2018朝阳初三数学二模试题及答案.pdf
- 格式:pdf
- 大小:494.38 KB
- 文档页数:15
下面1-8题均有四个选项,其中符合题意的选项只有..一个. 1.若代数式3x x的值为零,则实数x 的值为( ) (A ) x =0 (B )x ≠0 (C )x =3 (D )x ≠3 2.如图,左面的平面图形绕直线l 旋转一周,可以得到的立体图形是( )3.中国传统扇文化有着深厚的底蕴,下列扇面图形既是轴对称图形又是中心对称图形的是( )4.如图,在数轴上有点O ,A ,B ,C 对应的数分别是0,a ,b ,c ,AO =2,OB =1,BC =2,则下列结论正确的是( ) 一、选择题(本题共16分,每小题2分)数学试卷北京市朝阳区九年级综合练习(二)(A )a c = (B )ab >0 (C )a +c =1 (D )b -a=1 5.⊙O 是一个正n 边形的外接圆,若⊙O 的半径与这个正n 边形的边长相等,则n 的值为( )(A )3 (B )4 (C )5 (D )6 6.已知a a 252=-,代数式)1(2)2(2++-a a 的值为( ) (A )-11 (B )-1 (C ) 1 (D )117.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人28~35次的人数最多 35~42次 21次的有15人 其中正确的是( )(A )①② (B )②③ (C )③④ (D )④8.如图,矩形ABCD 中,AB =4,BC =3,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S 1-S 2为( ) (A )41312π-(B )4912π-(C )4136π+ (D )6二、填空题(本题共16分,每小题2分)9. 写出一个比2大且比5小的有理数: .10.直线AB ,BC ,CA 的位置关系如图所示,则下列语句:①点A 在直线上BC ;②直线AB 经过点C ;③直线AB ,BC ,CA 两两相交;④点B 是直线AB ,BC ,CA 的公共点,正确的有 (只填写序号).第10题图 第11题图 第12题图 11. 2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m 、n 的式子表示AB 的长为 .12.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在圆O 上,BD =CD ,AB=10,AC =6,连接OD 交BC 于点E ,DE = . 13.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示. 根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是_______.第13题图 第14题图14.如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点C (0,4),D 是OA 中点,将△CDO 以C 为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C 与点O 重合,写出此时点D 的对应点的坐标: . 15.下列对于随机事件的概率的描述: ①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是0.2; ③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85。
吉林省长春市朝阳区2018年中考数学二模试卷一、选择题(本大题共8道小题,每小题3分,共24分)1.的绝对值是()A.B.C.2 D.﹣22.据某市旅游局统计,今年“春节”长假期间,旅游总收入达到855000000元,将855000000这个数字用科学记数法表示为()A.8.55×107B.0.855×109C.8.55×108D.85.5×1073.下列图形是正方体表面积展开图的是()A.B.C.D.4.把不等式2x+2≥0在数轴上表示出来,则正确的是()A.B.C.D.5.如图,AB∥CD,且∠1=115°,∠A=75°,则∠E的度数是()A.30° B.50° C.40° D.60°6.如图,AB是半圆O的直径,点C在半圆周上,连结AC,∠BAC=30°,点P是线段AB上任意一点,若AB=4,则CP的长不可能为()A.3 B.2 C.D.17.如图,在平面直角坐标系中,Rt△OAB的顶点A、B的坐标分别是(2,0),(2,4),将△OAB绕点O逆时针方向旋转90°,得到△OA′B′,函数y=(x<0)的图象过A′B′的中点C,则k的值为()A.4 B.﹣4 C.8 D.﹣88.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点B与原点O重合,顶点A、C 分别在y轴、x轴的正半轴上,将Rt△ABC沿直线y=2x向上平移得到Rt△A′B′C′,纵坐标为4,若AB=BC=3,则点A′的坐标为()A.(3,7) B.(2,7) C.(3,5) D.(2,5)二、填空题9.计算:=.10.一元二次方程x2﹣3x+1=0的根的判别式的值是.11.如图,在△ABC中,∠ACB=90°,将△ABC绕着点C顺时针旋转90°得到△A′B′C.若∠A=25°.则∠AB′A′的度数是度.12.如图,在平面直角坐标系中,点A在函数y=(k<0,x<0)的图象上,过点A作AB∥y轴交x轴于点B,点C在y轴上,连结AC、BC.若△ABC的面积是3,则k=.13.如图,AB是⊙O的直径,BD是弦,过点A的切线交BD延长线于点C.若AB=AC=4,则图中阴影部分图形的面积和是.14.在平面直角坐标系中,抛物线y=ax2+bx+c(a,b,c是常数,a>0)的部分图象如图所示,直线x=1是它的对称轴.若一元二次方程ax2+bx+c=0的一个根x1的取值范围是2<x1<3,则它的另一个根x2的取值范围是.三、解答题(本大题10小题,共78分)15.(6分)先化简,再求值:(2a+b)(2a﹣b)﹣a(8a﹣2ab),其中a=﹣,b=2.16.(6分)在一个不透明的盒子中只装有2个白色围棋子和1个黑色围棋子,围棋子除颜色外其余均相同.从这个盒子中随机地摸出1个围棋子,记下颜色后放回,搅匀后再随机地摸出1个围棋子记下颜色.请用画树状图(或列表)的方法,求两次摸出的围棋子颜色都是白色的概率.17.(6分)某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?18.(7分)如图,在矩形ABCD中,点E、F分别在边BC、AD上,连结DE、EF.四边形CDFE沿EF折叠后得到四边形C′D′FE,点D的对称点D′与点B重合.求证:四边形BEDF 是菱形.19.(7分)在某市开展的“美丽春城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成如下不完整的统计图表:某校七年级部分同学的劳动时间频数分布表劳动时间(时)频数0.5 121 301.5 m2 18合计100(1)求m的值,并补全频数分布直方图.(2)被调查同学劳动时间的中位数是小时.(3)求被调查同学的平均劳动时间.20.(7分)如图,在热气球上A处测得一栋大楼顶部B的俯角为23°,测得这栋大楼底部C的俯角为45°.已知热气球A处距地面的高度为180m,求这栋大楼的高度(精确到1m).参考数据:sin23°=0.39,cos23°=0.92,tan23°=0.42.21.(8分)甲、乙两车分别从A、B两地沿同一路线同时出发,相向而行,以各自速度匀速行驶,甲车行驶到B地停止,乙车行驶到A地停止,甲车比乙车先到达目的地.设甲、乙两车之间的路程为y(km),乙车行驶的时间为x(h),y与x之间的函数图象如图所示.(1)求甲车行驶的速度.(2)求甲车到达B地后y与x之间的函数关系式.(3)当两车相遇后,两车之间的路程是160km时,求乙车行驶的时间.22.(9分)猜想:如图①,在▱ABCD中,点O是对角线AC的中点,过点O的直线分别交AD、BC于点E、F.若▱ABCD的面积是10,则四边形CDEF的面积是.探究:如图②,在菱形ABCD中,对角线AC、BD相交于点O,过点O的直线分别交AD、BC于点E、F.若AC=4,BD=8,求四边形ABFE的面积.应用:如图③,在Rt△ABC中,∠BAC=90°,延长BC到点D,使DC=BC,连结AD.若AC=4,,则△ABD的面积是.23.(10分)如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).(1)当点N落在边BC上时,求t的值.(2)当点N到点A、B的距离相等时,求t的值.(3)当点Q沿D→B运动时,求S与t之间的函数表达式.(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.24.(12分)如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于点A、B.抛物线y=﹣+n的顶点P在直线y=﹣x+4上,与y轴交于点C(点P、C不与点B 重合),以BC为边作矩形BCDE,且CD=2,点P、D在y轴的同侧.(1)n=(用含m的代数式表示),点C的纵坐标是(用含m的代数式表示).(2)当点P在矩形BCDE的边DE上,且在第一象限时,求抛物线对应的函数表达式.(3)设矩形BCDE的周长为d(d>0),求d与m之间的函数表达式.(4)直接写出矩形BCDE有两个顶点落在抛物线上时m的值.2018年吉林省长春市朝阳区中考数学二模试卷参考答案与试题解析一、选择题(本大题共8道小题,每小题3分,共24分)1.的绝对值是()A.B.C.2 D.﹣2【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣的绝对值是.故选:A.【点评】本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.据某市旅游局统计,今年“春节”长假期间,旅游总收入达到855000000元,将855000000这个数字用科学记数法表示为()A.8.55×107B.0.855×109C.8.55×108D.85.5×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:855000000=8.55×108.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列图形是正方体表面积展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】根据正方体展开图的11种形式对各小题分析判断即可得解.【解答】解:A、无法围成立方体,故此选项错误;B、无法围成立方体,故此选项错误;C、无法围成立方体,故此选项错误;D、可以围成立方体,故此选项正确.故选:D.【点评】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况,)判断也可.4.把不等式2x+2≥0在数轴上表示出来,则正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:解不等式2x+2≥0得,x≥﹣1,在数轴上表示为:.故选C.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.5.如图,AB∥CD,且∠1=115°,∠A=75°,则∠E的度数是()A.30° B.50° C.40° D.60°【考点】平行线的性质;三角形的外角性质.【专题】计算题;压轴题.【分析】由AB∥CD,∠A=75°可以得到∠ECD=∠A=75°,而∠1=115°,再利用三角形外角的性质即可求出∠E.【解答】解:∵AB∥CD,∠A=75°,∴∠ECD=∠A=75°,∵∠1=115°,∴∠E=∠1﹣∠ECD=40°.故选C.【点评】本题应用的知识点为:两直线平行,同位角相等;三角形的一个外角等于和它不相邻的两个内角的和.6.如图,AB是半圆O的直径,点C在半圆周上,连结AC,∠BAC=30°,点P是线段AB上任意一点,若AB=4,则CP的长不可能为()A.3 B.2 C.D.1【考点】圆周角定理.【分析】连接BC,由圆周角定理得出∠ACB=90°,由∠BAC=30°得出BC=AB=2,求出AC= BC=2,当CP⊥AB时,CP最小,当P与A重合时,CP最大,求出CP的取值范围即可.【解答】解:连接BC,如图所示:∵AB是半圆O的直径,∴∠ACB=90°,∵∠BAC=30°,∴BC=AB=2,∴AC=BC=2,当CP⊥AB时,CP最小=AC=;当P与A重合时,CP最大=AC=2;∴≤CP≤2,∴CP的长不可能为1;故选:D.【点评】本题考查了圆周角定理、含30°角的直角三角形的性质、勾股定理;熟练掌握圆周角定理,求出CP的取值范围是解决问题的关键.7.如图,在平面直角坐标系中,Rt△OAB的顶点A、B的坐标分别是(2,0),(2,4),将△OAB绕点O逆时针方向旋转90°,得到△OA′B′,函数y=(x<0)的图象过A′B′的中点C,则k的值为()A.4 B.﹣4 C.8 D.﹣8【考点】反比例函数图象上点的坐标特征;坐标与图形变化-旋转.【分析】根据旋转的性质,旋转不改变图形的大小和形状,所得图形与原图形全等求得A′的坐标(0,2),B′的坐标是(﹣4,2),进而求得中点C的坐标,然后根据待定系数法剪开求得k的值.【解答】解:∵点A、B的坐标分别是(2,0),(2,4),∴OA=2,AB=4,∵△A′B′O≌△ABO,∵B(2,4),∴A′的坐标为(0,2),B′的坐标是(﹣4,2)∴A′B′的中点C(﹣2,2),∵函数y=(x<0)的图象过A′B′的中点C,∴k=﹣2×2=﹣4,故选B.【点评】本题考查了坐标与图形的变化﹣旋转,反比例函数图形上点的坐标特征,根据旋转的性质得出A′、B′的坐标是解题的关键.8.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点B与原点O重合,顶点A、C 分别在y轴、x轴的正半轴上,将Rt△ABC沿直线y=2x向上平移得到Rt△A′B′C′,纵坐标为4,若AB=BC=3,则点A′的坐标为()A.(3,7) B.(2,7) C.(3,5) D.(2,5)【考点】坐标与图形变化-平移.【分析】根据直线解析式求出点B′的横坐标,再根据平移变换只改变图形的位置不改变图形的形状与大小确定出点A′的横坐标与纵坐标,然后写出即可.【解答】解:∵纵坐标为4,∴2x=4,解得x=2,所以,点B′的坐标为(2,4),∵Rt△ABC沿直线y=2x向上平移得到Rt△A′B′C′,AB=BC=3,∴A′的横坐标为2,纵坐标为4+3=7,∴点A′的坐标为(2,7).故选B.