2019届高考物理第一轮基础测试题19
- 格式:doc
- 大小:128.50 KB
- 文档页数:7
浙江省2019届高三上学期11月选考科目考试一、选择题1.下列物理量属于标量的是()A. 速度B. 加速度C. 电流D. 电场强度【答案】C【解析】【详解】加速度、速度、电场强度既有大小又有方向,为矢量,虽然电流有方向,但只有一个,没有正负之分,所以为标量,C正确.2.发现电流磁效应的物理学家是()A. 法拉第B. 奥斯特C. 库仑D. 安培【答案】B【详解】奥斯特发现了电流的磁效应,法拉第发现了电磁感应现象,库仑发现了库仑定律,安培发现了分子电流假说,B正确.3.用国际单位制的基本单位表示电场强度的单位,下列正确的是()A. N/CB. V/mC. kg•m/(C•s2)D. kg•m/(A•s3)【答案】D【详解】电场强度,电场力的单位为N,电量的单位为C,所以电场强度的单位是N/C,而,D正确.4.一辆汽车沿平直道路行驶,其v-t图象如图所示。
在t=0到t=40s这段时间内,汽车的位移是()A. 0B. 30mC. 750mD. 1200m【答案】C【解析】【详解】在v-t图像中图线与时间轴围成的面积表示位移,故在40内的位移为,C正确.【点睛】在速度时间图像中,需要掌握三点,一、速度的正负表示运动方向,看运动方向是否发生变化,只要考虑速度的正负是否发生变化,二、图像的斜率表示物体运动的加速度,三、图像与坐标轴围成的面积表示位移,在坐标轴上方表示正方向位移,在坐标轴下方表示负方向位移.5.奥运会比赛项目撑杆跳高如图所示,下列说法不正确...的是()A. 加速助跑过程中,运动员的动能增加B. 起跳上升过程中,杆的弹性势能一直增加C. 起跳上升过程中,运动员的重力势能增加D. 越过横杆后下落过程中,运动员的重力势能减少动能增加【答案】B【解析】【分析】动能与物体的质量和速度有关,重力势能与物体的质量和高度有关,弹性势能大小和物体发生弹性形变的大小有关。
根据能量转化的知识分析回答.【详解】加速助跑过程中速度增大,动能增加,A正确;撑杆从开始形变到撑杆恢复形变时,先是运动员部分动能转化为杆的弹性势能,后弹性势能转化为运动员的动能与重力势能,杆的弹性势能不是一直增加,B错误;起跳上升过程中,运动员的高度在不断增大,所以运动员的重力势能增加,C正确;当运动员越过横杆下落的过程中,他的高度降低、速度增大,重力势能被转化为动能,即重力势能减少,动能增加,D正确.6.等量异种电荷的电场线如图所示,下列表述正确的是()A. a点的电势低于b点的电势B. a点的场强大于b点的场强,方向相同C. 将一负电荷从a点移到b点电场力做负功D. 负电荷在a点的电势能大于在b点的电势能【答案】C【解析】【分析】沿电场线方向电势降低;电场线的疏密程度表示电场强度大小,电场线的切线方向表示电场强度方向,负电荷在低电势处电势能大,在高电势处电势能小,据此分析.【详解】沿电场线方向电势降低,故a点电势高于b点电势,A错误;电场线的疏密程度表示电场强度大小,电场线越密,电场强度越大,故a点的场强大于b点的场强,电场线的切线方向为场强方向,故ab两点的电场强度方向不同,B错误;负电荷在低电势处电势能大,所以从a点(高电势)移动到b点(低电势),电势能增大,电场力做负功,C正确D错误.7.电流天平是一种测量磁场力的装置,如图所示。
2019年普通高等学校招生全国统一考试(天津卷)地理答卷前,考生务必将自己的姓名、准考证填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考试务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考生顺利!一、单项选择题(每小题6分,共30分。
每小题给出的四个选项中,只有一个选项是正确的)1.(6分)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”。
已知月球的质量为M、半径为R,探测器的质量为m,引力常量为G,嫦娥四号探测器围绕月球做半径为r的匀速圆周运动时,探测器的()A.周期为B.动能为C.角速度为D.向心加速度为2.(6分)2018年10月23日,港珠澳跨海大桥正式通车。
为保持以往船行习惯,在航道处建造了单面索(所有钢索均处在同一竖直面内)斜拉桥,其索塔与钢索如图所示。
下列说法正确的是()A.增加钢索的数量可减小索塔受到的向下的压力B.为了减小钢索承受的拉力,可以适当降低索塔的高度C.索塔两侧钢索对称且拉力大小相同时,钢索对索塔的合力竖直向下D.为了使索塔受到钢索的合力竖直向下,索塔两侧的钢索必须对称分布3.(6分)如图所示,在水平向右的匀强电场中,质量为m的带电小球,以初速度v从M 点竖直向上运动,通过N点时,速度大小为2v,方向与电场方向相反,则小球从M运动到N的过程()A.动能增加mv2B.机械能增加2mv2C.重力势能增加mv2D.电势能增加2mv24.(6分)笔记本电脑机身和显示屏对应部位分别有磁体和霍尔元件。
当显示屏开启时磁体远离霍尔元件,电脑正常工作;当显示屏闭合时磁体靠近霍尔元件,屏幕熄灭,电脑进入休眠状态。
如图所示,一块宽为a、长为c的矩形半导体霍尔元件,元件内的导电粒子是电荷量为e的自由电子,通入方向向右的电流时,电子的定向移动速度为v。
