四川宜宾县双龙镇初级中学校八年级数学下册 第16章 分式小结与复习学案2 华东师大版
- 格式:doc
- 大小:31.50 KB
- 文档页数:2
八年级数学下册 16 分式复习小结学案(新版)华东师大版一、学习目标:1、识记分式的概念,分式的基本性质,能熟练地进行分式变形及约分、通分、2、能准确、熟练地进行分式的乘除、加减以及混合运算、3、会用科学记数法表示绝对值小于1的数,并能进行有关负整数指数幂的运算、4、明确解分式方程的步骤,并能列出可化为一元一次方程的分式方程解决简单的实际问题、二、知识要点概括:1、分式的概念与性质:(1)在分式中,如果________则分式无意义;如果_______且_____不为零时,则分式的值为零、(2)分式的基本性质用字母表示为__________、(3)分式的分子、分母和分式本身的符号改变其中任何____个,分式的值不变、2、分式的化简与计算:(1)分式约分的主要步骤是:把分式的分子与分母___________,然后约去分子与分母的公因式、(2)最简公分母的确定:一是取各分母所有系数的;二是取各分母所有字母因式的 ________的积、(3)分式的加减法法则表示为:______;________、(4)分式的乘除法法则表示为:_______;________、3、可化为一元一次方程的分式方程:解分式方程的一般步骤是:①在方程的两边都乘_________,约去分母,化成__________;②解这个___________;③把解得的根代入_________,看结果是不是零,使________为零的根是原方程的________,必须舍去、三、知识检测:1、已知分式的值是零,那么x的值是()A、-1B、0C、1D、12、当x________时,分式没有意义、3、下列各式从左到右的变形正确的是()A、B、C、D、4、计算的结果是_______、5、计算、6、解方程:7、先化简下列代数式,再求值:,其中复习题16第 2、3、4;8、9、10题。
XX年华师版八年级数学下册第16章复习与小结名师导学案第16章复习与小结【学习目标】.让学生进一步熟悉分式的基本性质与分式的运算,解分式方程及分式方程应用题..让学生进一步熟悉零指数幕与负整数指数幕及科学记数法.【学习重点】分式的性质、运算、分式方程、应用题、零指数幕与负整数指数幕.【学习难点】分式的运算、应用题与整数指数幕.行为提示:知识结构图及相关知识可以让学生自主完成,有不熟悉的可让学生之间互相辅导.知识链接:.分式AB= 0? A= 0, B z0..分式AB有意义? B z 0;反之,无意义时,B= 0..分式通分、约分的依据:分式的基本性质..分式的运算顺序与实数的运算顺序一样.方法指导:针对每一道数学题,都应认真读题,明确已知条件和隐含条件,特别是分式的基本性质、解分式方程,处处都是陷阱,还有0与负整数指数幕的运算,都应小心.情景导入生成问题知识结构图自学互研生成能力知识模块一分式的基本性质与运算【合作探究】范例1:下列有理式:2a n , x23x , 12a+ 23b, x —yx2 + y2 , —x —2, yx,其中是分式的有A. 1个B. 2个c. 3个D. 4个分析:分式的两个特点:分母是整式且不为0;分母含有字母.范例2:下列式子从左到右的变形一定正确的是A.AB= A?B?B.AB= A- B-c.ba = b+ 1a+ 1D.2a —b= 84a —4b分析:分式的基本性质:分式的分子、分母都乘以同一个不等于0的整式,分式的值不变.注意:左边约去的整式是隐含条件,成立;右边约去的整式没有限制条件,不成立.范例3:下列分式:xy22a2b , a2- b2a + b, x—1x2 + 1, 1-xx,其中是最简分式的有A. 1个B. 2个c. 3个D. 4个分析:最简分式是指分子与分母没有公因式的分式.范例4:先化简,再求值:x2 —yx —x —1 * x2 —y2x2 —2xy + y2,其中x = 2, y = 6.分析:分式的混合运算应注意运算顺序:先乘方,再乘除,然后加减,最后得出结果,分子、分母要进行约分,注意运算的结果要是最简分式.同时注意符号的变化.学习笔记:.分式的概念与性质要牢记..分式的混合运算要明确运算顺序,有时要注意巧算..解分式方程及应用题时,一定要注意“检验”二字..特别注意零指数幕与负整数指数幕的限制条件和意义..关于x的分式方程的解一定要排除产生增根时字母的值.行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评比.学习笔记:检测的目的在于让学生再一次熟悉分式的各个知识点的掌握程度,做好查漏补缺.解:原式=x2 —y —x2 —xx?2=-x?2=y —xx.当x = 2, y = 6 时,原式=6 —22= 3—1.知识模块二分式方程、应用题、0与负整数指数幕、科学记数法【合作探究】范例5:关于x的分式方程2x —x + 1 = 3的解是正数,则字母的取值范围是A. > 3B. v 3c .v —3D.