【点评】本题考查了坐标于图形变化﹣平移,一次函数图象上点的坐标特征,难点在于读懂题目信息并求出点B′的坐标.二、填空题9.计算:=2.【考点】二次根式的乘除法.【分析】根据二次根式的乘法,即可解答.【解答】解:==2,故答案为:2.【点评】本题考查了二次根式的乘法,解决本题的关键是熟记根式的乘法.10.一元二次方程x2﹣3x+1=0的根的判别式的值是5.【考点】根的判别式.【分析】根据根的判别式等于b2﹣4ac,代入求值即可.【解答】解:∵a=1,b=﹣3,c=1,∴△=b2﹣4ac=(﹣3)2﹣4×1×1=5,故答案为:5.【点评】本题考查了根的判别式,熟记根的判别式的公式△=b2﹣4ac.11.如图,在△ABC中,∠ACB=90°,将△ABC绕着点C顺时针旋转90°得到△A′B′C.若∠A=25°.则∠AB′A′的度数是115度.【考点】旋转的性质.【分析】根据旋转的性质可得∠A′B′C=∠B=65°,继而可得∠A′B′C的领补角∠AB′A′的度数.【解答】解:在△ABC中,∵∠ACB=90°,∠A=25°,∴∠B=65°,又∵△A′B′C是由△ABC绕着点C顺时针旋转90°得到,∴∠A′B′C=∠B=65°,∴∠AB′A′=180°﹣∠A′B′C=115°,故答案为:115.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12.如图,在平面直角坐标系中,点A 在函数y=(k <0,x <0)的图象上,过点A 作AB ∥y 轴交x 轴于点B ,点C 在y 轴上,连结AC 、BC .若△ABC 的面积是3,则k= ﹣6 .【考点】反比例函数系数k 的几何意义;反比例函数图象上点的坐标特征.【分析】设点A 的坐标为(m ,),由点A 的坐标结合△ABC 的面积即可得出k 的值.【解答】解:设点A 的坐标为(m ,).∵S △ABC =AB •OB=×(﹣m )=3,∴k=﹣6.故答案为:﹣6.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是求出点A 的横纵坐标之积.本题属于基础题,难度不大,解决该题型题目时,用点A 的坐标来表示三角形的面积是关键.13.如图,AB 是⊙O 的直径,BD 是弦,过点A 的切线交BD 延长线于点C .若AB=AC=4,则图中阴影部分图形的面积和是 8﹣2π .【考点】扇形面积的计算;切线的性质.【分析】连接OD ,根据圆周角定理求出∠AOD 的度数,再由S 阴影=(S △ABC ﹣S 扇形AOD ﹣S △BOD )+(S 扇形BOD ﹣S △BOD )即可得出结论.【解答】解:连接OD ,∵AB 为⊙O 的直径,AC 为切线,AB=AC=4,∴∠BAC=90°,OA=OB=2,∠ABC=45°,∴∠AOD=90°,△BOD 是等腰直角三角形,∴S 阴影=(S △ABC ﹣S 扇形AOD ﹣S △BOD )+(S 扇形BOD ﹣S △BOD )=(×4×4﹣﹣×2×2)﹣(﹣×2×2)=8﹣π﹣2﹣(π﹣2)=6﹣π﹣π+2=8﹣2π.故答案为:8﹣2π.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.14.在平面直角坐标系中,抛物线y=ax 2+bx +c (a ,b ,c 是常数,a >0)的部分图象如图所示,直线x=1是它的对称轴.若一元二次方程ax 2+bx +c=0的一个根x 1的取值范围是2<x 1<3,则它的另一个根x 2的取值范围是 ﹣1<x 2<0 .【考点】图象法求一元二次方程的近似根;抛物线与x 轴的交点.【分析】利用对称轴及二次函数的图象性质,可以把图象与x 轴另一个交点的取值范围确定.【解答】解:由图象可知x=2时,y <0;x=3时,y >0;由于直线x=1是它的对称轴,则由二次函数图象的对称性可知:x=0时,y<0;x=﹣1时,y>0;所以另一个根x2的取值范围为﹣1<x2<0.故答案为:﹣1<x2<0.【点评】本题考查了图象法求一元二次方程的近似根,根据图象信息确定出图象与x轴交点的位置是解题的关键.三、解答题(本大题10小题,共78分)15.先化简,再求值:(2a+b)(2a﹣b)﹣a(8a﹣2ab),其中a=﹣,b=2.【考点】整式的混合运算—化简求值.【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=4a2﹣b2﹣4a2+a2b=a2b﹣b2,当a=﹣,b=2时,原式=﹣4=﹣3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.16.在一个不透明的盒子中只装有2个白色围棋子和1个黑色围棋子,围棋子除颜色外其余均相同.从这个盒子中随机地摸出1个围棋子,记下颜色后放回,搅匀后再随机地摸出1个围棋子记下颜色.请用画树状图(或列表)的方法,求两次摸出的围棋子颜色都是白色的概率.【考点】列表法与树状图法.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两次摸出的围棋子颜色都是白色的情况,再利用概率公式即可求得答案.【解答】解:列表得:白2 黑第一次第二次白1白1 (白1,白1)(白2,白1)(黑,白1)白2 (白1,白2)(白2,白2)(黑,白2)黑(白1,黑)(白2,黑)(黑,黑)∵共有9种等可能的结果,两次摸出的围棋子颜色都是白色的有4种情况,∴P(两次摸出的围棋子颜色都是白色)=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.17.某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?【考点】分式方程的应用.【分析】求的是原计划的工效,工作总量为600,一定是根据工作时间来列等量关系,本题的关键描述语是:共用7天完成了任务,等量关系为:100个零件用的时间+500个零件的时间=7.【解答】解:设该厂原来每天加工x个零件,(1分)由题意得:(5分)解得x=50(6分)经检验:x=50是原分式方程的解(7分)答:该厂原来每天加工50个零件.(8分)【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.18.如图,在矩形ABCD中,点E、F分别在边BC、AD上,连结DE、EF.四边形CDFE 沿EF折叠后得到四边形C′D′FE,点D的对称点D′与点B重合.求证:四边形BEDF是菱形.【考点】矩形的性质;菱形的判定;翻折变换(折叠问题).【分析】根据矩形的性质得出AD∥BC,求出∠DFE=∠BEF,根据折叠得出∠BFE=∠DFE,求出∠BFE=∠BEF,推出BE=BF,推出BF=DF=BE=DE,根据菱形的判定得出即可.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DFE=∠BEF,∵EF为折痕,∴BF=DF,BE=DE,∠BFE=∠DFE,∴∠BFE=∠BEF,∴BE=BF,∴BF=DF=BE=DE,∴四边形BEDF是菱形.【点评】本题考查了矩形的性质,菱形的判定,折叠的性质的应用,能求出BF=DF=BE=DE 是解此题的关键,注意:四条边都相等的四边形是菱形.19.在某市开展的“美丽春城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成如下不完整的统计图表:某校七年级部分同学的劳动时间频数分布表劳动时间(时)频数0.5 121 301.5 m2 18合计100(1)求m的值,并补全频数分布直方图.(2)被调查同学劳动时间的中位数是 1.5小时.(3)求被调查同学的平均劳动时间.【考点】频数(率)分布直方图;频数(率)分布表;中位数.【分析】(1)利用总人数减去其它组的人数求得m的值,进而补全直方图;(2)根据中位数的定义求解;(3)利用加权平均数公式即可求解.【解答】解:(1)m=100﹣12﹣30﹣18=40.如图.;(2)同学劳动时间的中位数是1.5小时,故答案是:1.5;(3)被调查同学的平均劳动时间为(小时).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.如图,在热气球上A处测得一栋大楼顶部B的俯角为23°,测得这栋大楼底部C的俯角为45°.已知热气球A处距地面的高度为180m,求这栋大楼的高度(精确到1m).参考数据:sin23°=0.39,cos23°=0.92,tan23°=0.42.【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过P作PC⊥AB,垂足为C,进而求出DC的长,利用tan23°=,得BD的长,即可得出答案.【解答】解:过点A作直线BC的垂线,垂足为点D,由题意,得∠CAD=45°,∠BAD=23°,CD=180,∴∠CAD=∠ACD=45°,∴CD=AD=180,在Rt△ABD中,∠BDA=90°,∴BD=0.42×180=75.6,∴BC=CD﹣BD=180﹣75.6=104.4≈104m,答:这栋大楼的高约为104m.【点评】此题主要考查了解直角三角形的应用,根据题意正确构造直角三角形是解题关键.21.甲、乙两车分别从A、B两地沿同一路线同时出发,相向而行,以各自速度匀速行驶,甲车行驶到B地停止,乙车行驶到A地停止,甲车比乙车先到达目的地.设甲、乙两车之间的路程为y(km),乙车行驶的时间为x(h),y与x之间的函数图象如图所示.(1)求甲车行驶的速度.(2)求甲车到达B地后y与x之间的函数关系式.(3)当两车相遇后,两车之间的路程是160km时,求乙车行驶的时间.【考点】一次函数的应用.【分析】(1)甲车的速度是180÷1.8,即可解答;(2)先求出乙车的速度是180﹣100=80km/h.a=180÷80=2.25,利用待定系数法即可求出函数解析式;(3)当y=160时,求出x的值,即可解答.【解答】解:(1)甲车的速度是180÷1.8=100km/h.(2)乙车的速度是180﹣100=80km/h.a=180÷80=2.25.设y与x之间的函数关系式为y=kx+b.由题意,得解得,则y=80x.(3)当y=160时,80x=160,解得:x=2.答:乙车行驶的时间是2小时.【点评】本题考查了一次函数的应用,解决本题的关键是准确识图并获取信息.22.猜想:如图①,在▱ABCD中,点O是对角线AC的中点,过点O的直线分别交AD、BC于点E、F.若▱ABCD的面积是10,则四边形CDEF的面积是5.探究:如图②,在菱形ABCD中,对角线AC、BD相交于点O,过点O的直线分别交AD、BC于点E、F.若AC=4,BD=8,求四边形ABFE的面积.应用:如图③,在Rt△ABC中,∠BAC=90°,延长BC到点D,使DC=BC,连结AD.若AC=4,,则△ABD的面积是12.【考点】四边形综合题.【分析】猜想:首先根据平行四边形的性质可得AD∥BC,OA=OC.根据平行线的性质可得∠EAO=∠FCO,∠AEO=∠CFO,进而可根据AAS定理证明△AEO≌△CFO,再根据全等三角形的性质可得结论;探究:根据菱形的性质得到AD∥BC,AO=CO,BO=BD=4,根据全等三角形的判定定理得到△AOE≌△COF,由于AC⊥BD,于是得到结果;应用:延长AC到E使CE=AC=4,根据全等三角形的判定定理得到△ABC≌△CDE,由全等三角形的性质得到∠E=∠BAC=90°,根据勾股定理得到DE==3,即可得到结论.【解答】解:猜想:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC.∴∠EAO=∠FCO,∠AEO=∠CFO,在△AOE和△COF中,,∴△AEO≌△CFO,=▱ABCD的面积=5;∴四边形CDEF的面积=S△ACD故答案为:5;探究:∵四边形ABCD是菱形,∴AD∥BC,AO=CO,BO=BD=4,∴∠OAE=∠OCF,∠OEA=∠OFC,在△AOE于△COF中,,∴△AOE ≌△COF ,∵AC ⊥BD ,∴.应用:延长AC 到E 使CE=AC=4,在△ABC 与△CDE 中,, ∴△ABC ≌△CDE ,∴∠E=∠BAC=90°,∴DE==3, ∴S △ABD =S △ADE =AE •DE=×8×3=12.故答案为:12.【点评】本题考查了全等三角形的判定和性质,平行四边形的性质,菱形的性质,图形面积的计算,熟练掌握全等三角形的判定和性质是解题的关键.23.(10分)(2016•长春二模)如图,△ABC 是等边三角形,AB=6cm ,D 为边AB 中点.动点P 、Q 在边AB 上同时从点D 出发,点P 沿D →A 以1cm/s 的速度向终点A 运动.点Q 沿D →B →D 以2cm/s 的速度运动,回到点D 停止.以PQ 为边在AB 上方作等边三角形PQN .将△PQN 绕QN 的中点旋转180°得到△MNQ .设四边形PQMN 与△ABC 重叠部分图形的面积为S (cm 2),点P 运动的时间为t (s )(0<t <3).(1)当点N 落在边BC 上时,求t 的值.(2)当点N 到点A 、B 的距离相等时,求t 的值.(3)当点Q 沿D →B 运动时,求S 与t 之间的函数表达式.(4)设四边形PQMN 的边MN 、MQ 与边BC 的交点分别是E 、F ,直接写出四边形PEMF 与四边形PQMN 的面积比为2:3时t 的值.【考点】几何变换综合题.【分析】(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;(3)当时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN 的面积表达式后,即可求出t的值.【解答】解:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N 到点A 、B 的距离相等时,t=2;(3)由题意知:此时,PD=t ,DQ=2t当点M 在BC 边上时,∴MN=BQ∵PQ=MN=3t ,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当时, S △PNQ =PQ 2=t 2;∴S=S 菱形PQMN =2S △PNQ =t 2, 如图②,当时,设MN 、MQ 与边BC 的交点分别是E 、F ,∵MN=PQ=3t ,NE=BQ=3﹣2t ,∴ME=MN ﹣NE=PQ ﹣BQ=5t ﹣3,∵△EMF 是等边三角形,∴S △EMF =ME 2=(5t ﹣3)2.;(4)MN 、MQ 与边BC 的交点分别是E 、F ,此时,<t <, t=1或.【点评】本题考查等边三角形与菱形的性质,涉及到等边三角形的性质与面积公式,平行四边形和菱形的性质与面积公式,解方程等知识,综合程度较高,需要学生将各知识点灵活结合.24.(12分)(2016•长春二模)如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于点A、B.