1.(2018·苏锡常镇四市高三调研)某人骑自行车沿平直坡道向下滑行,其车把上挂有一只水壶,若滑行过程中悬绳始终竖直,如图所示,不计空气阻力,则下列说法中错误的是()A.自行车一定做匀速运动B.壶内水面一定水平C.水壶及水整体的重心一定在悬绳正下方D.壶身中轴一定与坡道垂直解析:选D.滑行过程中悬绳始终竖直,重力和拉力都沿竖直方向,运动方向沿坡斜向下,车一定做匀速运动,壶内水面一定水平,选项A、B正确;根据悬挂法测薄板重心的原理可知,水壶及水整体的重心一定在悬绳正下方,选项C正确;壶身中轴与坡道无必然联系,选项D错误.2.(2018·南京高三模拟考试)小明家阁楼顶有一扇倾斜的天窗,天窗与竖直平面的夹角为θ,如图所示.小明用质量为m的刮擦器擦天窗玻璃,当对刮擦器施加竖直向上大小为F的推力时,刮擦器恰好沿天窗玻璃向上匀速滑动,已知玻璃与刮擦器之间的动摩擦因数为μ,则刮擦器受到的摩擦力大小是()A.(F-mg)cos θB.(mg+F)sin θC.μ(F-mg)cos θD.μ(mg+F)sin θ解析:选A.天窗玻璃对刮擦器的弹力为F N=(F-mg)sin θ,所以刮擦器受到的滑动摩擦力大小是F f=μ(F-mg)sin θ,选项C、D错误;根据平衡条件,刮擦器受到的滑动摩擦力大小是F f=(F-mg)cos θ,选项A正确,B错误.3.如图所示,质量为m的木块在质量为M的长木板上,受到向右的拉力F的作用而向右滑行,长木板处于静止状态,已知木块与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2,下列说法正确的是( )A .木板受到地面的摩擦力的大小一定是μ2mgB .木板受到地面的摩擦力的大小一定是μ2(m +M )gC .当F >μ2(m +M )g 时,木板便会开始运动D .无论怎样改变F 的大小,木板都不可能运动解析:选D.由于木块在木板上运动,所以木块受到木板的滑动摩擦力的作用,其大小为μ1mg ,根据牛顿第三定律可得木块对木板的滑动摩擦力也为μ1mg .又由于木板处于静止状态,木板在水平方向上受到木块的摩擦力μ1mg 和地面的静摩擦力的作用,二力平衡,选项A 、B 错误;若增大F 的大小,只能使木块的加速度大小变化,但木块对木板的滑动摩擦力大小不变,因而也就不可能使木板运动起来,选项C 错误,D 正确. 4.如图所示,斜面为长方形的斜面体倾角为37°,其长AD 为0.8 m ,宽AB 为0.6 m .一重为20 N 的木块原先在斜面体上部,当对它施加平行于AB 边的恒力F 时,刚好使木块沿对角线AC 匀速下滑,求木块与斜面间的动摩擦因数μ和恒力F 的大小.(sin 37°=0.6,cos 37°=0.8)解析:木块在斜面上的受力示意图如图所示,由于木块沿斜面向下做匀速直线运动,由平衡条件可知:F =mg sin 37°·tan α=20×0.6×0.60.8N =9 N 木块受到的摩擦力为F f =(mg sin 37°)2+F 2 =(20×0.6)2+92 N =15 N由滑动摩擦力公式得μ=F f F N =F f mg cos 37°=1520×0.8=1516. ★答案★:15169 N感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
河北省衡水中学2019届高三(上)第一次调研物理试题一、选择题1. 物理学的发展极大地丰富了人类对物质世界的认识,推动了科学技术的创新和革命,促进了人类文明的进步,关于物理学中运动与力的发展过程和研究方法的认识,下列说法中正确的是()A. 亚里士多德首先提出了惯性的概念B. 伽利略对自由落体运动研究方法的核心是:把实验和逻辑推理(包括数学演算)结合起来,从而发展了人类的科学思维方式和科学研究方法C. 牛顿三条运动定律是研究动力学问题的基石,牛顿的三条运动定律都能通过现代的实验手段直接验证D. 力的单位“N“是基本单位,加速度的单位“m/s2”是导出单位2. 一质点位于x=﹣1m处,t=0时刻沿x轴正方向做直线运动,其运动的v﹣t图象如图所示.下列说法正确的是()学¥科¥网...学¥科¥网...A. 0~2s内和0~4s内,质点的平均速度相同B. t=4s时,质点在x=2m处C. 第3s内和第4s内,质点位移相同D. 第3s内和第4s内,质点加速度的方向相反3. 如图所示,小球A、B通过一条细绳跨过定滑轮连接,它们都穿在一根竖直杆上.当两球平衡时,连接两球的细绳与水平方向的分别为θ和2θ.假设装置中的各处摩擦均不计,则A、B球的质量之比为()A. 2cosθ:1B. 1:2cosθC. tanθ:1D. 1:2sinθ4. 如图所示,一个半径为R的圆球,其重心不在球心O上,将它置于水平地面上,则平衡时球与地面的接触点为A;若将它置于倾角为30°的粗糙斜面上,则平衡时(静摩擦力足够大)球与斜面的接触点为B.已知AB段弧所对应的圆心角度数为60°,对圆球重心离球心O的距离以下判断正确的是()A. B. C. D.5. 如图所示,光滑的大圆环固定在竖直平面上,圆心为O点,P为环上最高点,轻弹簧的一端固定在P点,另一端栓连一个套在大环上的小球,小球静止在图示位置平衡,则()A. 弹簧可能处于压缩状态B. 大圆环对小球的弹力方向可能指向O点C. 小球受到弹簧的弹力与重力的合力一定指向O点D. 大圆环对小球的弹力大小可能小于球的重力,也可能大于球的重力6. 如图所示,a、b、c三根轻细绳悬挂两个质量相同的小球A、B保持静止,细绳a是水平的,现对B球施加一个水平向有的力F,将B缓缓拉到图中虚线位置,A球保持不动,这时三根细绳张力F a、F b、F c的变化情况是()A. 都变大B. 都不变C. F b不变,F a、F c变大D. F a、F b不变,F c变大7. 半圆柱体P放在粗糙的水平面上,有一挡板MN,其延长线总是过半圆柱体的轴心O,但挡板与半圆柱体不接触,在P和MN之间放有一个光滑均匀的小圆柱体Q(P的截面半径远大于Q的截面半径),整个装置处于静止状态,如图是这个装置的截面图,若用外力使MN绕O点缓慢地逆时针转动,在Q到达最高位置前,发现P始终保持静止,在此过程中,下列说法正确的是()A. MN对Q的弹力大小逐渐减小B. P、Q间的弹力先增大后减小C. 桌面对P的摩擦力先增大后减小D. P所受桌面的支持力保持不变8. 如图所示,n个质量为m的相同木块并列放在水平面上,木块跟水平面间的动摩擦因数为μ,当对1木块施加一个水平向右的推力F时,木块加速运动,木块5对木块4的压力大小为()A. FB.C.D.9. 