>—3分析:关于x的分式方程的解为正数时,除了化成不等式外,还要考虑其产生增根时字母的值,这个值是要排除的.范例6:某园林队计划由6名工人对1802的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.解:设每人每小时的绿化面积为x2,根据题意,得1806X —3 = 180x,解得x = 2.5.经检验,x = 2.5是原方程的解.答:每人每小时的绿化面积是 2.52.范例7:计算:|38 -4| - 12-2 = 2—;P2.5是指大气中直径小于或等于0.0000025的颗粒物,将0.0000025用科学记数法表示为__2.5 X 10-6 _______ .交流展示生成新知.将阅读教材时“生成的新问题“和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑..各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一分式的基本性质与运算知识模块二分式方程、应用题、0与负整数指数幕、科学记数法检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺. 收获:。
第16章 分式第1课时 16.1 分式及其基本性质——1. 分式的概念 学习目标:1、从列规范代数式中认识分式,并能概括分式的概念。
2、正确地判断一个代数式是否是分式。
一、衔接知识回顾:用规范的代数式填写下列空格。
1、被除数÷除数=除数被除数,如:3(整数)÷4(整数)= ( ), 注意:(0 作除数) 。
2、类比:被除式÷除式 = (商式),例如:7 ÷P= ,a ÷ 3b= ,x÷(x+y)= , (a-b) ÷4= , t ÷(a-x) = ,(x 2-2xy+y 2)÷(2x -y)= 。
3 、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为 米; (2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米; (3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是 元。
请将1、2、3所写的代数式把分母有共同特征的进行分类,并将同一类填入一个圈内,并说明理由。
特征: 特征; 二、新知自学: 1、 分式的概念:形如 ( 、 是整式,且 中必含有 , )的式子,叫做分式.其中 叫做分式的分子, 叫做分式的分母.2、整式和分式统称 。
3、当分母 时,分式有意义; 当分母 时,分式无意义;当分子 且分母 时,分式的值为零.例如:在分式a S 中,当a 时,分式aS有意义;当a 时,分式a S 没有意义;当 ,且 时,分式aS的值为零。
三. 探究、合作、展示问题1:下列各代数式中,哪些是整式?哪些是分式? (1)x 21;(2)43a; (3)y x xy +2; (4)33y x -; (5) n m -9;(6)πx ;(7)3+1.同步一试:在代数式-23x ,yx -4,x+y ,a b 34,兀122-x 中,分式有( )A 、2个B 、3个C 、4个D 、5个 问题2:当x 取什么值时,下列分式有意义? (1)31-x ; (2)121+-x x 322+-x x . (3)2)12(-x x问题3:x 为何值时,分式11-+x x 的值为正? x 为何值时,分式xx-12的值为负?当x 取什么数时,分式 42||2--x x (1)有意义 (2)值为零?四、巩固训练1、有理式x 1,21(x+y ),3x ,x m -2,3-x x ,1394y x +中分式有( )个。
17.3.2-17.3.3一、学习目标1.根据一次函数的图象确定直线位置与k、b的符号之间的关系;2.能利用一次函数的性质解决简单的问题。
二、学习重点一次函数图象与性质的运用。
三、自主预习图像k>0 k<0 图像经过象限增减性b 0b 0b 0b 02. 草图就是根据信息一笔画出直线,能反映准确的b值,倾斜方向和大致的倾斜程度,以及图象经过的象限。
3. 一笔画出以下一次函数的草图○1 y=x ②y=x+1 ③y=-x+1 ④y=x-2 ⑤y=-x-1y y y y y0 x 0 x 0 x 0 x 0 x4.先画出草图,再填空①一次函数y=3x+5中,y随x的增大而,图象经过象限;②一次函数y=-2x-8中,y随x的增大而,图象经过象限;四、合作探究5.函数 y=3x+m-2的图象不经过第二象限,则m的取值范围。
注意有两种情况:① m-2=0 ②m-2<0解:①画(画出草图,两种情况)②再计算6.①y=2x+m+2的图象不经过第二象限,则m的取值范围。
②y=mx+2的图象不经过第三象限,则m的取值范围。
7. 根据性质求参量。
已知一次函数y=(3-k )x-2k 2+18中,求满足下列条件的k 的范围。