抛物线y=﹣+n的顶点P在直线y=﹣x+4上,与y轴交于点C(点P、C不与点B重合),以BC为边作矩形BCDE,且CD=2,点P、D在y轴的同侧.(1)n=﹣m+4(用含m的代数式表示),点C的纵坐标是﹣m2﹣m+4(用含m 的代数式表示).(2)当点P在矩形BCDE的边DE上,且在第一象限时,求抛物线对应的函数表达式.(3)设矩形BCDE的周长为d(d>0),求d与m之间的函数表达式.(4)直接写出矩形BCDE有两个顶点落在抛物线上时m的值.【考点】二次函数综合题.【分析】(1)根据二次函数的解析式写出顶点P的坐标(m,n),又因为点p在直线y=﹣x+4上,将p点坐标代入可求出n,将二次函数化成一般式后得出点C的纵坐标,并将其化成含m的代数式;(2)当点P在矩形BCDE的边DE上,且在第一象限时,由CD=2可知,点P的横坐标为2,可求得纵坐标为2,则P(2,2),得出抛物线对应的函数表达式;(3)根据坐标表示出边BC的长,由矩形周长公式表示出d;(4)首先点B与C不能重合,因此点B不会在抛物线上,则分两类情况讨论:①点C、D 在抛物线上时;②点C、E在抛物线上时;由(1)的结论计算出m的值.【解答】解:(1)y=﹣(x﹣m)2+n=﹣x2+mx﹣m2+n,∴P(m,n),∵点P在直线y=﹣x+4上,∴n=﹣m+4,当x=0时,y=﹣m2+n=﹣m2﹣m+4,即点C的纵坐标为:﹣m2﹣m+4,故答案为:﹣m+4,﹣m2﹣m+4;(2)∵四边形BCDE是矩形,∴DE∥y轴.∵CD=2,∴当x=2时,y=2.∴DE与AB的交点坐标为(2,2).∴当点P在矩形BCDE的边DE上时,抛物线的顶点P坐标为(2,2).∴抛物线对应的函数表达式为.(3)∵直线y=﹣x+4与y轴交于点B,∴点B的坐标是(0,4).当点B与点C重合时,.解得m1=0,m2=﹣3.i)当m<﹣3或m>0时,如图①、②,..ii)当﹣3<m<0时,如图③,..(4)如图④⑤,点C、D在抛物线上时,由CD=2可知对称轴为:x=±1,即m=±1;如图⑥⑦,点C、E在抛物线上时,由B(0,4)和CD=2得:E(﹣2,4)则4=﹣(﹣2﹣m)2+(﹣m+4),解得:、.综上所述:m=1、m=﹣1、、.【点评】本题是二次函数与一次函数及矩形的综合题,考查了函数与两坐标的交点坐标,考查了二次函数的顶点式和矩形的性质,本题的解题思路为:利用点B的坐标和矩形的边长CD=2可以表示出点E的坐标或列式计算.。
辽宁省朝阳市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·高阳模拟) 我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图1表示的是计算3+(-4)的过程.按照这种方法,图2表示的过程应是在计算()A . (-5)+(-2)B . (-5)+2C . 5+(-2)D . 5+22. (2分)(2012·宿迁) 计算(﹣a)2•a3的结果是()A . a5B . a6C . ﹣a5D . ﹣a63. (2分)(2013·台州) 三门湾核电站的1号机组将于2013年的10月建成,其功率将达到1 250 000千瓦.其中1 250 000可用科学记数法表示为()A . 125×104B . 12.5×105C . 1.25×106D . 0.125×1074. (2分)(2016·孝感) 如图是由四个相同的小正方体组成的几何体,则这个几何体的主视图是()A .B .C .D .5. (2分) (2019八上·普兰店期末) 下列因式分解,其中正确的是()A .B .C .D .6. (2分)(2012·本溪) 有三张正面分别标有数字﹣2,3,4的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A .B .C .D .7. (2分)(2015·温州) 若关于x的一元二次方程4x2﹣4x+c=0有两个相等实数根,则c的值是()A . ﹣1B . 1C . ﹣4D . 48. (2分)下列条件不能判定四边形ABCD是平行四边形的是().A . AB∥CD,AD∥BCB . AD=BC, AB=CDC . AB∥CD, AD=BCD . ∠A=∠C ,∠B=∠D9. (2分) (2019九上·滨江竞赛) 如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A .B .C .D .10. (2分) (2017九上·双城开学考) 早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是()A . 1个B . 2个C . 3个D . 4个二、填空题 (共4题;共5分)11. (1分) (2017七下·自贡期末) 若a、b为正整数.且a>,b<,则a+b的最小值为________.12. (2分)如图,已知点A在反比例函数y=(x<0)的图象上,AD∥x轴,AB∥y轴,点B在反比例函数y=(x<0)的图象上,过点B作BC∥x轴,交y轴于点C,若四边形ABCD的面积为8,则k的值为________13. (1分)(2019·玉林模拟) 扇形的半径为8cm,圆心角为120°,用该扇形围成一个圆锥的侧面,则这个圆锥底面圆的直径是________cm.14. (1分) (2018九上·桥东期中) 如图,在等腰中,,点在以斜边为直径的半圆上,为的中点.当点沿半圆从点运动至点时,点运动的路径长是________.三、解答题 (共9题;共65分)15. (5分) (2018八上·黑龙江期末) 先化简,再求值:,其中x=316. (2分)(2011·无锡) 如图,一架飞机由A向B沿水平直线方向飞行,在航线AB的正下方有两个山头C、D.飞机在A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了6千米到B处时,往后测得山头C的俯角为30°,而山头D恰好在飞机的正下方.求山头C、D之间的距离.17. (5分)一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两辆车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天.(1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙两种车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.18. (11分)如图,以O为位似中心,作出四边形ABCD的位似图形,使新图形与原图形的相似比为2:1,并以O为原点,写出新图形各点的坐标.19. (10分) (2018九上·福州期中) 解方程:(1) x2+2x-1=0(2) x(x-3)=x-3.20. (10分)(2018·方城模拟) 如图,已知⊙O与等腰△ABD的两腰AB、AD分别相切于点E、F,连接AO并延长到点C,使OC=AO,连接CD、CB.(1)试判断四边形ABCD的形状,并说明理由;(2)若AB=4cm,填空:①当⊙O的半径为________cm时,△ABD为等边三角形;②当⊙O的半径为________cm时,四边形ABCD为正方形.21. (6分)(2020·北京模拟) 如图是甲、乙两名射击运动员的10次射击测试成绩的折线统计图.(1)根据折线图把下列表格补充完整;运动员平均数中位数众数甲8.59________乙8.5________________(2)根据上述图表运用所学统计知识对甲、乙两名运动员的射击水平进行评价并说明理由.22. (10分) (2018九上·通州期末) 在平面直角坐标系中,二次函数的对称轴为.点在直线上.(1)求,的值;(2)若点在二次函数上,求的值;(3)当二次函数与直线相交于两点时,设左侧的交点为,若,求的取值范围.23. (6分) (2019八上·阳东期末) 如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E,(1)试说明△ABC与△MED全等;(2)若∠M=35°,求∠B的度数?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共5分)11-1、12-1、13-1、14-1、三、解答题 (共9题;共65分)15-1、16-1、17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、。
辽宁省朝阳市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018九上·肇庆期中) 下列图形中,是中心对称图形,但不是轴对称图形的是()A .B .C .D .2. (2分)(2017·深圳模拟) 石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是()A . 3.4×10﹣9B . 0.34×10﹣9C . 3.4×10﹣10D . 3.4×10﹣113. (2分) (2015七下·宜兴期中) 若a=﹣0.32 , b=﹣3﹣2 , c= ,d=(﹣)0 ,则它们的大小关系是()A . a<b<c<dB . b<a<d<cC . a<d<c<bD . c<a<d<b4. (2分)如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为()A . 4B . 6C . 8D . 125. (2分)样本方差的计算式中,数字20和30分别表示样本中的()A . 众数、中位数B . 方差、标准差C . 样本中数据的个数、平均数D . 样本中数据的个数、中位数6. (2分) (2016七下·柯桥期中) 下列各式计算结果正确的是()A . a+a=a2B . (a﹣1)2=a2﹣1C . a•a=a2D . (3a)3=9a27. (2分)(2017·濮阳模拟) 如图,已知锐角三角形ABC,以点A为圆心,AC为半径画弧与BC交于点E,分别以点E、C为圆心,以大于 EC的长为半径画弧相交于点P,作射线AP,交BC于点D.若BC=5,AD=4,tan∠BAD= ,则AC的长为()A . 3B . 5C .D . 28. (2分)(2011·海南) 如图,在以AB为直径的半圆O中,C是它的中点,若AC=2,则△ABC的面积是()A . 1.5B . 2C . 3D . 49. (2分)(2019·乐山) 如图,抛物线与轴交于、两点,是以点(0,3)为圆心,2为半径的圆上的动点,是线段的中点,连结 .则线段的最大值是()A .B .C .D .10. (2分)(2020·常熟模拟) 如图,四边形是矩形,的平分线交延长线于点,若,,则的长为()A . 4.2B . 4.5C . 5.2D . 5.5二、填空题 (共6题;共7分)11. (1分)(2019·沈丘模拟) 计算: ________.12. (1分)分解因式: =________13. (1分)如图,在△ABD中,C是BD上一点,若E、F分别是AC、AB的中点,△DEF的面积为4.5,则△ABC 的面积为________.14. (2分) (2015八上·永胜期末) 已知分式,当x=2时,分式无意义,则a=________;当a为a<6的一个整数时,使分式无意义的x的值共有________个.15. (1分)(2016·邵阳) 如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B 均为格点,则扇形OAB的面积大小是________.16. (1分)边长为1cm的正六边形的半径是________ cm.三、解答题 (共9题;共83分)17. (5分)解不等式组并写出它的所有非负整数解.18. (5分)化简求值:已知x= ,求代数式﹣的值.19. (10分)作出下列三角形(1)中,;(2)中,边上的高.20. (16分)(2017·黄州模拟) 2011年国家对“酒后驾车”加大了处罚力度,出台了不准酒后驾车的禁令.某记者在一停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:①偶尔喝点酒后开车;②已戒酒或从来不喝酒;③喝酒后不开车或请专业司机代驾;④平时喝酒,但开车当天不喝酒.将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关倌息,解答下列问题(1)该记者本次一共调查了________名司机.(2)求图甲中④所在扇形的圆心角,并补全图②.(3)在本次调查中,记者随机采访其中的一名司机.求他属第②种情况的概率.(4)请估计开车的10万名司机中,不违反“酒驾“禁令的人数.21. (5分)如图,在离地面高度5米的C处引拉线固定电线杆,拉线和地面成60°角,求拉线AC的长以及拉线下端点A与杆底D的距离AD(精确到0.01米).22. (10分) (2020八下·河源月考) 如图,在中,,DE是过点A的直线,于点D,于点E.(1)如图,若点D,E在BC的同侧,且.求证:求证:.(2)如图,若点D,E在BC的两侧,问DE、BD、CE的数量关系是什么?并给出证明.23. (10分)(2017·北京) 如图,在平面直角坐标系xOy中,函数y= (x>0)的图象与直线y=x﹣2交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y= (x>0)的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.24. (7分) (2019九上·瑞安月考) 如图Rt△ABC中,∠ABC=90°,P是斜边AC上一个动点,以BP为直径作⊙O交BC于点D,与AC的另一个交点E,连接DE,(1)当时,①若=130°,求∠C的度数②求证AB=AP(2)当AB=15,BC=20,时①是否存在点P,使得△BDE是等腰三角形,若存在求出所有符合条件的CP的长;________②以D为端点过P作射线D,作点0关于DE的对称点Q恰好落在∠CPH内,则CP的取值范围为。