如图所示,一根弹簧一端固定在左侧竖直墙上,另一端连着A小球,同时水平细线一端连着A球,另一端固定在右侧竖直墙上,弹簧与竖直方向的夹角是60°,A、B两小球分别连在另一根竖直弹簧两端.开始时AB两球都静止不动,A、B两小球的质量相等,重力加速度为g,若不计弹簧质量,在水平细线被剪断瞬间,A、B两球的加速度分别为()A. a A=a B=gB. a A=2g,a B=0C. a A=g,a B=0D. a A=2g,a B=010. 如图所示,质量为M足够长的斜面体始终静止在水平地面上,有一个质量为m的小物块在受到沿斜面向下的力F的作用下,沿斜面匀加速下滑,此过程中斜面体与地面的摩擦力为0.已知重力加速度为g,则下列说法正确的是()A. 斜面体给小物块的作用力大小等于mgB. 斜面体对地面的压力小于(m+M)gC. 若将力F的方向突然改为竖直向下,小物块仍做加速运动D. 若将力F撤掉,小物块将匀速下滑11. 如图所示,A、B两物体的质量分别为2m和m,静止叠放在水平地面上.A、B间的动摩擦因数为μ,B 与地面间的动摩擦因数为μ.最大静摩擦力等于滑动摩擦力,重力加速度为g.现对A施加一水平拉力F,则()A. 当F<2μmg时,A、B都相对地面静止B. 当F=μmg时,A的加速度为μgC. 当F>3μmg时,A相对B滑动D. 无论F为何值,B的加速度不会超过μg12. 如图所示,M为定滑轮,一根细绳跨过M,一端系着物体C,另一端系着一动滑轮N,动滑轮N两侧分别悬挂着A、B两物体,已知B物体的质量为3kg,不计滑轮和绳的质量以及一切摩擦,若C物体的质量为9kg,则关于C物体的状态下列说法正确的是()A. 当A的质量取值合适,C物体有可能处于平衡状态B. 无论A物体的质量是多大,C物体不可能平衡C. 当A的质量足够大时,C物体不可能向上加速运动D. 当A的质量取值合适,C物体可以向上加速也可以向下加速运动13. 如图所示,一劲度系数为k的轻质弹簧,上端固定,下端连一质量为m的物块A,A放在质量也为m的托盘B上,初始时,在竖直向上的力F作用下系统静止,且弹簧处于原长状态.以N表示B对A的作用力,x表示弹簧的伸长量,现改变力F的大小,使B以的加速度匀加速向下运动(g为重力加速度,空气阻力不计),此过程中N或F的大小随x变化的图象正确的是()A. B.C. D.14. 如图甲所示,用粘性材料粘在一起的A、B两物块静止于光滑水平面上,两物块的质量分别为m A=lkg、m B=2kg,当A、B之间产生拉力且大于0.3N时A、B将会分离.t=0时刻开始对物块A施加一水平推力F1,同时对物块B施加同一方向的拉力F2,使A、B从静止开始运动,运动过程中F1、F2方向保持不变,F1、F2的大小随时间变化的规律如图乙所示.则下列关于A、B两物块受力及运动情况的分析,正确的是()A. t=2.0s时刻A、B之间作用力大小为0.6NB. t=2.0s时刻A、B之间作用力为零C. t=2.5s时刻A对B的作用力方向向左D. 从t=0时刻到A、B分离,它们运动的位移为5.4m15. 如图,穿在水平直杆上质量为m的小球开始时静止.现对小球沿杆方向施加恒力F0,垂直于杆方向施加竖直向上的力F,且F的大小始终与小球的速度成正比,即F=kv(图中未标出).已知小球与杆间的动摩擦因数为μ,小球运动过程中未从杆上脱落,且F0>μmg.下列关于运动中的速度﹣时间图象正确的是()A. B. C. D.二、非选择题.16. 现要测量滑块与木板之间的动摩擦因数,实验装置如图1所示.表面粗糙的木板一端固定在水平桌面上,另一端抬起一定高度构成斜面;木板上有一滑块,其后端与穿过打点计时器的纸带相连,打点计时器固定在木板上,连接频率为50Hz的交流电源.接通电源后,从静止释放滑块,滑块带动纸带上打出一系列点迹.(1)图2给出的是实验中获取的一条纸带的一部分:0、1、2、3、4、5、6是实验中选取的计数点,每相邻两计数点间还有4个打点(图中未标出),2、3和5、6计数点间的距离如图2所示.由图中数据求出滑块的加速度a=__m/s2(结果保留三位有效数字).(2)已知木板的长度为l,为了求出滑块与木板间的动摩擦因数,还应测量的物理量是________.A.滑块到达斜面底端的速度v B.滑块的质量mC.滑块的运动时间t D.斜面高度h和底边长度x(3)设重力加速度为g,滑块与木板间的动摩擦因数的表达式μ=__(用所需测量物理量的字母表示)17. 如图所示,放在粗糙的固定斜面上的物块A和悬挂的物体B均处于静止状态.轻绳AO绕过光滑的定滑轮与轻弹簧的右端及轻绳BO的上端连接于O点,轻弹簧中轴线沿水平方向,轻绳的OC段与竖直方向的夹角θ=53°,斜面倾角α=37°,物块A和B的质量分别为m A=5kg,m B=1.5kg,弹簧的劲度系数k=500N/m,(sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2),求:(1)弹簧的伸长量x;(2)物块A受到的摩擦力.18. 如图所示,电动机带动滚轮做逆时针匀速转动,在滚轮的摩擦力作用下,将一金属板从斜面底端A送往上部,已知斜面光滑且足够长,倾角θ=30°,滚轮与金属板的切点B到斜面底端A距离L=6.5m,当金属板的下端运动到切点B处时,立即提起滚轮使它与板脱离接触.已知板的质量m=1kg,滚轮边缘线速度恒为v=4m/s,滚轮对板的正压力F N=20N,滚轮与金属板间的动摩擦因数为μ=0.35,取重力加速度g=10m/s2.求:(1)板加速上升时所受到的滑动摩擦力大小;(2)板加速至与滚轮边缘线速度相同时前进的距离;(3)板匀速上升的时间.19. 在铁路与公路交叉点上,由于司机粗心、判断失误或车况等原因常常造成交通事故.