(1)k 为何值时,函数图象经过原点。
(2)k 为何值时,函数图象经过(0,2);(3)k 为何值时,函数图象平行于直线y=-x ; (4)k 为何值时,y 随x 的增大而减小。
五、巩固反馈★【基础知识练习】1.已知一次函数y=2mx +m 2-4的图象过原点,则m 的值为( )A 、0B 、2C 、-1D 、±22.已知一次函数y=kx+b 的图象不经过第三象限,也不经过原点,那么k 、b 的取值范围( )A 、k >0且b >0B 、k >0且b <0C 、k <0且b >0D 、k <0且b <03.一次函数y=kx+b 的图象与直线y=-2x-7平行,则k= ,若该直线经过第一象限,则b 的取值范围是 。
17章 《分式》小结与复习学习目标:1、进一步理解分式、最简分式、最简公分母的概念。
2、熟练掌握分式的基本性质、分式运算法则;准确熟练地进行分式的运算。
3、通过练习,加强计算能力,进一步理解数学的整体思想。
教学流程:回顾(一)1、分式的定义;2、分式有意义的条件;3、分式值为0的条件;4、分式值为正数或负数的条件;学生活动:学生师友之间交流,巩固相关知识。
并自己根据所学知识按要求书写分式并对应解决。
过关练习:值为正。
时,分式当。
值为时,分式当无意义。
时,分式当有意义。
时,分式当x x x xx x xx x xx x -13______0-13______-13___-13___---=-= 回顾(二)1、约分:把分子.分母的最大公因式(数)约去.2、通分:关键是找最简公分母:各分母所有因式的最高次幂的积。
把分母不相同的几个分式化成分母相同的分式.活动:师生共同回顾,约分、通分的方法及步骤。
过关练习:444)3(;)(8)(2)2(;2761223222-++-----m m m a b b a xy y x )化简:(16121)2(;2122-++-a a a a a b a b 与与)通分:(备注:部分学生板演,其余学生自主练习,师巡视指导。
师点拨。
巩固应用回顾(三)分式的运算:分式的乘法、除法、加法、减法,乘方。
学生练习:强调分式乘除时的注意事项和因式分解的重要性。
例:222441(1)214a a a a a a -+-⋅-+-学生练习:能力提升:2121(1)11x x x x ++--+课堂小结:学生畅谈本堂收获。
1.如果把分式 中的x 和y 的值都扩大3倍,则分式的值( ) A,扩大3倍 B,不变 C,缩小1/3 D,缩小1/6 2.如果把分式 中的x 和y 的值都扩大3倍,则分式的值( ) A,扩大3倍 B,不变 C,缩小1/3 D,缩小1/6 y x x +y x xy+分式的加减 同分母相加 异分母相加 43(1)a a +小试牛刀 计算 x x x x -+--+11211)2(243(3)23a a +1(4)12x x x +-+。
第十六章二次根式小结与复习【授课目的】1. 使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混杂运算.【授课重难点】重点:含二次根式的式子的混杂运算难点:含二次根式的式子的混杂运算.【导学过程】【知识回顾】本章知识结构看法:当时, a才有意义。
a (),即是一个数。
0 a 0 a二次根式的意义性质a 2 ()a 0a 2 (a)二次根式1、二次根式的乘法:;2、二次根式的除法:二次根式的运算3、二次根式的加减:将二次根式化为后,把的根式(同类二次根式)进行。
4、二次根式的混杂运算及实责问题中根式的计算。
【经典例题】例 1 ( 1)使 4 x 1 有意义的x的取值范围是;(2)函数y 3 x 中,自变量的取值范围是;x 1(3)使 3 - x x 3 有意义的 x 的取值范围是;(4)使x 2 有意义的 x 的取值范围是;3x例 2 ( 1)已知 a 2 | b 1 | 0 ,那么 a b 2012的值为;(2)已知 m、 n 为实数,且满足m n 2 9 9 n2 4,求 6m-3n 的值?n 3例 3 计算:( 1)123;(3 48 2 27) 3;( 2)1(3)8 ( 2 1) ;( 4)3(3 020 15 2011;2)(1)522m 1 m 1例 4 化简,求值:m( m 1 ),其中 m = 3 .m 2 1 m 1【复习小结】1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件 ( 或题中的隐含条件 ) ,即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.3.运用二次根式的四个基本性质进行二次根式的运算时,必然要注意论述每一个性质中字母的取值范围的条件.4.经过例题的谈论,要学会综合、灵便运用二次根式的意义、基本性质和法规以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.【随堂练习】复习题 16第1、2、3、6题.2。