北京市朝阳区2018年初中毕业考试(二模)数学试卷考生须知1.考试时间为90分钟,满分100分;2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(填空题、解答题)两部分,共8页;3.认真填写密封线内学校、班级、姓名.第Ⅰ卷(共30分)一、选择题(共10道小题,每小题3分,共30分)第1-10题均有四个选项,符合题意的选项只有一个.请用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.如图所示,数轴上表示绝对值大于3的数的点是(A)点E (B)点F (C)点M(D)点N2.若代数式32x有意义,则实数x的取值范围是(A)x=0 (B)x=3 (C)x≠0(D)x≠33.右图是某个几何体的展开图,该几何体是(A)正方体(B)圆锥(C)圆柱(D)三棱柱4.小鹏和同学相约去影院观看《厉害了,我的国》,在购票选座时,他们选定了方框所围区域内的座位(如图). 取票时,小鹏从这五张票中随机抽取一张,则恰好抽到这五个座位正中间的座位的概率是(A)21(B)54(C)53(D)515.将一副三角尺按如图的方式摆放,其中l1∥l2,则∠α的度数是(A )30° (B )45°(C )60° (D )70°6.某学校课外活动小组为了解同学们喜爱的电影类型,设计了如下的调查问卷 (不完整):准备在“①国产片,②科幻片,③动作片,④喜剧片,⑤亿元大片”中选取三个作为该问题的备选答案,选取合理的是(A )①②③ (B )①③⑤ (C )②③④ (D )②④⑤ 7.如图,在平面直角坐标系xOy 中,反比例函数xky =的图象经过点T . 下列各点 )64(,P ,)83(-,Q ,)122(--,M ,)4821(,N 中,在该函数图象上的点有(A )4个 (B )3个 (C )2个 (D )1个8.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,若∠ADE =110°,则∠AOC的度数是(A )70° (B )110° (C )140° (D )160°9.在平面直角坐标系xOy 中,二次函数172++=x x y 的图象如图所示,则方程调查问卷 年 月你平时最喜欢的一种电影类型是( )(单选) A. B. C. D.其他0172=++x x 的根的情况是(A )有两个相等的实数根 (B )有两个不相等的实数根 (C )没有实数根 (D )无法判断10.如图,正方形ABCD 的边长为2,以BC 为直径的半圆与对角线AC 相交于点E ,则图中阴影部分的面积为(A )π4125+ (B )π4123-(C )π2125- (D )π4125-机读答题卡题号12345678910答 案〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕第Ⅱ卷 (共70分)二、填空题(共6道小题,每小题3分,共18分)11.分解因式:=++222n mn m .12. 如果一个多边形是轴对称图形,那么这个多边形可以是 (写出一个即可). 13.抛物线y =x 2-6x +5的顶点坐标为 .14.一次函数y =kx +2(0≠k )的图象与x 轴交于点A (n ,0),当n >0时,k 的取值范围是 .15.如图,某数学小组要测量校园内旗杆AB 的高度,其中一名同学站在距离旗杆12米的点C 处,测得旗杆顶端A 的仰角为α,此时该同学的眼睛到地面的高CD 为1.5米, 则旗杆的高度为 (米)(用含α的式子表示). 16.如图,∠AOB =10°,点P 在OB 上.以点P 为圆心,OP 为半径画弧,交OA 于点P 1(点P 1与点O 不重合),连接PP 1;再以点P 1为圆心,OP 为半径画弧,交OB 于点P 2(点P 2与点P 不重合),连接P 1 P 2; 再以点P 2为圆心,OP 为半径画弧,交OA 于点P 3(点P 3与点P 1不重合),连接P 2 P 3; … …请按照上面的要求继续操作并探究: ∠P 3 P 2 P 4= º;按照上面的要求一直画下去,得到点P n ,若之后就不能再画出符合要求点P n+1了,则n = .三、解答题(共10道小题,17-25题每小题5分,26题7分,共52分) 17.(本小题5分)计算:1)31()10(30cos 412-︒+-+-π.18.(本小题5分)解不等式组:⎩⎨⎧-++.23,322x x x x <)(<19.(本小题5分)先化简,再求值:1111122+-+-÷--a a a a a ,其中4=a .20.(本小题5分)如图,BD 是△ABC 的角平分线,DE //BC 交AB 于点E . (1)求证:BE=DE ;(2)若AB=BC =10,求DE 的长.21.(本小题5分)在平面直角坐标系xOy 中,△ABC 的顶点分别 为A (1,1),B (2,4),C (4,2).(1)画出△ABC 关于原点O 对称的△A 1B 1C 1; (2)点 C 关于x 轴的对称点C 2的坐标为 ;(3)点C 2向左平移m 个单位后,落在△A 1B 1C 1内部,写出一个满足条件的 m 的值: .22.(本小题5分)北京市积极开展城市环境建设,其中污水治理是重点工作之一,以下是北京市2012—2017年污水处理率统计表:年份2012 2013 2014 2015 2016 2017 污水处理率(%)83.0 84.6 86.1 87.9 90.0 92.0(1)用折线图将2012—2017年北京市污水处理率表示出来,并在图中标明相应的数据;(2)根据统计图表中提供的信息,预估2018年北京市污水处理率约为%,说明你的预估理由:.北京市2012—2017年污水处理率统计图23.(本小题5分)如图,在菱形ABCD中,AC和BD相交于点O,过点O的线段EF与一组对边AB,CD 分别相交于点E,F.(1) 求证:AE=CF;(2)若AB=2,点E是AB中点,求EF的长.24.(本小题5分)保护和管理好湿地,对于维护一个城市生态平衡具有十分重要的意义.2018年北京计划恢复湿地和计划新增湿地的面积共2200公顷,其中计划恢复湿地面积比计划新增湿地面积的2倍多400公顷.求计划恢复湿地和计划新增湿地的面积.25.(本小题5分)如图,在△ABC 中,AB =BC ,∠A =45°,以AB 为直径的⊙O 交CO 于点D . (1)求证:BC 是⊙O 的切线;(2)连接BD ,若BD =m ,tan ∠CBD =n ,写出求直径AB 的思路.26.(本小题7分)抛物线c bx x y ++=2的对称轴为直线x =1,该抛物线与x 轴的两个交点分别为 A 和B ,与 y 轴的交点为C ,其中A (-1,0). (1)写出B 点的坐标 ;(2)若抛物线上存在一点P ,使得△POC 的面积是△BOC 的面积的2倍,求点P 的坐标;(3)点M 是线段BC 上一点,过点M 作x 轴的垂线交抛物线于点D ,求线段MD 长度的最大值.北京市朝阳区2018年初中毕业考试数学试卷评分标准及参考答案 2018.4一、选择题(每小题3分,共30分)1.A 2.D 3.B 4.D 5.C 6.C 7.B 8.C 9.B 10.D二、填空题(每小题3分,共18分)11.2)(n m + 12.答案不唯一. 如:正方形. 13.(3,-4) 14. k < 0 15. 1.5+12tan α 16. 40 ;8 三、解答题(17—25题每小题5分,26题7分,共52 分) 17.解:原式=3123432++⨯-……………………………………………4分 =4. ………………………………………………………………5分18. 解:⎩⎨⎧-++.)2(3,322x x x x <<解不等式①,得 1-> x . …………………………………………2分 解不等式②,得 3<x . …………………………………………4分 ∴不等式组的解集为31<<-x . …………………………………5分19.解:1111122+-+-÷--a a a a a =11)1()1)(1(2+-+-⋅-+-a a a a a a ………………………………………2分11+=a .………………………………………………………………4分 当4=a 时,原式=51. …………………………………………………………………5分20.(1)证明:∵BD 是△ABC 的角平分线,∴∠EBD =∠CBD . ∵DE //BC ,∴∠EDB =∠CBD . ∴∠EDB =∠EBD .∴BE=DE . ……………………………………………………2分(2)解:∵AB=BC ,BD 是△ABC 的角平分线,∴AD =DC . ………………………………………………………… 3分 ∵DE //BC ,∴1==DCAD EBAE .……………………………………………………… 4分∴521==AB BE .①②∴5=DE . ………………………………………………………5分21. 解:(1)图略. …………………………………………………………3分 (2)(4,-2). …………………………………………………………4分 (3)答案不唯一.如:6. …………………………………………………5分22. 解:(1)图略. ………………………………………………………………3分 (2)预估理由须包含统计图表中提供的信息,且支撑预估的数据.……5分23.(1)证明:∵四边形ABCD 是菱形,∴AO=CO ,AB ∥CD . …………………………………………………1分 ∴∠EAO=∠FCO ,∠AEO=∠CFO .∴△AOE ≌△COF . …………………………………………………2分 ∴AE =CF . ………………………………………………………………3分 (2)解:∵E 是AB 中点,∴BE=AE=CF . ∵BE ∥CF ,∴四边形BEFC 是平行四边形. ………………………………………4分 ∵AB=2,∴EF=BC=AB=2. ……………………………………………………5分24. 解:设计划新增湿地x 公顷,则计划恢复湿地(2x+400)公顷. ……1分 依题意,得 x+ 2x+400=2200.……………………………………… 3分 解得 x =600. ……………………………………4分2x+400=1600.…………………………………………5分答:计划恢复湿地1600公顷,计划新增湿地600公顷.25.(1)证明:∵AB =BC ,∠A =45°,∴∠ACB =∠A =45°.∴∠ABC =90°. …………………………………………………………1分 ∵AB 是⊙O 的直径,∴BC 是⊙O 的切线. …………………………………………………2分 (2)求解思路如下:①连接AD ,由AB 为直径可知,∠ADB =90°,进而可知∠BAD =∠CBD ;……3分②由BD =m ,tan ∠CBD =n ,在Rt △ABD 中,可求AD =mn;………………………4分 ③在Rt △ABD 中,由勾股定理可求AB 的长. ……………………………………5分26. 解:(1)(3,0). ………………………………………………………………………1分(2)由A (-1,0),B (3,0),求得抛物线的表达式为322--=x x y .…………2分∴C (0,-3).北京市朝阳区2018年初中毕业考试(二模)数学试卷和答案数学试卷 第 页(共8页) 11 / 1111 ∴193322BOC S =⨯⨯=△. ∴29POC BOC S S ==△△.设点P 的横坐标为P x ,求得6P x =±.代入抛物线的表达式,求得点P 的坐标为(6,21),(-6,45). ………………4分(3)由点B (3,0) ,C (0,-3),求得直线BC 的表达式为3y x =-. ……………5分设点M (a ,a -3),则点D (a ,a 2-2a -3).∴MD = a -3-( a 2-2a -3)=-a 2 +3a=239()24a --+. ……………………………………………………6分 ∴当32a =时,MD 的最大值为94. …………………………………………………7分说明:各解答题的其他正确解法请参照以上标准给分.。
北京市朝阳区九年级综合练习(二)数学试卷学校 班级 姓名一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.??的绝对值是A .?2B .12-C .12D .22.我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在千克以下.将用科学记数法表示为A .57.510´ B.57.510-´C .40.7510-´ D.67510-´ 3.如图,在△ABC 中,DE ∥BC ,如果AD =3,BD =5,那么DEBC的值是 A. 35 B. 925 C. 38D.584.从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为A .19B .18C .29D .135.如图,圆锥的底面半径OA 为2,母线AB 为3,则这个圆锥的侧面积为 π B. 6π C. 12πD. 18π6.如图,下列水平放置的几何体中,主视图不是..长方形的是7. 某校篮球课外活动小组21名同学的身高如下表则该篮球课外活动小组21名同学身高的众数和中位数分别是 A .176,176 B .176,177 C .176,178 D .184,1788.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第 3格、第4格、第5格,此时这个正方体朝上..一面的字是 A .我 B .的 C .梦 D .中二、填空题(本题共16分,每小题4分) 9.在函数y =x 的取值范围是 .10.分解因式:32242x x x -+= .11.如图,在⊙O 中,直径CD ⊥弦AB 于点E ,点F 在弧AC 上,若∠BCD =32°,则∠AFD 的度数为 .12.如图,在平面直角坐标系xOy 中,直线AB 与x 、y 轴分别交于点A 、B ,且A(-2,0),B (0,1),在直线 AB 上截取BB 1=AB ,过点B 1分别作x 、y 轴的垂线,垂足分别为点A 1 、C 1,得到矩形OA 1B 1C 1;在直线AB 上截取B 1B 2= BB 1,过点B 2分别作x 、y 轴的垂线,垂足分别为点A 2 、C 2,得到矩形OA 2B 2C 2;在直线 AB 上截取B 2B 3= B 1B 2,过点B 3分别作x 、y 轴的垂线,垂足分别为点A 3 、C 3,得到矩形OA 3B 3C 3;……则第3个矩形OA 3B 3C 3的面积是 ;第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共30分,每小题5分)13.计算:)214452-⎛⎫︒ ⎪⎝⎭.14.计算:2312()111x x x -÷-+- .15.如图,为了测量楼AB 的高度,小明在点C 处测得楼AB 的顶端A 的仰角为30o ,又向前走了20米后到达点D ,点B 、D 、C 在同一条直线上,并在点D 测得楼AB 的顶端A 的仰角为60o ,求楼AB 的高.16.已知:如图,E 、F 为BC 上的点,BF=CE ,点A 、D 分别在BC 的两侧,且AE ∥DF ,AE =DF .求证:AB ∥CD .17.如图,在平面直角坐标系xOy 中,一次函数y kx =-2的图象与x 、y 轴分别交于点A 、B ,与反比例函数32y x =-(x <0)的图象交于点3()2M n -,. (1)求A 、B 两点的坐标;(2)设点P 是一次函数y kx =-2图象上的一点,且满足△APO 的面积是△ABO 的面积的2倍,直接写出点P 的坐标.18.某新建小区要铺设一条全长为2200米的污水排放管道,为了尽量减少施工对周边居民所造成的影响,实际施工时,每天铺设的管道比原计划增加10%,结果提前5天完成这一任务,原计划每天铺设多少米管道?B四、解答题(本题共20分,每小题5分)19.