现有一辆长为5m 的汽车以v1=15m/s的速度行驶,在离铁路与公路交叉点175m处,汽车司机突然发现离交叉点200m处有一列长300m的列车以v2=20m/s的速度行驶过来,为了避免事故的发生,汽车司机如果立刻刹车作匀减车运动,则最小加速度为多少?汽车司机如果立刻作匀加速运动,则最小加速度应多大?20. 如图所示,质量M=10kg、上表面光滑的足够长的木板在F=50N的水平拉力作用下,以初速度v0=5m/s 沿水平地面向右匀速运动.现有足够多的小铁块,它们的质量均为m=1kg,将一铁块无初速地放在木板的最右端,当木板运动了L=1m时,又无初速度地在木板的最右端放上第2块铁块,只要木板运动了L就在木板的最右端无初速度放一铁块.(取g=10m/s2)试问:(1)木板与地面之间的滑动摩擦系数多大?(2)第1块铁块放上后,木板运动了L时,木板的速度多大?(3)最终木板上放有多少块铁块?河北省衡水中学2019届高三(上)第一次调研物理试题一、选择题1. 物理学的发展极大地丰富了人类对物质世界的认识,推动了科学技术的创新和革命,促进了人类文明的进步,关于物理学中运动与力的发展过程和研究方法的认识,下列说法中正确的是()A. 亚里士多德首先提出了惯性的概念B. 伽利略对自由落体运动研究方法的核心是:把实验和逻辑推理(包括数学演算)结合起来,从而发展了人类的科学思维方式和科学研究方法C. 牛顿三条运动定律是研究动力学问题的基石,牛顿的三条运动定律都能通过现代的实验手段直接验证D. 力的单位“N“是基本单位,加速度的单位“m/s2”是导出单位【答案】B【解析】牛顿首先提出了惯性的概念,选项A错误;伽利略对自由落体运动研究方法的核心是:把实验和逻辑推理(包括数学演算)结合起来,从而发展了人类的科学思维方式和科学研究方法,选项B正确;牛顿三条运动定律是研究动力学问题的基石,牛顿第一定律步能通过现代的实验手段直接验证,选项C错误;力的单位“N”和加速度的单位“m/s2”都是导出单位,选项D正确;故选B.2. 一质点位于x=﹣1m处,t=0时刻沿x轴正方向做直线运动,其运动的v﹣t图象如图所示.下列说法正确的是()A. 0~2s内和0~4s内,质点的平均速度相同B. t=4s时,质点在x=2m处C. 第3s内和第4s内,质点位移相同D. 第3s内和第4s内,质点加速度的方向相反【答案】B【解析】根据图象与坐标轴围成的面积表示位移,在时间轴上方的位移为正,下方的面积表示位移为负,则知0~2s内和0~4s内,质点的位移相同,但所用时间不同,则平均速度不同,故A错误.0-2s内质点的位移为△x=×(1+2)×2m=3m,2-4s内位移为零,则t=4s时质点的位移是3m,t=0时质点位于x=-1m处,则t=2s时,质点在x′=x+△x=2m处,故B正确.第3s内和第4s内,质点位移大小相同,但方向不同,选项C错误;速度图线的斜率表示加速度,直线的斜率一定,加速度是一定的,则知第3s内和第4s 内,质点加速度的方向相同,故D错误.故选B.点睛:本题是速度图象问题,考查理解物理图象意义的能力,关键要抓住速度图象“斜率”表示加速度,“面积”表示位移.3. 如图所示,小球A、B通过一条细绳跨过定滑轮连接,它们都穿在一根竖直杆上.当两球平衡时,连接两球的细绳与水平方向的分别为θ和2θ.假设装置中的各处摩擦均不计,则A、B球的质量之比为()A. 2cosθ:1B. 1:2cosθC. tanθ:1D. 1:2sinθ【答案】B【解析】分别对AB两球分析,运用合成法,如图:由几何知识得:T sinθ=m A g,T sin2θ=m B g,故m A:m B=sinθ:sin2θ=1:2cosθ,故选B.【点睛】本题考查了隔离法对两个物体的受力分析,关键是抓住同一根绳子上的拉力处处相等结合几何关系将两个小球的重力联系起来.4. 如图所示,一个半径为R的圆球,其重心不在球心O上,将它置于水平地面上,则平衡时球与地面的接触点为A;若将它置于倾角为30°的粗糙斜面上,则平衡时(静摩擦力足够大)球与斜面的接触点为B.已知AB段弧所对应的圆心角度数为60°,对圆球重心离球心O的距离以下判断正确的是()A. B. C. D.【答案】D【解析】将球置于水平地面上,球受重力和支持力,二力平衡,故重力的作用点在OA连线上,将球放在斜面上,以B为支点,根据力矩平衡条件,合力矩为零,故重力的力矩一定为零,故重心也在过B的竖直线上,一定是该线与OA的交点,如图所示:,故选项D正确。
2019年普通高等学校招生全国统一考试理科综合能力测试(北京卷)物理共8小题,每小题6分,共48分。
在每小题列出的四个选项中,选出最符合题目要求的一项。
1.一列简谐横波某时刻的波形如图所示,比较介质中的三个质点a 、b 、c ,则A .此刻a 的加速度最小B .此刻b 的速度最小C .若波沿x 轴正方向传播,此刻b 向y 轴正方向运动D .若波沿x 轴负方向传播,a 比c 先回到平衡位置【答案】C 【解析】由机械振动特点确定质点的加速度和速度大小,由“上下坡法”确定振动方向。
由波动图象可知,此时质点a 位于波峰处,根据质点振动特点可知,质点a 的加速度最大,故A 错误,此时质点b 位于平衡位置,所以速度为最大,故B 错误,若波沿x 轴正方向传播,由“上下坡法”可知,质点b 向y 轴正方向运动,故C 正确,若波沿x 轴负方向传播,由“上下坡法”可知,a 质点沿y 轴负方向运动,c 质点沿y 轴正方向运动,所以质点c 比质点a 先回到平衡位置,故D 错误。
2.利用图1所示的装置(示意图),观察光的干涉、衍射现象,在光屏上得到如图2中甲和乙两种图样。
下列关于P 处放置的光学元件说法正确的是A .甲对应单缝,乙对应双缝B .甲对应双缝,乙对应单缝C .都是单缝,甲对应的缝宽较大D .都是双缝,甲对应的双缝间距较大【答案】A 【解析】根据单缝衍射图样和双缝干涉图样特点判断。
单缝衍射图样为中央亮条纹最宽最亮,往两边变窄,双缝干涉图样是明暗相间的条纹,条纹间距相等,条纹宽度相等,结合图甲,乙可知,甲对应单缝,乙对应双缝,故A正确。