八年级数学(下)十六章—分式教案第一篇:八年级数学(下)十六章—分式教案16.2.1分式的乘除(二)一、教学目标:熟练地进行分式乘除法的混合运算.二、重点、难点1.重点:熟练地进行分式乘除法的混合运算.2.难点:熟练地进行分式乘除法的混合运算.三、例、习题的意图分析1.P17页例4是分式乘除法的混合运算.分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.教材P17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.2,P17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题.四、课堂引入计算(1)y÷x⋅(-y)(2)3x÷(-3x)⋅(-1) xyx4yy2x五、例题讲解(P17)例4.计算[分析] 是分式乘除法的混合运算.分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1)3ab322xy2⋅(-8xy9ab)⋅2)÷3x(-4b)=3ab32xy3ab32⋅(-8xy9ab⋅2-4b3x(先把除法统一成乘法运算)=2xy9ab3x⋅8xy24b(判断运算的符号)=16b9ax23(约分到最简分式)2x-6(x+3)(x-2)3-x(2)4-4x+4x2x-6⋅2÷(x+3)⋅1=4-4x+4x2x+3⋅(x+3)(x-2)3-x(先把除法统一成乘法运算)=2(x-3)(2-x)2⋅1x+31x+3⋅(x+3)(x-2)3-x(x+3)(x-2)-(x-3)(分子、分母中的多项式分解因式)2x-2=2(x-3)(x-2)2⋅⋅ =-2ab5c2ab224六、随堂练习计算(1)3(x-y)(y-x)23b216a4÷bc2a2⋅(-)(2)÷(-6abc)÷226220c331030ab(3)3⋅(x-y)÷9y-x(4)(xy-x)÷x-2xy+yxy⋅x-yx2七、课后练习计算(1)-8xy⋅y-4y+42y-62243x4y6÷(-xy6z2)(2)a-6a+94-bxyy-xy222÷3-a2+b3a-9⋅a2(3)⋅1y+3÷12-6y9-y2(4)x+xyx-xy22÷(x+y)÷16.2.1分式的乘除(三)一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算.二、重点、难点1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算.三、例、习题的意图分析1.P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除..2.教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点.四、课堂引入计算下列各题:(1)()=ba2ab⋅ab=()(2)()=bana3ab⋅ab⋅ab=()(3)()=ba4ab⋅ab⋅ab⋅ab=()[提问]由以上计算的结果你能推出()(n为正整数)的结果吗?b五、例题讲解(P17)例5.计算[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.六、随堂练习1.判断下列各式是否成立,并改正.(1)(b32a)=2b522a(2)(-3b2a)=2-9b4a22(3)(2y-3x)=38y9x33(4)(3xx-b)=29x222x-b2.计算(1)(5x23y2)(2)(23ab-2c32)(3)(xyy3a323xy)÷(-2ay2x2)3(4)(xy-z2)÷(3-xz32)5)(-2ba22)⋅(-2x)÷(-xy)(6)(-4y2x)⋅(-23x2y)÷(-33x2ay)2七、课后练习c3计算(1)(-c43)3(2)(-ab22)n+1(3)(ab2)÷(2a-b2-a3a4222()⋅()⋅(a-b))÷()(4) 3abb-acab16.2.2分式的加减(一)一、教学目标(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减.二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算.2.难点:熟练地进行异分母的分式加减法的运算.三、例、习题的意图分析1. P18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的1n+1n+3.这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.P19[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.3.P20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R与各支路电阻R1, R2, …, Rn的关系为111111.