如图,在平行四边形ABCD 中,AD = 4,∠B =105o ,E 是BC 边的中点,∠BAE =30o ,将△ABE 沿AE 翻折,点B 落在点F 处,连接FC ,求四边形ABCF 的周长.20.如图,在△ABC 中,AC=BC ,D 是BC 上的一点,且满足∠BAD =12∠C ,以AD 为直径的⊙O 与AB 、AC 分别相交于点E 、F . (1)求证:直线BC 是⊙O 的切线; (2)连接EF ,若tan ∠AEF =43,AD =4,求BD 的长.21.今年“五一”假期,小翔参加了学校团委组织的一项社会调查活动,了解他所在小区家庭的教育支出情况.调查中,小翔从他所在小区的500户家庭中,随机调查了40个家庭,并将调查结果制成了部分统计图表.(注:每组数据含最小值,不含最大值)根据以上提供的信息,解答下列问题: (1)频数分布表中的a = ,b = ; (2)补全频数分布直方图;(3)请你估计该小区家庭中,教育支出不足1500元的家庭大约有多少户?B (元)教育支出频数分布表 教育支出频数分布直方图22.阅读下列材料:小华遇到这样一个问题,如图1, △ABC 中,∠ACB =30o ,BC =6,AC =5,在△ABC 内部有一点P ,连接P A 、PB 、PC ,求P A +PB +PC 的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC 绕点C 顺时针旋转60o ,得到△EDC ,连接PD 、BE ,则BE 的长即为所求.(1)请你写出图2中,P A +PB +PC 的最小值为 ; (2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD 中,∠ABC =60o ,在菱形ABCD 内部有一点P ,请在图3中画出并指明长度等于P A +PB +PC 最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD 的边长为4,请直接写出当P A +PB +PC 值最小时PB 的长.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的一元二次方程x 2?(4?m )x ?1?m = 0.(1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)此方程有一个根是?3,在平面直角坐标系xOy 中,将抛物线y ?x 2?(4?m )x ?1?m向右平移3个单位,得到一个新的抛物线,当直线y ?x ?b 与这个新抛物线有且只有一个公共点时,求b 的值.24.如图,在平面直角坐标系xOy 中,抛物线y ? ax 2?bx ?4与x 轴交于点A (?2,0)、B (6,0),与y 轴交于点C ,直线CD ∥x 轴,且与抛物线交于点D ,P 是抛物线上一动 点.B图2B图3C B 图1(1)求抛物线的解析式; (2)过点P 作PQ ⊥CD 于点Q ,将△CPQ 绕点C 顺时针旋转,旋转角为α(0o ﹤α﹤90o ),当cos α=35,且旋转后点P 的对应点'P 恰好落在x 轴上时,求点P 的坐标.25. 在□ABCD 中,E 是AD 上一点,AE =AB ,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB =∠EAB ,连接AG .(1)如图1,当EF 与AB 相交时,若∠EAB =60°,求证:EG =AG +BG ; (2)如图2,当EF 与AB 相交时,若∠EAB = α(0o ﹤α﹤90o ),请你直接写出线段EG 、AG 、BG 之间的数量关系(用含α的式子表示);(3)如图3,当EF 与CD 相交时,且∠EAB =90°,请你写出线段EG 、AG 、BG 之间的数量关系,并证明你的结论.北京市朝阳区九年级综合练习(二)数学试卷参考答案一、选择题(本题共32分,每小题4分) 二、填空题(本题共16分,每小题4分) 9. x ≥23 10. 22(1)x x - 11. 32° ,2n 2+2n图3图2 F 图1 F三、解答题(本题共30分,每小题5分)13.解:)214452-⎛⎫︒ ⎪⎝⎭4312=-+-……………………………………………………4分 1=. ………………………………………………………………………5分 14. 解:2312111x x x 骣÷ç-?÷ç÷ç桫-+- ()()3(1)11(1)1(1)x x x x x x ⎡⎤++=-⎢⎥+-+-⎣⎦221x ¸-………………………………2分 ()()2242111x x x x +=÷+--…………………………………………………………………3分()()()()1124112x x x x x +-+=⋅+-…………………………………………………………4分 2x =+.……………………………………………………………………………………5分15. 解: 由题意可知∠ACB =30°,∠ADB =60°,CD =20,在Rt △ABC 中,()tan 30=20AB BC BD =⋅︒+.………………………………1分 在Rt △ABD中,tan 60=AB BD BD =⋅︒………………………………………2分∴()20BD BD +…………………………………………………………3分 ∴10BD =.…………………………………………………………………………4分∴AB =.……………… ……………………………………………………5分16. 证明:∵AE ∥DF ,∴∠AEB =∠DFC . ………………………………………………………………1分 ∵BF =CE ,∴BF +EF =CE +EF .即BE =CF . ………………………………………………………………………2分 在△ABE 和△DCF 中,AE DF AEB DFC BE CFì=ïïï??íïï=ïïî∴△ABE ≌△DCF . … ……………………………………………………………3分 ∴∠B =∠C . ………………………………………………………………………4分 ∴AB ∥CD . … ……………………………………………………………………5分17. 解:(1)∵点3()2M n -,在反比例函数32y x=-(x <0)的图象上, ∴1n =.…………………………………………………………………………1分∴3()2M -,1.∵一次函数y kx =-2的图象经过点3()2M -,1, ∴3122k =--. ∴2k =-.∴一次函数的解析式为22y x =--.∴A (?1,0),B (0,?2) . ………………………………………………………3分 (2)P 1(?3,4),P 2(1,?4) . ………………………………………………………5分18. 解:设原计划每天铺设x 米管道.…………………………………………………1分由题意,得220022005(110%)x x=++ ……………………………………………3分解得 40x =. ……………………………………………………………4分经检验40x =是原方程的根. …………………………………………………5分答:原计划每天铺设40米管道.四、解答题(本题共20分,每小题5分) 19.解:作BG ⊥AE ,垂足为点G , ∴∠BGA =∠BGE =90o.在平行四边形ABCD 中,AD = 4, ∵E 是BC 边的中点,∴11 2.22BE EC BC AD ====……………………………………………………1分 ∵∠BAE =30o ,∠ABC =105o , ∴∠BEG =45o.由已知得△ABE ≌△AFE .∴AB =AF ,BE =FE ,∠BEF =90o.在Rt △BGE 中,BG =GE……… ………………………………………………………………2分 在Rt △ABG 中,∴AB =AF=………………………………………………………………………3分 在Rt △ECF 中,FC = ………………………………………………… ……4分 ∴四边形ABCF的周长4+……………………………………………………5分20. (1)证明:在△ABC 中,∵AC=BC ,∴∠ CAB = ∠B .∵∠ CAB +∠B +∠C =180o , ∴2∠B +∠C =180o. ∴12BC ??=90o. ……………………………………………………1分∵∠BAD =12∠C , ∴B BAD ??=90o.∴∠ADB =90o. ∴AD ⊥BC.∵AD 为⊙O 直径的,∴直线BC 是⊙O 的切线. …………………………………………………2分(2)解:如图,连接DF ,∵AD 是⊙O 的直径,∴∠AFD = 90o. ……………………………………………………………………3分 ∵∠ADC =90o ,∴∠ADF +∠FDC =∠CD +∠FDC =90o.∴∠ADF =∠C . …………………………………………………………………4分∵∠ADF =∠AEF ,tan ∠AEF =43, ∴tan ∠C =tan ∠ADF =43. 在Rt △ACD 中,设AD =4x ,则CD =3x .∴5.AC x ==∴BC =5x ,BD =2x .∵AD =4,∴x =1.∴BD =2. …………………………………………………………………………5分21.解:(1)a =3,b =; ……………………………………………………………2分 (2)…………………………3分B(3)500(0.050.15)100⨯+=.所以该小区家庭中,教育支出不足1500元的家庭大约有100户.…………5分21.解:(11分(2)①如图,…………………………………………2分BD;……………………………………………………………………………3分(3. …………………………………………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. (1)证明:∵△=()()2441m m---.………………………………………………1分=2412m m-+=()228m-+…………………………………………………………2分∴△>0.…………………………………………………………………3分∴无论m取何值,方程总有两个不相等的实数根.(2)把x=-3代入原方程,解得m=1.…………………………………………………4分∴23y x x=+.即23924y x⎛⎫=+-⎪⎝⎭.依题意,可知新的抛物线的解析式为239'24y x⎛⎫=--⎪⎝⎭. ………………………5分即2'3y x x=+∵抛物线'y与直线y x b=+只有一个公共点,∴23x x x b-=+..…………………………………………………………………6分即240x x b--=.∵△=0.∴()()2440b--⨯-=.解得b= -4. ……………………………………………………………………7分24. 解:(1)根据题意得424036640a ba b-+=⎧⎨++=⎩,.…………………………………………………………1分解得1343ab⎧=-⎪⎪⎨⎪=⎪⎩,.B所以抛物线的解析式为214433y x x =-++.………………………………2分(2)如图1,过点Q 的对应点'Q 作EF ⊥CD 于点E ,交x 轴于点F .设P (x ,y ),则CQ = x ,PQ =4- y .由题意可知'CQ = CQ = x ,''P Q =PQ =4- y ,∠CQP =∠C ''Q P =90°. ∴'''''QCQ CQ E P Q F CQ E ∠+∠=∠+∠=90°.∴'''P Q F QCQ α∠=∠=.……………………………………………………3分 又∵cos α=35, ∴4'5EQ x = ,3'(4)5FQ y =-. ∴43(4)455x y +-=. ∵214433y x x =-++,整理可得2145x =.∴1x =2x =-.∴P .………………………………………………………………5分如图2,过点Q 的对应点'Q 作EF ⊥CD 于点E ,交x 轴于点F . 设P (x ,y ),则CQ =- x ,PQ =4- y .可得'''P Q F QCQ α∠=∠=.……………………………………………………6分又∵cos α=35,∴4'5EQ x =- ,3'(4)5FQ y =-.∴434(4)55x y -+=-.∵214433y x x =-++, 整理可得2145x =.∴1x =,2x =-∴(P -.……………………………………………………………7分∴P或(P -.25. 解:(1)证明:如图,作∠GAH =∠EAB 交GE 于点H .∴∠GAB =∠HAE . ………………………………………………………………1分∵∠EAB =∠EGB ,∠APE =∠BPG ,∴∠ABG =∠AEH .∵又AB =AE ,∴△ABG ≌△AEH . ………………2分 ∴BG =EH ,AG =AH .∵∠GAH =∠EAB =60°, ∴△AGH 是等边三角形. ∴AG =HG .∴EG =AG +BG . …………………………………………………………………3分(2) 2sin.2EG AG BG α=+…………………………………………………………5分(3).EG BG =-……………………………………………………………6分如图,作∠GAH =∠EAB 交GE 于点H .∴∠GAB =∠HAE . ∵∠EGB =∠EAB =90°,∴∠ABG +∠AEG =∠AEG +∠AEH =180°.∴∠ABG =∠AEH .∵又AB =AE ,∴△ABG ≌△AEH . ………………7分∴BG =EH ,AG =AH .∵∠GAH =∠EAB =90°, ∴△AGH 是等腰直角三角形.=HG .∴.EG BG -…………………………………………………………8分说明:各解答题其它正确解法请参照给分.F。