3.下列说法正确的是A .温度标志着物体内大量分子热运动的剧烈程度B .内能是物体中所有分子热运动所具有的动能的总和C .气体压强仅与气体分子的平均动能有关D .气体膨胀对外做功且温度降低,分子的平均动能可能不变【答案】A 【解析】根据温度是分子平均动能的标志确定气体分子热运动的程度和分子平均动能变化,内能是分子平均动能和分子势总和,由气体压强宏观表现确定压强A .温度是分子平均动能的标志,所以温度标志着物体内大量分子热运动的剧烈程度,故A 正确;B .内能是物体中所有分子热运动所具有的动能和分子势能之和,故B 错误;C .由压强公式P =F S 可知,气体压强除与分子平均动能有关即温度,还与体积有关,故C 错误;D .温度是分子平均动能的标志,所以温度降低,分子平均动能一定变小,故D 错误。
2016年—2018年高考试题精编版分项解析专题19 力学计算题1.如图所示,钉子A、B相距5l,处于同一高度.细线的一端系有质量为M的小物块,另一端绕过A固定于B.质量为m的小球固定在细线上C点,B、C间的线长为3l.用手竖直向下拉住小球,使小球和物块都静止,此时BC与水平方向的夹角为53°.松手后,小球运动到与A、B相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g,取sin53°=0.8,cos53°=0.6.求:(1)小球受到手的拉力大小F;(2)物块和小球的质量之比M:m;(3)小球向下运动到最低点时,物块M所受的拉力大小T.【来源】2018年全国普通高等学校招生统一考试物理(江苏卷)【答案】(1)53F Mg mg=-(2)65Mm=(3)85mMgTm M=+()(4885511T mg T Mg==或)(3)根据机械能守恒定律,小球回到起始点.设此时AC方向的加速度大小为a,重物受到的拉力为T牛顿运动定律Mg–T=Ma小球受AC的拉力T′=T 牛顿运动定律T′–mg cos53°=ma解得85mMgTm M=+()(4885511T mg T Mg==或)点睛:本题考查力的平衡、机械能守恒定律和牛顿第二定律。
解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC方向的加速度(切向加速度)与物块竖直向下加速度大小相等。
2.如图所示,悬挂于竖直弹簧下端的小球质量为m,运动速度的大小为v,方向向下.经过时间t,小球的速度大小为v,方向变为向上.忽略空气阻力,重力加速度为g,求该运动过程中,小球所受弹簧弹力冲量的大小.【来源】2018年全国普通高等学校招生统一考试物理(江苏卷)【答案】【解析】取向上为正方向,动量定理mv–(–mv)=I且解得3.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一。
第5讲 天体运动与人造卫星[课时作业] 单独成册 方便使用[基础题组]一、单项选择题1.牛顿时代的科学家们围绕引力的研究,经历了大量曲折顽强而又闪烁智慧的科学实践.在万有引力定律的发现历程中,下列叙述不符合史实的是( ) A .开普勒研究了第谷的行星观测记录,得出了开普勒行星运动定律B .牛顿将行星与太阳、地球与月球、地球与地面物体之间的引力规律推广到宇宙中的一切物体,得出了万有引力定律C .卡文迪许首次在实验室中比较准确地得出了引力常量G 的数值D .根据天王星的观测资料,哈雷利用万有引力定律计算出了海王星的轨道解析:开普勒研究了第谷的行星观测记录,得出了开普勒行星运动定律,选项A 正确;牛顿将行星与太阳、地球与月球、地球与地面物体之间的引力规律推广到宇宙中的一切物体,得出了万有引力定律,选项B 正确;卡文迪许首次在实验室中比较准确地得出了引力常量G 的数值,选项C 正确;英国人亚当斯和法国人勒维耶根据万有引力推测出“新”行星的轨道和位置,柏林天文台年轻的天文学家伽勒和他的助手根据勒维耶计算出来的“新”行星的位置,发现了海王星,故D 错误. 答案:D2p 倍,半径为地球的q 倍,则该行星卫星的环B.qp倍 D.pq 3倍=GMR,设该行星卫星的环绕速度为v ′,地球=pq,C 正确. 答案:C3.如图,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r 1、r 2,线速度大小分别为v 1、v 2,则( ) A.v 1v 2=r 2r 1 B.v 1v 2=r 1r 2C.v 1v 2=(r 2r 1)2D.v 1v 2=(r 1r 2)2解析:万有引力提供卫星绕地球做匀速圆周运动的向心力,有G Mm r 2=m v 2r,所以v =GM r ,v 1v 2=r 2r 1,A 项正确. 答案:A4.(2018·山西五校四联)天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.若某双星的质量分别为M 、m ,间距为L ,双星各自围绕其连线上的某点O 做匀速圆周运动,其角速度分别为ω1、ω2,质量为M 的恒星轨道半径为R ,已知引力常量为G ,则描述该双星运动的上述物理量满足( )A .ω1<ω2B .C .GM =ω22(L -R )L 2D .m ω22(L -R ),得GM =ω22(L -R )L 2,C ω21RL 2,D 项错误. 答案:C5.(2018·四川成都高三质检)如图所示,2016年10月19日,神舟十一号入轨后,经历5次变轨,到达距离地面393公里轨道,与天宫二号成功对接,对接之后两者一起绕着地球做匀速圆周运动,已知地球的质量M =5.97×1024kg ,地球的半径R =6 378公里,引力常量G =6.67×10-11N·m 2/kg 2,地球表面的重力加速度g 取10 m/s 2.则( )A .神舟十一号为了追上天宫二号,无论在什么轨道上只要加速就行B .