()(1)fx g x m x +<-恒成立,求实数m 的取值范围。
二、函数与导数(一)选择题(辽宁文)(11)函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为B(A )(1-,1) (B )(1-,+∞) (C )(∞-,1-) (D )(∞-,+∞)(重庆文)3.曲线223y x x =-+在点(1,2)处的切线方程为A A .31y x =- B .35y x =-+C .35y x =+D .2y x =(重庆文)6.设11333124log ,log ,log ,,,233a b c a b c ===则的大小关系是BA .a b c <<B .c b a <<C .b a c <<D .b c a <<(重庆文)7.若函数1()2f x x n =+-(2)n >在x a =处取最小值,则a =CA.1+ B.1 C .3D .4(辽宁文)(6)若函数))(12()(a x x xx f -+=为奇函数,则a =A(A )21 (B )32 (C )43(D )1 (上海文)15.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为〖答〗 ( A )A .2y x -=B .1y x -=C .2y x =D .13y x =(全国新课标文)(3)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是B(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -=(全国新课标文)(10)在下列区间中,函数()43xf x e x =+-的零点所在的区间为C(A )1(,0)4- (B )1(0,)4 (C )11(,)42 (D )13(,)24(全国新课标文)(12)已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有A(A )10个 (B )9个 (C )8个 (D )1个 (全国大纲文)2.函数0)y x =≥的反函数为BA .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥(全国大纲文)10.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则5()2f -=AA .-12B .1 4-C .14D .12(湖北文)3.若定义在R 上的偶函数()f x 和奇函数()g x 满足()()xf x gx e +=,则()g x =DA .xxe e-- B .1()2x xe e -+ C .1()2xx e e -- D .1()2x xe e -- (福建文)6.若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则实数m 的取值范围是C A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞)(福建文)8.已知函数f (x )=。
高考数学全国卷2011-2019导数分类汇编(文科)【2011新课标】21. 已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(1)求a 、b 的值;(2)证明:当0x >,且1x ≠时,f (x )>ln xx -1【解析】(1)221(ln )'()(1)x x b x f x x x α+-=-+ 由于直线230x y +-=的斜率为12-,且过点(1,1), 故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩ 即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。
(2)由(1)知f (x )=x x x 11ln ++,所以f (x )-ln x x -1=11-x 2(2ln x -x 2-1x ), 考虑函数,则22222)1()1(22)(x x x x x x x h --=---=', 所以x ≠1时h ′(x )<0,而h (1)=0故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得, 从而当,且时,.【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间(2)若a =1,k 为整数,且当x >0时,(x -k ) f ´(x )+x +1>0,求k 的最大值 【解析】(1)f (x )的定义域为(,)-∞+∞,()x f x e a '=-,若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增. 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.(2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0)(1)x x k x x e +<+>-①.令1()(1)x x g x x e +=+-,则221(2)()1(1)(1)xx x x x xe e e x g x e e ----'=+=--. ln ()1x f x x >-ln ()1xf x x >-0x >1x ≠ln ()1xf x x >-由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, 所以()h x ,在(0,)+∞存在唯一的零,故()g x '在(0,)+∞存在唯一的零点. 设此零点为a ,则(1,2)a ∈.当(0,)x a ∈时,()0g x '<;当(,)x a ∈+∞时,()0g x '>.所以()g x 在(0,)+∞的最小值为()g a . 又由()0g a '=,可得2a e a =+,所以()1(2,3)g a a =+∈. 由于①式等价于()k g a <,故整数k 的最大值为2【2013新课标1】20. 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 【解析】(1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8. 从而a =4,b =4. (2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=4(x +2)·1e 2x⎛⎫-⎪⎝⎭. 令f ′(x )=0得,x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0; 当x ∈(-2,-ln 2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).【2013新课标2】21.已知函数f(x)=x 2e -x . (1)求f(x)的极小值和极大值;(2)当曲线y =f(x)的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围. 【解析】(1)f(x)的定义域为(-∞,+∞), f′(x)=-e -x x(x -2).