北京市朝阳区九年级综合练习(二)数学试卷2018.6学校班级姓名考号考生须知1.本试卷共8页,共三道大题,28道小题,满分100分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有..一个.1.若代数式3xx的值为零,则实数x的值为(A)x =0 (B)x≠0 (C)x =3 (D)x≠32.如图,左面的平面图形绕直线l旋转一周,可以得到的立体图形是3.中国传统扇文化有着深厚的底蕴,下列扇面图形既是轴对称图形又是中心对称图形的是4.如图,在数轴上有点O ,A ,B ,C 对应的数分别是0,a ,b ,c ,AO =2,OB =1,BC =2,则下列结论正确的是(A )a c = (B )ab >0 (C )a +c =1 (D )b -a=15.⊙O 是一个正n 边形的外接圆,若⊙O 的半径与这个正n 边形的边长相等,则n 的值为(A )3 (B )4 (C )5 (D )66.已知a a 252=-,代数式)1(2)2(2++-a a 的值为 (A )-11 (B )-1 (C ) 1 (D )117.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图. 根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28~35次的人数最多51的人每周使用手机支付的次数在35~42次④每周使用手机支付不超过21次的有15人其中正确的是(A )①② (B )②③(C )③④ (D )④8.如图,矩形ABCD 中,AB =4,BC =3,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S 1-S 2 为(A )41312π- (B )4912π-(C )4136π+(D )6二、填空题(本题共16分,每小题2分) 9. 写出一个比2大且比5小的有理数: .10.直线AB ,BC ,CA 的位置关系如图所示,则下列语句:①点A 在直线上BC ;②直线AB 经过点C ;③直线AB ,BC ,CA 两两相交;④点B 是直线AB ,BC ,CA 的公共点,正确的有 (只填写序号).第10题图第11题图第12题图11. 2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m、n的式子表示AB的长为.12.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE= .13.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示. 根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是_______.第13题图第14题图14.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O 重合,写出此时点D的对应点的坐标:.15.下列对于随机事件的概率的描述:①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是0.2;③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85其中合理的有(只填写序号).16.下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:如图,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.请回答:该尺规作图的依据是 .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27题,每小题7分,第28题8分)17.011123tan 30(2018)()2π-︒+-- .18. 解不等式3213-+x >2x -1,并把解集在数轴上表示出来.19. 如图,△ABC 中,∠C =90°,AC =BC ,∠ABC 的平分线BD 交AC 于点D ,DE ⊥AB 于点E .(1)依题意补全图形;(2)猜想 AE 与 CD 的数量关系,并证明.20. 已知关于x 的一元二次方程03)1(222=-+-+m x m x 有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为非负整数,且该方程的根都是无理数,求m 的值.21. 如图,在平面直角坐标系xOy 中,直线61+=x k y 与函数)0(2>=x xk y 的图象的两个交点分别为A (1,5),B .(1)求21,k k 的值;(2)过点P (n ,0)作x 轴的垂线,与直线61+=x k y和函数)0(2>=x xk y 的图象的交点分别为点M ,N , 当点M 在点N 下方时,写出n 的取值范围.22. 如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,延长CD 到E ,使DE =CD ,连接AE .(1)求证:四边形ABDE 是平行四边形;(2)连接OE ,若∠ABC =60°,且AD =DE =4,求OE 的长.23. AB 为⊙O 直径,C 为⊙O 上的一点,过点C 的切线与AB 的延长线相交于点D ,CA=CD .(1)连接BC ,求证:BC=OB ;(2)E 是AB 中点,连接CE ,BE ,若BE=2,求CE 的长.24.“绿水青山就是金山银山”,北京市民积极参与义务植树活动. 小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整②这30户家庭2018年4月份义务植树数量的平均数是,众数是;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有户.25. 在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.图1下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF= °,射线DF与射线AC交于点F.设B,E两点间的距离为x cm,E,F两点间的距离为y cm.图2(2)通过取点、画图、测量,得到了x与y的几组值,如下表:(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为cm.26.已知二次函数)0(222≠--=a ax ax y . (1)该二次函数图象的对称轴是直线 ;(2)若该二次函数的图象开口向上,当-1≤x ≤5时,函数图象的最高点为M ,最低点为N ,点M 的纵坐标为211,求点M 和点N 的坐标;(3)对于该二次函数图象上的两点A (x 1,y 1),B (x 2,y 2),设t ≤ x 1 ≤ t +1,当x 2≥3时,均有y 1 ≥ y 2,请结合图象,直接写出t 的取值范围.27.如图,在△ABC 中,AB=AC ,∠BAC =90°,M 是BC 的中点,延长AM 到点D ,AE = AD ,∠EAD =90°,CE 交AB 于点F ,CD =DF . (1)∠CAD = 度; (2)求∠CDF 的度数;(3)用等式表示线段CD 和CE 之间的数量关系,并证明.28. 对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于1,则称P 为直线m 的平行点.(1)当直线m 的表达式为y =x 时, ①在点P 1(1,1),P 2(0,2),P 3(22-,22)中,直线m 的平行点是 ; ②⊙O 的半径为10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线x y 3=的平行点,直接写出n 的取值范围.北京市朝阳区九年级综合练习(二)数学试卷答案及评分参考2018.6一、选择题(本题共16分,每小题2分)二、填空题 (本题共16分,每小题2分)9. 答案不唯一,如: 2 10. ③ 11. n n m -+3312. 2 13. 答案不唯一,理由须支撑推断的合理性. 14. (4,2) 15. ②③16. 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义 . 三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27题,每小题7分,第28题8分) 17. 解:原式 2133332-+⨯-= ……………………………………………………………4分 13-=. ……………………………………………………………………………5分18. 解:去分母,得3x+1-6> 4x-2, (1)分移项,得3x-4x >-2+ 5, (2)分合并同类项,得-x > 3,……………………………………………………………………3分系数化为1,得x <-3.…………………………………………………………………4分不等式的解集在数轴上表示如下:…………………………………………………………………………………………5分19. (1)如图:………………………………………………………………………………………………2分(2)AE与CD的数量关系为AE=CD.……………………………………………………………3分证明:∵∠C=90°,AC=BC,∴∠A=45°.∵DE⊥AB,∴∠ADE =∠A=45°.∴AE=DE.……………………………………………………………………………………4分∵BD 平分∠ABC ,∴CD=DE . ……………………………………………………………………………………5分 ∴AE=CD .20. 解:(1)[])3(4)1(222---=∆m m 168+-=m .∵方程有两个不相等的实数根, ∴0>∆.即 0168>+-m .解得 2<m . ……………………………………………………………………………2分(2)∵2<m ,且m 为非负整数,∴0=m 或1=m . ………………………………………………………………………3分 ① 当0=m 时,原方程为0322=--x x ,解得 31=x ,12-=x ,不符合题意. ② 当1=m 时,原方程为022=-x ,解得 21=x ,22-=x ,符合题意.综上所述,1=m . ……………………………………………………………………5分 21. 解:(1)∵A (1,5)在直线61+=x k y 上,∴11-=k . ………………………………………………………………………………1分 ∵A (1,5)在)0(2>=x xk y 的图象上, ∴52=k . ………………………………………………………………………………2分 (2)0< n <1或者n > 5. ……………………………………………………………………5分22. (1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD . ∵DE =CD , ∴AB =DE .∴四边形ABDE 是平行四边形. ………………………………………………2分(2)解:∵AD =DE =4,∴AD =AB =4.∴□ABCD 是菱形. ………………………………………………………………………3分 ∴AB =BC ,AC ⊥BD ,BO =BD 21,∠ABO =ABC ∠21.又∵∠ABC =60°, ∴∠ABO =30°. 在Rt △ABO 中,2sin =∠⋅=ABO AB AO ,32cos =∠⋅=ABO AB BO . ∴BD =34.∵四边形ABDE 是平行四边形, ∴AE ∥BD ,34==BD AE . 又∵AC ⊥BD , ∴AC ⊥AE .在Rt △AOE 中,13222=+=AO AE OE . ……………………………………………5分23. (1)证明:连接OC .∵AB 为⊙O 直径,∴∠ACB =90°. ………………1分∵CD 为⊙O 切线∴∠OCD =90°. ………………2分∴∠ACO =∠DCB =90°-∠OCB ∵CA=CD , ∴∠CAD =∠D . ∴∠COB =∠CBO . ∴OC= BC .∴OB= BC . ………………………………………………………………………………3分(2)解:连接AE ,过点B 作BF ⊥CE 于点F .∵E 是AB 中点 ∴AE=BE=2. ∵AB 为⊙O 直径, ∴∠AEB =90°.∴∠ECB =∠BAE= 45°,22=AB . ∴221==AB CB .∴1==BF CF . ∴3=EF .∴31+=CE .…………………………………………………………………………5分24. 解: (1)① (2)分②3.4, 3 ………………………………………………………………………………………4分(2)70 …………………………………………………………………………………………5分25. 解:(1)60 …………………………………………………………………………………………1分答案不唯一,如:(2)x/cm 0 1 2 3 4 5 6y/cm 6.9 5.3 4.0 3.3 3.5 4.5 6………………………………………………………………………………………………………2分……………5分(3)(4)3.22 ……………………………………………………………………………………6分26.(1)x=1 ……………………………………………………………………………………1分(2)解:∵该二次函数的图象开口向上,对称轴为直线x=1, 1≤x≤5,11). …………………………………∴当x=5时,y的值最大,即M(5,23分 把M (5,211)代入y =ax 2-2ax -2,解得a =21. ………………………………4分∴该二次函数的表达式为y =2212--x x . 当x =1时,y =25-, ∴N (1,25-). ………………………………………………………………5分 (3)-1≤t ≤2. …………………………………………………………………………7分27. 解:(1)45 ……………………………………………………………………………………1分(2)解:如图,连接DB.∵90 AB AC BAC =∠=,°,M 是BC 的中点,∴∠BAD=∠CAD=45°.∴△BAD ≌△CAD . ………………………………2分∴∠DBA =∠DCA ,BD = CD .∵CD =DF ,∴B D =DF . ………………………………………3分∴∠DBA =∠DFB =∠DCA .∵∠DFB +∠DFA =180°,∴∠DCA +∠DFA =180°.∴∠BAC +∠CDF =180°.∴∠CDF =90°. …………………………………………………………………………4分(3)CE =)21CD . ………………………………………………………………………5分 证明:∵90 EAD ∠=°,∴∠EAF=∠DAF=45°.∵AD=AE,∴△EAF≌△DAF. ……………………………………………………………………6分∴DF=EF.由②可知,CF. ………………………………………………………………7分∴CE=)1C D.28.(1)①P2,P3 ……………………………………………………………………………………2分②解:由题意可知,直线m的所有平行点组成平行于直线m,且到直线m的距离为1的直线.设该直线与x轴交于点A,与y轴交于点B.如图1,当点B在原点上方时,作OH⊥AB于点H,可知OH=1.由直线m的表达式为y=x,可知∠OAB=∠OBA=45°.所以OB=2.直线AB与⊙O的交点即为满足条件的点Q.连接OQ1,作Q1N⊥y轴于点N,可知OQ1=10.在Rt△OHQ1中,可求HQ1=3.所以BQ1=2.在Rt △BHQ 1中,可求NQ 1=NB=2. 所以ON=22.所以点Q 1的坐标为(2,22).同理可求点Q 2的坐标为(22-,2-).……………………………………4分如图2,当点B 在原点下方时,可求点Q 3的坐标为(22,2)点Q 4的坐标为(2-,22-). …………………………………………………………………6分综上所述,点Q 的坐标为(2,22),(22-,2-),(22,2),(2-,22-).(2)334-≤n ≤334. ……………………………………………………………………8分。