若知道这个公式,就比较容易地用含有R1的式子表示R2,列出1,下面的计算就是=++⋅⋅⋅+=+RR1R2RnRR1R1+50异分母的分式加法的运算了,得到1R=2R1+50R1(R1+50),再利用倒数的概念得到R的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.四、课堂堂引入1.出示P18问题3、问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?3.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?4.请同学们说出12xy23,13xy42,19xy2的最简公分母是什么?你能说出最简公分母的确定方法吗?五、例题讲解(P20)例6.计算[分析] 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算(1)x+3yx-y22-x+2yx-y22+2x-3yx-y22[分析] 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.解:x+3yx-y22-x+2yx-y1-x6+2x22+2x-3yx-y6x-9222 =(x+3y)-(x+2y)+(2x-3y)x-y22=2x-2yx-y22=2(x-y)(x-y)(x+y)=2x+y(2)1x-3+-[分析] 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.解:1x-3+1-x6+2x-6x-92=1x-3+1-x2(x+3)-6(x+3)(x-3)=2(x+3)+(1-x)(x-3)-122(x+3)(x-3)=-(x-6x+9)2(x+3)(x-3)2=-(x-3)22(x+3)(x-3)3a+2b5ab-2=-x-32x+6-b-a5ab2m+2nn-mnm-n2mn-m1a+36a2六随堂练习计算(1)+a+b5ab-2(2)7a-8ba-b-+(3)+-9(4)3a-6ba+b5a-6ba-b+4a-5ba+b--3b-aa-b22七、课后练习计算(1)b25a+6b3abc23b-4a3bac2a+3b3cba2(2)1-a+2ba-b22-3a-4bb-a22(3)a-b+a2b-a+a+b+1(4)16x-4y-6x-4y-3x4y-6x2216.2.2分式的加减(二)一、教学目标:明确分式混合运算的顺序,熟练地进行分式的混合运算.二、重点、难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.三、例、习题的意图分析1.P21例8是分式的混合运算.分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.例8只有一道题,训练的力度不够,所以应补充一些练习题,使学生熟练掌握分式的混合运算.2.P22页练习1:写出第18页问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.四、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.五、例题讲解(P21)例8.计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(补充)计算(1)(x+2x-2x2-x-1x-4x+42)÷4-xx[分析] 这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边..解:(x+2x-2x2-x-1x-4x+42)÷4-xx=[xx+2x(x-2)2-x-1(x-2)22]⋅x-(x-4)⋅x1x-4x+42=[(x+2)(x-2)x(x-2)2-2x(x-1)x(x-2)2]⋅-(x-4)=x-4-x+xx(x-2)2-(x-4)=-(2)xx-y⋅yx+y-xyx-y444÷x222x+y[分析] 这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边.解:xx-y⋅y2x+y-xyx-y444÷x222x+y=xx-y⋅y2x+y-xy(x+y)(x-y)22224⋅x+yx222=xy2(x-y)(x+y)⋅-xyx-y222=xy(y-x)(x-y)(x+y)=-xyx+y六、随堂练习计算(1)(x2x-2+42-x)÷x+22x(2)(aa-b-bb-a)÷(1a-1b)(3)(3a-2-+12a-4a-12)÷(2a-2-1a+2)七、课后练习1.计算(1)(1+1x1y1zxyxy+yz+zxyx-y)(1-1xx+y-)(2)(1a-24a2a+2a-2a2a-4 a+42)⋅a-2a÷4-aa2(3)(++)⋅2.计算(a+2)÷,并求出当a=-1的值.16.2.3整数指数幂一、教学目标:1.