天宫二号运行的速度大于7.9 km/sC .神舟十一号变轨前后忽略其质量的变化,则变轨后动能减小,引力势能增大D .对接成功后两者一起运行的周期为1 h解析:神舟十一号为了追上天宫二号,必须在低轨道加速,A 错误;第一宇宙速度大小为7.9km/s ,而第一宇宙速度为近地轨道环绕速度,根据公式G Mm r 2=m v 2r,解得v =GMr,轨道半径越大,线速度越小,所以天宫二号运行的速度小于 7.9 km/s ,B 错误;变轨后轨道半径增大,根据v =GMr可知变轨后速度减小,动能减小,变轨时,需要克服万有引力做功,故引力势能增大,C 正确;根据公式G Mm r 2=m 4π2T2r 可得T=2πr 3GM,代入数据可得T ≈5.54×103s>3 600 s ,D 错误. 答案:C 二、多项选择题6.(2017·高考江苏卷)“天舟一号”货运飞船于2017年4月20日在文昌航天发射中心成功发射升空.与“天宫二号”空间实验室对接前,“天舟一号”在距地面约380 km 的圆轨道上飞行,则其( ) A .角速度小于地球自转角速度 B .线速度小于第一宇宙速度 C .周期小于地球自转周期D .向心加速度小于地面的重力加速度解析:由GMmR +h=m (R +h )4π2T 知,周期T 与轨道半径的关系为R +h3T=k (恒量),同步卫星的周期与地球的自转周期相同,但同步卫星的轨道半径大于“天舟一号”的轨道半径,则“天舟一号”的周期小于同步卫星的周期,也就小于地球的自转周期,C 对.由ω=2πT 知,“天舟一号”的角速度大于地球自转的角速度,A 错.由GMmR +h2=mv 2R +h知,线速度v =GMR +h,而第一宇宙速度v ′=GMR,则v <v ′,B 对.设“天舟一号”的向心加速度为a ,则ma =GMm R +h2,而mg =GMmR 2,可知a <g ,D 对. 答案:BCD7.(2018·江西赣州模拟)如图所示,运行轨道在同一平面内的两颗人造卫星A 、B ,同方向绕地心做匀速圆周运动,此时刻A 、B 与地心恰在同一直线上且相距最近,已知A 的周期为T ,B 的周期为2T3.下列说法正确的是( )A .A 的线速度小于B 的线速度 B .A 的角速度小于B 的角速度C .A 的重力小于B 的重力D .从此时刻到下一次A 、B 相距最近的时间为2T解析:根据万有引力提供向心力得G Mm r 2=m v 2r =m ω2r ,解得v =GMr ,ω=GMr 3,可知轨道半径越大,线速度、角速度都越小,故A 的线速度和角速度都较小,故A 、B 正确.由于不知道A 、B 两颗卫星的质量关系,所以无法判断两颗卫星的重力大小关系,故C 错误.从此时刻到下一次A 、B 相距最近,转过的角度差为2π,即(2π2T 3-2πT )t =2π,解得t =2T ,故从此时刻到下一次A 、B 相距最近的时间为2T ,故D 正确. 答案:ABD8.(2018·郑州质量预测)中国北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统.预计2020年左右,北斗卫星导航系统将形成全球覆盖能力.如图所示是北斗导航系统中部分卫星的轨道示意图,已知a 、b 、c 三颗卫星均做圆周运动,a 是地球同步卫星,则( )A .卫星a 的角速度小于c 的角速度B .卫星a 的加速度等于b 的加速度C .卫星a 的运行速度大于第一宇宙速度D .卫星b 的周期大于24 h解析:a 的轨道半径大于c 的轨道半径,则卫星a 的角速度小于c 的角速度,选项A 正确;a 的轨道半径与b 的轨道半径相等,则卫星a 的加速度等于b 的加速度,选项B 正确;a 的轨道半径大于地球半径,则卫星a 的运行速度小于第一宇宙速度,选项C 错误;a 的轨道半径与b 的轨道半径相等,卫星b 的周期等于a 的周期,为24 h ,选项D 错误. 答案:AB[能力题组]一、选择题9.(2018·四川双流高三质检)2016年2月11日美国科学家宣布人类首次直接探测到引力波.1974年美国物理学家泰勒和赫尔斯发现了一颗编号为PSRB1913+16的脉冲星,该天体是一个孤立双星系统中质量较大的一颗.他们对这个双星系统的轨道进行了长时间的观测,发现双星间的距离正以非常缓慢的速度逐渐减小.该观测结果和广义相对论预言的数值符合得非常好,这间接证明了引力波的存在.泰勒和赫尔斯也因这项工作于1993年荣获诺贝尔物理学奖.那么由于双星间的距离减小,下列关于双星运动的说法中正确的是( ) A .周期逐渐减小 B .角速度逐渐减小C .两星的向心加速度都逐渐减小D .两星之间的万有引力逐渐减小 解析:根据Gm 1m 2L 2=m 1ω2r 1=m 2ω2r 2,r 1+r 2=L 知ω=G m 1+m 2L 3,因双星间的距离减小,则双星角速度变大,周期变小,故A 正确,B 错误;两星间距离减小,则两星间万有引力增大,D 错误;根据G m 1m 2L 2=m 1a =m 2a 知,L 变小,则两星的向心加速度增大,故C 错误. 答案:A10.已知,某卫星在赤道上空轨道半径为r 1的圆形轨道上绕地运行的周期为T ,卫星运动方向与地球自转方向相同,赤道上某城市的人每三天恰好五次看到卫星掠过其正上方,假设某时刻,该卫星在A 点变轨进入椭圆轨道(如图),近地点B 到地心距离为r 2.设卫星由A 到B 运动的时间为t ,地球自转周期为T 0,不计空气阻力,则( ) A .T =38T 0B .t =r 1+r 2T 2r 1r 1+r 22r 1C .卫星在图中椭圆轨道由A 到B 时,机械能增大D .卫星由图中圆轨道进入椭圆轨道过程中,机械能不变解析:根据题意有2πT ·3T 0-2πT 0·3T 0=5·2π,得T =38T 0,所以A 正确;由开普勒第三定律有[12r 1+r 23t2=r 31T 2,得t =r 1+r 2T 4r 1r 1+r 22r 1,所以B 错误;卫星在椭圆轨道中运行时,机械能是守恒的,所以C 错误;卫星从圆轨道进入椭圆轨道过程中在A 点需点火减速,卫星的机械能减小,所以D 错误. 