2018年北京市朝阳区中考数学二模试卷副标题一、选择题(本大题共8小题,共16.0分)1.若代数式的值为零,则实数x的值为()A. B. C. D.2.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.3.中国传统扇文化有着深厚的底蕴,下列扇面图形既是轴对称图形又是中心对称图形的是()A. B.C. D.4.如图,在数轴上有点O,A,B,C对应的数分别是0,a,b,c,AO=2,OB=1,BC=2,则下列结论正确的是()A. B. C. D.5.⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则n的值为()A. 3B. 4C. 5D. 66.已知a2-5=2a,代数式(a-2)2+2(a+1)的值为()A. B. C. 1 D. 117.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28~35次的人数最多③有的人每周使用手机支付的次数在35~42次④每周使用手机支付不超过21次的有15人其中正确的是()A. ①②B. ②③C. ③④D. ④8.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为()A. B. C. D. 6二、填空题(本大题共8小题,共16.0分)9.写出一个比大且比小的有理数:______.10.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有______(只填写序号).11.2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m、n的式子表示AB的长为______.12.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE=____.13.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是______.14.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:______.15.下列对于随机事件的概率的描述:①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是0.2;③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85其中合理的有______(只填写序号).16.下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:如图2,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.请回答:该尺规作图的依据是______.三、计算题(本大题共2小题,共10.0分)17.解不等式-3>2x-1,并把解集在数轴上表示出来.18.已知关于x的一元二次方程x2+2(m-1)x+m2-3=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为非负整数,且该方程的根都是无理数,求m的值.四、解答题(本大题共10小题,共58.0分)19.计算:-3tan30°+(2018-π)0-()-1.20.如图,△ABC中,∠C=90°,AC=BC,∠ABC的平分线BD交AC于点D,DE⊥AB于点E.(1)依题意补全图形;(2)猜想AE与CD的数量关系,并证明.21.如图,在平面直角坐标系xOy中,直线y=k1x+6与函数y=(x>0)的图象的两个交点分别为A(1,5),B.(1)求k1,k2的值;(2)过点P(n,0)作x轴的垂线,与直线y=k1x+6和函数y=(x>0)的图象的交点分别为点M,N,当点M在点N下方时,写出n的取值范围.22.如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE.(1)求证:四边形ABDE是平行四边形;(2)连接OE,若∠ABC=60°,且AD=DE=4,求OE的长.23.AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.(1)连接BC,求证:BC=OB;(2)E是中点,连接CE,BE,若BE=2,求CE的长.24.“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整;②这30户家庭2018年4月份义务植树数量的平均数是______,众数是______;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有______户.25.在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC 于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.2x y(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为cm.26.已知二次函数y=ax2-2ax-2(a≠0).(1)该二次函数图象的对称轴是直线;(2)若该二次函数的图象开口向上,当-1≤x≤5时,函数图象的最高点为M,最低点为N,点M的纵坐标为,求点M和点N的坐标;(3)对于该二次函数图象上的两点A(x1,y1),B(x2,y2),设t≤x1≤t+1,当x2≥3时,均有y1≥y2,请结合图象,直接写出t的取值范围.27.如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE=AD,∠EAD=90°,CE交AB于点F,CD=DF.(1)∠CAD=______度;(2)求∠CDF的度数;(3)用等式表示线段CD和CE之间的数量关系,并证明.28.对于平面直角坐标系xOy中的点P和直线m,给出如下定义:若存在一点P,使得点P到直线m的距离等于1,则称P为直线m的平行点.(1)当直线m的表达式为y=x时,①在点P1(1,1),P2(0,),P3(,)中,直线m的平行点是______;②⊙O的半径为,点Q在⊙O上,若点Q为直线m的平行点,求点Q的坐标.(2)点A的坐标为(n,0),⊙A半径等于1,若⊙A上存在直线的平行点,直接写出n的取值范围.答案和解析1.【答案】A【解析】解:∵代数式的值为零,∴x=0,故选:A.根据分式值为0的条件:分子=0且分母≠0,求解即可.本题考查了分式值为0的条件,掌握分式值为0的条件:分子=0且分母≠0是解题的关键.2.【答案】B【解析】解:如图,一个长方形绕轴l旋转一周得到的立体图形是圆柱.故选:B.一个矩形绕着它的一边旋转一周,根据面动成体的原理即可解.本题主要考查点、线、面、体,圆柱的定义,根据圆柱体的形成可作出判断.3.【答案】C【解析】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】C【解析】解:∵AO=2,OB=1,BC=2,∴a=-2,b=1,c=3,∴|a|≠|c|,ab<0,a+c=1,b-a=1-(-2)=3,故选:C.根据AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,进行判断即可解答.本题考查了实数与数轴,解决本题的关键是根据数轴确定a,b,c的值.5.【答案】D【解析】解:∵⊙O的半径与这个正n边形的边长相等,∴这个多边形的中心角=60°,∴=60°,∴n=6,故选:D.因为⊙O的半径与这个正n边形的边长相等,推出这个多边形的中心角=60°,构建方程即可解决问题;本题考查正多边形与圆,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考常考题型.6.【答案】D【解析】解:由题意可知:a2-2a=5,原式=a2-4a+4+2a+2=a2-2a+6=5+6=11故选:D.根据整式的运算法则即可求出答案.本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.7.【答案】B【解析】解:①这栋居民楼共有居民3+10+15+22+30+25+20=125人,此结论错误;②每周使用手机支付次数为28~35次的人数最多,此结论正确;③每周使用手机支付的次数在35~42次所占比例为=,此结论正确;④每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:B.根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8.【答案】A【解析】解:∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD -S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=12-,故选:A.根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.9.【答案】答案不唯一,如:2【解析】解:到之间可以为:2(答案不唯一),故答案为:2(答案不唯一).直接利用接近与的数据得出符合题意的答案.此题主要考查了估算无理数的大小,正确得出比大且比小的无理数是解题关键.10.【答案】③【解析】解:①点A在直线BC上是错误的;②直线AB经过点C是错误的;③直线AB,BC,CA两两相交是正确的;④点B是直线AB,BC,CA的公共点是错误的.故答案为:③.根据直线与点的位置关系即可求解.考查了直线、射线、线段,关键是熟练掌握直线、射线、线段的定义,是基础题型.11.【答案】m+n-n【解析】解:延长BA交CE于点E,设CF⊥BF于点F,如图所示.在Rt△BDF中,BF=n,∠DBF=30°,∴DF=BF•tan∠DBF=n.在Rt△ACE中,∠AEC=90°,∠ACE=45°,∴AE=CE=BF=n,∴AB=BE-AE=CD+DF-AE=m+n-n.故答案为:m+n-n.延长BA交CE于点E,设CF⊥BF于点F,通过解直角三角形可求出DF、AE 的长度,再利用AB=CD+DF-AE即可求出结论.本题考查了解直角三角形的应用,通过解直角三角形求出DF、AE的长度是解题的关键.12.【答案】2【解析】解:∵BD=CD,∴=,∴OD⊥BC,∴BE=CE,而OA=OB,∴OE为△ABC的中位线,∴OE=AC=×6=3,∴DE=OD-OE=5-3=2.故答案为2.先利用垂径定理得到OD⊥BC,则BE=CE,再证明OE为△ABC的中位线得到OE=AC=3,入境计算OD-OE即可.本题考查了三角形的外接圆与外心:熟练掌握三角形外心的定义和外心的性质.也考查了垂径定理.13.【答案】113407;北京市近两年的专利授权量平均每年增加6458.5件【解析】解:∵北京市近两年的专利授权量平均每年增加:=6458.5(件),∴预估2018年北京市专利授权量约为106948+6458.5≈113407(件),故答案为:113407,北京市近两年的专利授权量平均每年增加6458.5件.(理由须支撑推断的合理性)依据北京市近两年的专利授权量的增长速度,即可预估2018年北京市专利授权量.本题考查用样本估计总体、折线统计图,解题的关键是明确题意,找出所求问题需要的条件.用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.14.【答案】(4,2)【解析】解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,则BD′=OD=2,∴点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,∴点D向下平移4个单位.故点D′′坐标为(4,2),故答案为:(4,2).根据题意和旋转变换的性质、平移的性质画出图形,根据坐标与图形的变化中的旋转和平移性质解答.本题考查的是正方形的性质、旋转变换的性质、平移的性质,掌握坐标与图形的变化中的旋转和平移性质是解题的关键.15.【答案】②③【解析】解:①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,大约有50次“正面朝上”,此结论错误;②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是=0.2,此结论正确;③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85,此结论正确;故答案为:②③.根据事件的类型及概率的意义找到正确选项即可.本题考查了概率的意义,大量反复试验下频率稳定值即概率.注意随机事件发生的概率在0和1之间.16.【答案】到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线【解析】解:由作法得BC垂直平分AE,所以该尺规作图的依据为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.故答案为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.利用作法和线段垂直平分线定理的逆定理可得到BC垂直平分AE,然后根据三角形高的定义得到AD为高.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).17.【答案】解:去分母,得 3x+1-6>4x-2,移项,得 3x-4x>-2+5,合并同类项,得-x>3,系数化为1,得x<-3,不等式的解集在数轴上表示如下:【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得解集.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.18.【答案】解:(1)△=[2(m-1)]2-4(m2-3)=-8m+16.∵方程有两个不相等的实数根,∴△>0.即-8m+16>0.解得m<2;(2)∵m<2,且m为非负整数,∴m=0或m=1,当m=0时,原方程为x2-2x-3=0,解得x1=3,x2=-1,不符合题意舍去,当m=1时,原方程为x2-2=0,解得x1=,x2=-,综上所述,m=1.【解析】(1)利用根与系数的关系得到△=[2(m-1)]2-4(m2-3)=-8m+16>0,然后解不等式即可;(2)先利用m的范围得到m=0或m=1,再分别求出m=0和m=1时方程的根,然后根据根的情况确定满足条件的m的值.