知道负整数指数幂a-n=1an(a≠0,n是正整数).2.掌握整数指数幂的运算性质.3.会用科学计数法表示小于1的数.二、重点、难点1.重点:掌握整数指数幂的运算性质.2.难点:会用科学计数法表示小于1的数.三、例、习题的意图分析1. P23思考提出问题,引出本节课的主要内容负整数指数幂的运算性质.2.P24观察是为了引出同底数的幂的乘法:am⋅an=am+n,这条性质适用于m,n是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.3.P24例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.4. P25例10判断下列等式是否正确?是为了类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来.5.P25最后一段是介绍会用科学计数法表示小于1的数.用科学计算法表示小于1的数,运用了负整数指数幂的知识.用科学计数法不仅可以表示小于1的正数,也可以表示一个负数.6.P26思考提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学计数法表示这个数时,10的指数就是负几.7.P26例11是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识.更主要的是应用用科学计数法表示小于1的数.四、课堂引入1.回忆正整数指数幂的运算性质:mnm+n(1)同底数的幂的乘法:a⋅a=a(m,n是正整数);(2)幂的乘方:(a)=anmnmnn(m,n是正整数);n(3)积的乘方:(ab)=ab(n是正整数);(4)同底数的幂的除法:aanm÷an=am-n(a≠0,m,n是正整数,m>n);(5)商的乘方:()=n(n是正整数);bb2.回忆0指数幂的规定,即当a≠0时,a=1.3.你还记得1纳米=10-9米,即1纳米=4.计算当a≠0时,a÷a=350an11029米吗?1a2aa35=a33a⋅a=3,再假设正整数指数幂的运算性质a53-5m÷an=am-n(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a÷a=a=a-2.于是得到a-2=1a2(a≠0),就规定负整数指数幂的运算性质:当n是正整数时,a-n=1an(a≠0).五、例题讲解(P24)例9.计算[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.(P25)例10.判断下列等式是否正确?[分析] 类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断下列等式是否正确.(P26)例11.[分析] 是一个介绍纳米的应用题,是应用科学计数法表示小于1的数.六、随堂练习1.填空(1)-22=(2)(-2)2=(3)(-2)0=(4)20=(5)2-3=(6)(-2)-3= 2.计算(1)(xy)(2)xy ·(xy)3-222-2-2(3)(3xy)÷(xy)2-2 2-23七、课后练习1.用科学计数法表示下列各数:0.000 04,-0.034, 0.000 000 45, 0.003 009 2.计算(1)(3×10-8)×(4×103)(2)(2×10-3)2÷(10-3)316.3分式方程(一)一、教学目标:1.了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.二、重点、难点1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.三、例、习题的意图分析1. P31思考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根的原因.2.P32的归纳明确地总结了解分式方程的基本思路和做法.3.P33思考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析产生增根的原因,及P33的归纳出检验增根的方法.4.P34讨论提出P33的归纳出检验增根的方法的理论根据是什么?5.教材P38习题第2题是含有字母系数的分式方程,对于学有余力的学生,教师可以点拨一下解题的思路与解数字系数的方程相似,只是在系数化1时,要考虑字母系数不为0,才能除以这个系数.这种方程的解必须验根.四、课堂引入1.回忆一元一次方程的解法,并且解方程x+24-2x-36=12.提出本章引言的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程10020+v=6020-v.像这样分母中含未知数的方程叫做分式方程.五、例题讲解(P34)例1.