答案:A11.(多选)已知月球围绕地球运动的周期大约为27天,某颗近地卫星绕地球运动的周期大约为1.4 h ,地球同步卫星的轨道半径为r 2,地球半径为R .下列说法中正确的是( ) A .地球同步卫星距离地球中心的距离r 2与月球中心到地球中心的距离r 3之比为1∶9 B .近地卫星距离地球中心的距离r 1与月球中心到地球中心的距离r 3之比为 3∶48C .地球同步卫星绕地球运动的加速度a 2与赤道上物体随地球自转的加速度a 0之比为r 2∶RD .地球同步卫星绕地球运动的加速度a 2与月球绕地球运动的加速度a 3之比为9∶1解析:根据开普勒第三定律有r 3T2=k ,可得r =3kT 2,代入已知条件得选项A 正确,B 错误.地球同步卫星绕地球运动的角速度和地球自转角速度相等,由a =ω2r 可知,a 2∶a 0=r 2∶R ,选项C 正确.根据万有引力提供向心力有G Mmr2=ma ,得a 2∶a 3=r 23∶r 22=(9r 2)2∶r 22=81∶1,选项D 错误.答案:AC 二、非选择题12.(2017·高考天津卷)我国自主研制的首艘货运飞船“天舟一号”发射升空后,与已经在轨运行的“天宫二号”成功对接形成组合体.假设组合体在距地面高为h 的圆形轨道上绕地球做匀速圆周运动,已知地球的半径为R ,地球表面处重力加速度为g ,且不考虑地球自转的影响.则组合体运动的线速度大小为________,向心加速度大小为________. 解析:设组合体的质量为m 、运动线速度为v ,地球质量为M ,则GMm R +h2=ma 向=mv 2R +h,又有G Mm R2=mg联立上述两式得a 向=R 2R +h 2g ,v =RgR +h.答案:RgR +hR 2R +h2g13.(2018·湖北武汉调研)如图所示,一宇航员站在质量分布均匀的某星球表面的一斜坡上的A 点,沿水平方向以速度v 0抛出一个小球,测得经过时间t 小球落到斜坡上的另一点B ,斜坡的倾角为θ,已知该星球的半径为R ,求: (1)该星球表面的重力加速度;由平抛运动规律,则x =v 0t ,y =12gt 2,y x =tan θ,mg =m v 2R。
江苏省2019届高三物理一轮基础测试
闭合电路欧姆定律
1. 关于闭合电路,下列说法中正确的是
A.闭合电路中,电流总是从电势高的地方流向电势低的地方
B.闭合电路中,电源的路端电压越大,电源的输出功率就越大
C.闭合电路中,电流越大,电源的路端电压就越大
D.闭合电路中,外电阻越大,电源的路端电压就越大
2. 用电动势为E、内阻为r的电源对外电路供电,下列判断中正确的是
①电源短路时,路端电压为零,电路电流达最大值②外电路断开时,电路电压为零,路端电压也为零③路端电压增大时,流过电源的电流一定减小④路端电压增大时,电源的效率一定增大
A.①
B.①③
C.②④
D.①③④
3.一太阳能电池板,测得它的开路电压为800 mV,短路电流为40 mA,若将该电池板与一阻值为20 Ω的电阻器连成一闭合电路,则它的路端电压是
A.0.10 V
B.0.20 V
C.0.30 V
D.0.40 V
4.(2002年全国高考理科综合能力试题)在如图所示的电路中,R1、R2、R3和R4皆为定值电阻,R5为可变电阻,电源的电动势为E,内阻为r0,设电流表A的读数为I,电压表V的读数为U0,当R5的滑动触点向图中a端移动时,
A.I变大,U变小
B.I变大,U变大
C.I变小,U变大
D.I变小,U变小
5.如图1—30—2所示,直线A为电源的U—I图线,直线B为电阻R的U—I图线,用该电源和电阻组成闭合电路时,电源的输出功率和电路的总功率分别是
A.4 W、8 W
B.2 W、4 W
C.4 W、6 W
D.2 W、3 W
6.如图所示,电源E的电动势为3.2 V,电阻R的阻值为30 Ω,小灯泡L的额定电压为3.0 V,额定功率为4.5 W,当电键S接位置1时,电压表的读数为3 V,那么当电键S接到位置2时,小灯泡L的发光情况是
A.很暗,甚至不亮
B.正常发光
C.比正常发光略亮
D.有可能被烧坏
7.如图1—30—4所示的电路中,闭合电键S后,灯L1和L2都正常发光,后来由于某种故障使灯L2突然变亮,电压表读数增加,由此推断,这故障可能是
A.L1灯灯丝烧断
B.电阻R2断路
C.电阻R2短路
D.电容器被击穿短路
8.如图所示,直线OAC为某一直流电源的总功率P总随电流I变化的图线.抛物线OBC 为同一直流电源内部热功率P r随电流I变化的图线.若A、B的横坐标为1 A,那么AB线段表示的功率等于
A.1 W
B.3 W
C.2 W
D.2.5 W
9.在如图所示的电路中,R1、R2为定值电阻,R3为可变电阻,电源的电动势为E,内阻为r .设电流表A的读数为I,电压表V的读数为U .当R3滑动触点向图中a端移动,则
A.I变大,U变小
B.I变大,U变大
C.I变小,U变大
D.I变小,U变小
10.调整如图所示电路的可变电阻R的阻值,使电压表V的示数增大ΔU,在这个过程中
A.通过R1的电流增加,增加量一定等于ΔU/R1
B.R2两端的电压减小,减少量一定等于ΔU
C.通过R2的电流减小,但减少量一定小于ΔU/R2
D.路端电压增加,增加量一定等于ΔU
11.如图所示是一个由电池、电阻R与平行板电容器组成的串联电路,在增大电容器两极板间距离的过程中
A.电阻R中没有电流
B.电容器的电容变小
C.电阻R中有从a流向b的电流
D.电阻R中有从b流向a的电流
12.某闭合电路的路端电压U随外电阻R变化的图线如图1—30—6所示,则电源的电动势为_______,内电阻为_______,当U=2 V时,电源的输出功率为_______.