①当x ∈(-∞,0)或x ∈(2,+∞)时,f′(x)<0;当x ∈(0,2)时,f′(x)>0. 所以f(x)在(-∞,0),(2,+∞)单调递减,在(0,2)单调递增. 故当x =0时,f(x)取得极小值,极小值为f(0)=0; 当x =2时,f(x)取得极大值,极大值为f(2)=4e -2.(2)设切点为(t ,f(t)),则l 的方程为y =f′(t)(x -t)+f(t). 所以l 在x 轴上的截距为m(t)=()223'()22f t t t t t f t t t -=+=-++--. 由已知和①得t ∈(-∞,0)∪(2,+∞).令h(x)=2x x+(x≠0),则当x ∈(0,+∞)时,h(x)的取值范围为[∞); 当x ∈(-∞,-2)时,h(x)的取值范围是(-∞,-3).所以当t ∈(-∞,0)∪(2,+∞)时,m(t)的取值范围是(-∞,0)∪[3,+∞].综上,l 在x 轴上的截距的取值范围是(-∞,0)∪[223+,+∞]. 【2014新课标1】21.设函数()()21ln 12a f x a x x bx a -=+-≠,曲线()()()11y f x f =在点,处的切线斜率为0 (1)求b;(2)若存在01,x ≥使得()01af x a <-,求a 的取值范围。
2011年高考数学真题分类汇编——函数与导数 (4)一、选择题1.(全国Ⅱ理8)曲线21xy e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为 (A)13 (B)12 (C)23 (D)12.(全国Ⅱ理9)设()f x 是周期为2的奇函数,当01x ≤≤时,()2(1)f x x x =-,则5()2f -=(A)12-(B)14-(C)14 (D)123.(山东理9)函数2sin 2xy x =-的图象大致是4.(山东理10)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为 (A )6 (B )7 (C )8 (D )95.(山东文4)曲线311y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是 (A )-9 (B )-3 (C )9 (D )156.(陕西理3)设函数()f x (x ∈R )满足()()f x f x -=,(2)()f x f x +=,则函数()y f x =的图像是 ( )7.(陕西文4) 函数13y x =的图像是 ( )8.(上海理16)下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数是( )(A )1ln||y x =. (B )3y x =. (C )||2x y =. (D )cos y x =.9.(上海文15)下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是( )(A )2y x -= (B )1y x -= (C )2y x = (D )13y x =10.(四川理7)若()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图象大致是11.(四川文4)函数1()12x y =+的图象关于直线y=x 对称的图象像大致是 12.(天津理2)函数()23x f x x=+的零点所在的一个区间是( ). A.()2,1--B.()1,0- C.()0,1D.()1,2二、填空题13.(陕西文11)设lg ,0()10,0xx x f x x >⎧=⎨⎩…,则((2))f f -=______. 14.(陕西理11)设20lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = .15.(陕西理12)设n N +∈,一元二次方程240x x n -+=有整数根的充要条件是n = .16.(山东理16)已知函数f x ()=log (0a 1).a x xb a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .三、选做题:17.(广东文19) 设0>a ,讨论函数x a x a a x x f )1(2)1(ln )(2---+=的单调性. 18.(湖北理17)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度v 是车流密度x 的一次函数.(Ⅰ)当2000≤≤x 时,求函数()x v 的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()x v x x f ⋅=可以达到最大,并求出最大值.(精确到1辆/小时) 17.解:函数f(x)的定义域为(0,+∞)本题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力.解析:(Ⅰ)由题意:当200≤≤x 时,()60=x v ;当20020≤≤x 时,设()b ax x v +=,显然()b ax x v +=在[]200,20是减函数,由已知得⎩⎨⎧=+=+60200200b a b a ,解得⎪⎪⎩⎪⎪⎨⎧=-=320031b a 故函数()x v 的表达式为()x v =()⎪⎩⎪⎨⎧≤≤-<≤.20020,20031,200,60x x x(Ⅱ)依题意并由(Ⅰ)可得()=x f ()⎪⎩⎪⎨⎧≤≤-<≤.20020,20031,200,60x x x x x当200≤≤x 时,()x f 为增函数,故当20=x 时,其最大值为12002060=⨯;当20020≤≤x 时,()()()310000220031200312=⎥⎦⎤⎢⎣⎡-+≤-=x x x x x f , 当且仅当x x -=200,即100=x 时,等号成立.所以,当100=x 时,()x f 在区间[]200,20上取得最大值310000. 综上,当100=x 时,()x f 在区间[]200,0上取得最大值3333310000≈,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.18221212122(1)2(1)1'(),112(1)2(1)1012(1)()310,'()23110,220'()0,()(0,)(,)a a x a x f x xa a a x a x a a a f x x x a a x x x x f x f x x x ---+=≠---+=∆=--<∆>=>=<<>>+∞当时,方程的判别式①当0<时,有个零点且当或时,在与内为增函数121212'()0,(),)110,'()0,()(0,)311'()0(0),()(0,)1110,0,0,'()22x x x f x f x x x a f x f x a f x x f x xa x x f x x a a <<<≤<∆≤≥+∞==>>+∞>∆>=>=;当时,在(内为减函数当时,在内为增函数;当时,在内为增函数;当时,所以在定义域内有唯一零点②③④11111;0'()0,()(0,)'()0,()(,)x x f x f x x x x f x f x x <<>><+∞且当时,在内为增函数;当时,在内为减函数;综上所述,f(x)的单调区间如下表:(其中121122x x a a =-=+)。