解方程[分析]找对最简公分母x(x-3),方程两边同乘x(x-3),把分式方程转化为整式方程,整式方程的解必须验根这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便.(P34)例2.解方程 [分析]找对最简公分母(x-1)(x+2),方程两边同乘(x-1)(x+2)时,学生容易把整数1漏乘最简公分母(x-1)(x+2),整式方程的解必须验根.六、随堂练习解方程(1)3x=2x-6(2)2x+1+3x-1=6x-12(3)x+1x-1-4x-12=1(4)2x2x-1+xx-2=2七、课后练习1.解方程(1)25+x-11+x=0(2)63x-82x+9x+3=1-14x-78-3x-2x(3)2x+x2+3x-x2-4x-12=0(4)1x+1-52x+2=-342.X为何值时,代数式-x-3的值等于2?16.3分式方程(二)一、教学目标:1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题.二、重点、难点1.重点:利用分式方程组解决实际问题.2.难点:列分式方程表示实际问题中的等量关系.三、例、习题的意图分析本节的P35例3不同于旧教材的应用题有两点:(1)是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程(2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于学生找出题目中等量关系,列出方程.P36例4是一道行程问题的应用题也与旧教材的这类题有所不同(1)本题中涉及到的列车平均提速v千米/时,提速前行驶的路程为s千米,完成.用字母表示已知数(量)在过去的例题里并不多见,题目的难度也增加了;(2)例题中的分析用填空的形式提示学生用已知量v、s和未知数x,表示提速前列车行驶s千米所用的时间,提速后列车的平均速度设为未知数x千米/时,以及提速后列车行驶(x+50)千米所用的时间.这两道例题都设置了带有探究性的分析,应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究,教师不要替代他们思考,不要过早给出答案.教材中为学生自己动手、动脑解题搭建了一些提示的平台,给了设未知数、解题思路和解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,所以教师还要给学生一些问题,让学生发挥他们的才能,找到解题的思路,能够独立地完成任务.特别是题目中的数量关系清晰,教师就放手让学生做,以提高学生分析问解决问题的能力.四、例题讲解P35例3 分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率×工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.等量关系是:甲队单独做的工作量+两队共同做的工作量=1路程P36例4 分析:是一道行程问题的应用题, 基本关系是:速度=.这题用字母表示已知数(量).等量关系时间是:提速前所用的时间=提速后所用的时间五、随堂练习1.学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.2.一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?3.甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.六、课后练习1.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快,结果于下午451时到达,求原计划行军的速度。
华师大版数学八年级下册第16章《分式》(第2课时)单元复习教学设计一. 教材分析华师大版数学八年级下册第16章《分式》(第2课时)的单元复习,主要是对分式的概念、分式的运算、分式的性质等内容进行复习。
本节课的内容是分式的重要概念和性质,以及分式的基本运算方法。
通过复习,使学生能够熟练掌握分式的相关知识,提高解决实际问题的能力。
二. 学情分析学生在之前的学习中已经掌握了分式的基本概念和运算方法,但对分式的性质的理解还不够深入。
此外,部分学生在分式运算时,容易出错,对分式的混合运算还不够熟练。
因此,在复习过程中,需要引导学生深入理解分式的性质,并通过大量的练习,提高运算的准确性。
三. 教学目标1.理解分式的概念,掌握分式的性质;2.熟练掌握分式的基本运算方法;3.提高解决实际问题的能力。
四. 教学重难点1.分式的性质的理解和运用;2.分式混合运算的准确性。
五. 教学方法采用讲练结合的方法,通过引导、讨论、练习等方式,帮助学生深入理解分式的性质,提高运算能力。
六. 教学准备1.PPT课件;2.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入分式的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解分式的性质,通过示例,让学生理解分式的性质,并能够运用到实际问题中。