13.在如图所示的电路中,电源的内阻不可忽略不计,已知R1=10 Ω,R2=8 Ω.S与1连接时,电流表的示数为0.2 A;将S切换到2时,可以确定电流表的读数范围是_______.
14.如图所示,电路中电阻R1=8 Ω,R2=10 Ω,R3=20 Ω,电容器电容C=2 μF,电源电动势E=12 V,内电阻r不计,开关S闭合,当滑动变阻器的阻值R由2 Ω变至22 Ω的过程中,通过A2的电荷量是_______,A1的读数变化情况是_______(选填“增大”“减小”“先增后减”“先减后增”).
15.如图所示的电路中,电池的电动势E=9.0 V,内电阻r=2.0 Ω,固定电阻R1=1.0 Ω,R2为可变电阻,其阻值在0~10 Ω范围内调节,问:取R2=______时,R1消耗的电功率最大.取R2=_______时,R2消耗的电功率最大.
16.如图所示,变阻器R2的最大电阻是10 Ω,R3=5 Ω,电源的内电阻r=1 Ω,当电键S闭合,变阻器的滑片在中点位置时,电源的总功率为16 W,电源的输出功率为12 W.此时电灯R1正常发光,求:
(1)电灯阻值R1是多少?(设R1阻值恒定不变)
(2)当电键S断开时,要使电灯正常工作,应使变阻器的电阻改变多少?
17.(12分)如图1—30—11所示的电路中,电源由6个电动势E0=1.5 V、内电阻r0=0.1 Ω的电池串联而成;定值电阻R1=4.4 Ω,R2=6 Ω,R2允许消耗的最大电功率为P m=3.375 W,变阻器开始接入电路中的电阻R3=12 Ω,求:
(1)开始时通过电池的电流多大?电源的输出功率多大?
(2)要使R2实际消耗的功率不超过允许的最大值,可变电阻R3的取值范围是什么?
18.(12分)“加速度计”作为测定物体加速度的仪器,已被广泛地应用于飞机、潜艇、导弹、航天器等装置的制导中,如图所示是“应变式加速度计”的原理图.支架A、B固定在待测系统上,滑块穿在A、B间的水平光滑杆上,并用轻弹簧固接于支架A上,其下端的滑动臂可在滑动变阻器上自由滑动.随着系统沿水平方向做变速运动,滑块相对于支架发生位移,并通过电路转换为电信号从1、2两接线柱输出.
已知滑块质量为m,弹簧劲度系数为k,电源电动势为E,内电阻为r,滑动变阻器总阻值R=4r,有效总长度为L.当待测系统静止时,滑动臂P位于滑动变阻器的中点,且1、2两接线柱输出的电压U0=0.4E.取AB方向为参考正方向.
(1)写出待测系统沿AB方向做变速运动的加速度a与1、2两接线柱间的输出电压U 间的关系式.
(2)确定该“加速度计”的测量范围. 参考答案
1.D
2.D
3.D
4.D
5.C 从图中可知E =3 V ,图线A 和图线B 的交点是电源和电阻R 构成电路的工作点,因此P 出=UI =4 W ,P 源=EI =6 W.
6.A S 接1时,由E =U +Ir 得r =2 Ω.R L =U 额2/P 额=2 Ω,故S 接2时,U L =
r
R E
L +· R L =
1.6 V <3.0 V ,故灯很暗,此时电路中电流I ′=0.8 A ,有可能超过电源的额定电流,使电源烧毁导致灯不亮.
7.B
8.C P AB =P A -P B .表示电源的输出功率.C 点表示电源处于短路状态,P 源=P 内. 9.D 10.AC 11.BC
12.3.0 V;1 Ω;2.0 W 13.0.2 A <I 2<0.25 A.I 2=)821(2.0)(2112r
R r R r I R r E ++=++=+A ,而0<r <∞,从而可
确定I 2的范围.
14.1.28×10-5 C;减小
15.0;3.0 Ω.当R L =0时,电路中电流最大,R 1消耗的电功率最大;电源进行等效变换,保持电源电动势E 不变,将固定电阻R 1归并到内电路,等效内电阻r ′=r +R 1,当R 2=R 1+r 时,电源输出功率最大.
16.(1)2.5 Ω;(2)1.5 Ω
17.(1)1 A 8.4 W;(2)0≤R 3≤30 Ω,第(2)问可将R 1归为内电路,利用等效电源进行处理.
18.(1)设待测系统沿AB 方向有加速度a ,则滑块将左移x ,满足kx =ma
U 0-U =
r R R E +',而R ′=L
rx
R L x 4=. 故有 a =
mE
U E kL mEr r R U U kL 4)
4.0(54))((0-=+-.
(2)当待测系统静止时,滑动臂P 位于滑动变阻器的中点,且1、2两接线柱输出的电压U 0=0.4E ,故输出电压的变化范围为0≤U ≤2U 0,即0≤U ≤0.8E ,结合(1)中导出的a 与U 的表达式,可知加速度计的测量范围是-m kL 2≤a ≤m
kL 2.。