3.操练(10分钟)进行分式的基本运算练习,让学生在实践中掌握分式的运算方法。
4.巩固(10分钟)通过一些分式运算的题目,巩固学生对分式性质和运算方法的理解。
5.拓展(5分钟)引导学生思考分式在实际问题中的应用,提高解决实际问题的能力。
6.小结(5分钟)对本节课的主要内容进行小结,帮助学生形成知识体系。
7.家庭作业(5分钟)布置一些分式运算的练习题,要求学生在课后进行练习。
8.板书(5分钟)板书本节课的主要内容和重点。
教学过程中每个环节的时间安排仅供参考,具体时间根据实际情况灵活调整。
在本节课的教学过程中,我尽力引导学生深入理解分式的性质,并通过大量的练习,提高他们的运算能力。
人教版数学八年级下册教学设计:第16章二次根式小结复习(二)一. 教材分析人教版数学八年级下册第16章二次根式小结复习(二)的内容主要包括:二次根式的性质、运算规则、化简方法以及应用。
本章是学生在学习了二次根式的基本概念和性质后,进一步深化对二次根式的理解和运用的过程。
通过对本章内容的复习,使学生能够巩固和提高二次根式的运算能力,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了二次根式的基本概念、性质和运算规则,具备了一定的运算能力和解决问题的能力。
但部分学生对二次根式的化简方法和应用仍存在一定的困难,需要通过本节课的复习和训练来进一步提高。
三. 教学目标1.理解二次根式的性质和运算规则,提高运算能力。
2.学会二次根式的化简方法,提高解决问题的能力。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.二次根式的性质和运算规则。
2.二次根式的化简方法。
3.二次根式在实际问题中的应用。
五. 教学方法采用讲练结合、分组讨论、案例分析等教学方法,引导学生主动探究,培养学生的运算能力、解决问题的能力和团队协作能力。
六. 教学准备1.教学PPT。
2.相关练习题。
3.案例分析材料。
七. 教学过程1.导入(5分钟)通过复习二次根式的基本概念和性质,引导学生回忆起已学的知识,为新课的学习做好铺垫。
2.呈现(10分钟)讲解二次根式的运算规则,并通过例题展示运算过程,让学生理解并掌握运算方法。
3.操练(10分钟)让学生独立完成PPT上的练习题,教师巡回指导,及时发现和纠正学生的错误。
4.巩固(10分钟)分组讨论PPT上的练习题,让学生互相交流解题思路,提高团队协作能力。
5.拓展(10分钟)给出一个实际问题,让学生运用二次根式的知识解决,培养学生的解决问题的能力。
6.小结(5分钟)总结本节课所学内容,强调二次根式的性质、运算规则和化简方法。
7.家庭作业(5分钟)布置适量的课后练习题,巩固所学知识。
分式小结与复习
一、学习目标
1.能熟练地解可化为一元一次方程的分式方程。
2.通过分式方程的应用教学,培养学生数学应用意识。
二、学习重点
分式方程的应用。
三、自主复习:
1.分式方程的定义:
2.解分式方程的基本思想: ;解分式方程的基本方法:
3.解分式方程的一般步骤:
4.方程增根产生原因: 验证増根的方法:
5.列分式方程解应用题的一般步骤: 。
四、合作探究
1.下列方程中,是分式方程的有( )
①x+13=2x -32 ②80x = 50x -5 ③15( 14x+1)=0 ④2x -3=10x
A.1个
B.2个
C.3个
D.4个
2.解分式方程:2x -3 = 3x
3.若关于X 的方程m x 2-9 + 2x+3= 1x -3
有增根,则增根为 ,方程产生增根时m= 。
4.一项工程,甲、乙两公司合作,12天可以完成,共需付工费102000元。
如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元。
(1)甲、乙公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司施工费较少?
五、巩固反馈(当堂检测)
★【基础知识练习】
1.把分式方程x x -2 + 2= 12-x
化为整式方程得( ) A.x+2=-1 B.x+2(x-2)=1 C.x+2(x-2)=-1 D.x+2=1
2.如果方程x x -3 =2+ m m -3
产生增根,那么m 的值为( ) A.0 B.3 C. -3 D.±1
3.解方程:11-3x + 12= 36x -2
★【提高拓展练习】
4.2010年春季我国西南五省持续干旱,旱情牵动着全国人民的心.“一方有难、八方支援”,某厂计划生产1800吨纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水?
★【中考考点链接】
5.若实数a 、b 满足a b + b a =2,则a 2+ab+b 2 a 2+4ab+b 2的值为多少? 答案:12
六、学后反思。