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.19.【答案】解:原式=2-3×+1-2=-1.【解析】直接利用零指数幂的性质以及负整数指数幂的性质、特殊角的三角函数值、二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:(1)如图:(2)AE与CD的数量关系为AE=CD.证明:∵∠C=90°,AC=BC,∴∠A=45°.∵DE⊥AB,∴∠ADE=∠A=45°.∴AE=DE,∵BD平分∠ABC,∴CD=DE,∴AE=CD.【解析】(1)利用题中几何语言画图;(2)利用等腰三角形的性质得∠A=45°.则∠ADE=∠A=45°,所以AE=DE,再根据角平分线性质得CD=DE,从而得到AE=CD.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰直角三角形和角平分线的性质.21.【答案】解:(1)∵A(1,5)在直线y=k1x+6上,∴k1=-1,∵A(1,5)在>的图象上,∴k2=5.(2)观察图象可知,满足条件的n的值为:0<n<1或者n>5.【解析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题;本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会利用图象法解决问题.22.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵DE=CD,∴AB=DE.∴四边形ABDE是平行四边形;(2)∵AD=DE=4,∴AD=AB=4.∴▱ABCD是菱形,∴AB=BC,AC⊥BD,BO=,∠ABO=.又∵∠ABC=60°,∴∠ABO=30°.在Rt△ABO中,AO=AB•sin∠ABO=2,.∴BD=.∵四边形ABDE是平行四边形,∴AE∥BD,.又∵AC⊥BD,∴AC⊥AE.在Rt△AOE中,.【解析】(1)根据平行四边形的性质和判定证明即可;(2)根据菱形的判定和三角函数解答即可.本题考查了平行四边形的判定与性质以及菱形的判定,有利于学生思维能力的训练.涉及的知识点有:有一组邻边相等的平行四边形是菱形.23.【答案】(1)证明:连接OC.∵AB为⊙O直径,∴∠ACB=90°,∵CD为⊙O切线∴∠OCD=90°,∴∠ACO=∠DCB=90°-∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)解:连接AE,过点B作BF⊥CE于点F.∵E是AB中点,∴=,∴AE=BE=2.∵AB为⊙O直径,∴∠AEB=90°.∴∠ECB=∠BAE=45°,.∴.∴CF=BF=1.∵∠CEB=∠CAB=30°,∴.∴.【解析】(1)连接OC,根据圆周角定理、切线的性质得到∠ACO=∠DCB,根据CA=CD 得到∠CAD=∠D,证明∠COB=∠CBO,根据等角对等边证明;(2)连接AE,过点B作BF⊥CE于点F,根据勾股定理计算即可.本题考查的是切线的性质、圆周角定理、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.24.【答案】(1)①②3.4;3棵;(2)70.【解析】【分析】本题主要考查频数分布直方图,解题的关键是掌握众数、平均数的定义及样本估计总体思想的运用.(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;②根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得.【解答】解:(1)①由已知数据知3棵的有12人、4棵的有8人,补全图形如下:②这30户家庭2018年4月份义务植树数量的平均数是=3.4,众数为3,故答案为:3.4;3;(2)估计该小区采用这种形式的家庭有300×=70户,故答案为:70.25.【答案】3.5【解析】解:(1)60(2)取点、画图、测量,得到数据为3.5故答案为:3.5(3)由数据得(4)当△DEF为等边三角形是,EF=DE,由∠B=45°,射线DE⊥BC于点E,则BE=EF.即y=x所以,当(2)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.2.根据题意作图测量即可.本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究.26.【答案】解:(1)该二次函数图象的对称轴是直线x==1;(2)∵该二次函数的图象开口向上,对称轴为直线x=1,-1≤x≤5,∴当x=5时,y的值最大,即M(5,).把M(5,)代入y=ax2-2ax-2,解得a=.∴该二次函数的表达式为y=.当x=1时,y=,∴N(1,).(3)t的取值范围-1≤t≤2.【解析】(1)利用对称轴公式计算即可;(2)构建方程求出a的值即可解决问题;(3)当t≤x1≤t+1,x2≥3时,均满足y1≥y2,推出当抛物线开口向下,点P在点Q 左边或重合时,满足条件,可得t+1≤3或-1≤t,由此即可解决问题;本题考查二次函数的性质,函数的最值问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.27.【答案】45【解析】(1)解:∵AB=AC,M是BC的中点,∴AM⊥BC,∠BAD=∠CAD,∵∠BAC=90°,∴∠CAD=45°,故答案为:45…………………………………………(1分)(2)解:如图,连接DB.∵AB=AC,∠BAC=90°,M是BC的中点,∴∠BAD=∠CAD=45°.∴△BAD≌△CAD.………………………………(2分)∴∠DBA=∠DCA,BD=CD.∵CD=DF,∴BD=DF.………………………………………(3分)∴∠DBA=∠DFB=∠DCA.∵∠DFB+∠DFA=180°,∴∠DCA+∠DFA=180°.∴∠BAC+∠CDF=180°.∴∠CDF=90°.…………………………………………………………………………(4分)(3)CE= CD.………………………………………………………………………(5分)证明:∵∠EAD=90°,∴∠EAF=∠DAF=45°.∵AD=AE,∴△EAF≌△DAF.……………………………………………………………………(6分)∴DF=EF.由②可知,CF=.………………………………………………………………(7分)∴CE=EF+CF=DF+CF=CD+CF=CD.(1)根据等腰三角形三线合一可得结论;(2)连接DB,先证明△BAD≌△CAD,得BD=CD=DF,则∠DBA=∠DFB=∠DCA,根据四边形内角和与平角的定义可得∠BAC+∠CDF=180°,所以∠CDF=90°;(3)证明△EAF≌△DAF,得DF=EF,由②可知,CF=可得结论.本题考查了三角形全等的性质和判定、等腰直角三角形的判定与性质、四边形的内角和定理、等腰三角形三线合一的性质等知识,属于基础题,但本题已知相等线段较多,要认真识别.28.【答案】P2,P3【解析】解:(1)①因为P2、P3到直线y=x的距离为1,所以根据平行点的定义可知,直线m的平行点是P2,P3,故答案为P2,P3.②解:由题意可知,直线m的所有平行点组成平行于直线m,且到直线m的距离为1的直线.设该直线与x轴交于点A,与y轴交于点B.如图1,当点B在原点上方时,作OH⊥AB于点H,可知OH=1.由直线m的表达式为y=x,可知∠OAB=∠OBA=45°.所以OB=.直线AB与⊙O的交点即为满足条件的点Q.连接OQ1,作Q1N⊥y轴于点N,可知OQ1=.在Rt△OHQ1中,可求HQ1=3.所以BQ1=2.在Rt△BHQ1中,可求NQ1=NB=.所以ON=.所以点Q1的坐标为(,).同理可求点Q2的坐标为(,).如图2,当点B在原点下方时,可求点Q3的坐标为(,)点Q4的坐标为(,),综上所述,点Q的坐标为(,),(,),(,),(,).(2)如图,直线OE的解析式为y=x,设直线BC∥OE交x轴于C,作CD⊥OE 于D.当CD=1时,在Rt△COD中,∠COD=60°,∴OC==,设⊙A与直线BC相切于点F,在Rt△ACE中,同法可得AC=,∴OA=,∴n=,根据对称性可知,当⊙A在y轴左侧时,n=-,观察图象可知满足条件的N的值为:≤n≤.(1)①根据平行点的定义即可判断;②分两种情形:如图1,当点B在原点上方时,作OH⊥AB于点H,可知OH=1.如图2,当点B在原点下方时,同法可求;(2)如图,直线OE的解析式为y=x,设直线BC∥OE交x轴于C,作CD⊥OE 于D.设⊙A与直线BC相切于点F,想办法求出点A的坐标,再根据对称性求出左侧点A的坐标即可解决问题;本题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.。
北京市朝阳区九年级综合练习(二)数学试卷 2018.6学校 班级 姓名 考号 考 生须 知 1.本试卷共8页,共三道大题,28道小题,满分100分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有..一个. 1.若代数式3-x x 的值为零,则实数x 的值为 (A ) x =0 (B )x ≠0 (C )x =3 (D )x ≠3 2.如图,左面的平面图形绕直线l 旋转一周,可以得到的立体图形是3.中国传统扇文化有着深厚的底蕴,下列扇面图形既是轴对称图形又是中心对称图形的是4.如图,在数轴上有点O ,A ,B ,C 对应的数分别是0,a ,b ,c ,AO =2,OB =1,BC =2,则下列结论正确的是(A )a c = (B )ab >0 (C )a +c =1 (D )b -a=15.⊙O 是一个正n 边形的外接圆,若⊙O 的半径与这个正n 边形的边长相等,则n 的值为(A )3 (B )4 (C )5 (D )66.已知a a 252=-,代数式)1(2)2(2++-a a 的值为(A )-11 (B )-1 (C ) 1 (D )117.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28~35次的人数最多 51的人每周使用手机支付的次数在35~42次 ④每周使用手机支付不超过21次的有15人其中正确的是(A )①② (B )②③(C )③④ (D )④8.如图,矩形ABCD 中,AB =4,BC =3,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S 1-S 2为(A )41312π- (B )4912π-(C )4136π+(D )6二、填空题(本题共16分,每小题2分)9. 写出一个比2大且比5小的有理数: .10.直线AB ,BC ,CA 的位置关系如图所示,则下列语句:①点A 在直线上BC ;②直线AB 经过点C ;③直线AB ,BC ,CA 两两相交;④点B 是直线AB ,BC ,CA 的公共点,正确的有 (只填写序号).第10题图 第11题图 第12题图11. 2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m 、n 的式子表示AB 的长为 .12.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE= .13.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示. 根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是_______.第13题图第14题图14.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:.15.下列对于随机事件的概率的描述:①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是0.2;③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85 其中合理的有(只填写序号).16.下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:如图,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.请回答:该尺规作图的依据是 .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27题,每小题7分,第28题8分)17.011123tan 30(2018)()2π-︒+-- .18. 解不等式3213-+x >2x -1,并把解集在数轴上表示出来.19. 如图,△ABC 中,∠C =90°,AC =BC ,∠ABC 的平分线BD 交AC 于点D ,DE ⊥AB 于点E .(1)依题意补全图形;(2)猜想 AE 与 CD 的数量关系,并证明.20. 已知关于x 的一元二次方程03)1(222=-+-+m x m x 有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为非负整数,且该方程的根都是无理数,求m 的值.21. 如图,在平面直角坐标系xOy 中,直线61+=x k y 与函数)0(2>=x x k y 的图象的两个交点分别为A (1,5),B .(1)求21,k k 的值;(2)过点P (n ,0)作x 轴的垂线,与直线61+=x k y 和函数)0(2>=x xk y 的图象的交点分别为点M ,N ,当点M 在点N 下方时,写出n 的取值范围.22. 如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE.(1)求证:四边形ABDE是平行四边形;(2)连接OE,若∠ABC=60°,且AD=DE=4,求OE的长.23. AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.(1)连接BC,求证:BC=OB;(2)E是AB中点,连接CE,BE,若BE=2,求CE的长.24.“绿水青山就是金山银山”,北京市民积极参与义务植树活动. 小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整②这30户家庭2018年4月份义务植树数量的平均数是,众数是;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有户.25. 在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF= °,射线DF与射线AC交于点F.设B,E两点间的距离为x cm,E,F两点间的距离为y cm.图1图2x/cm0123456y/cm 6.9 5.3 4.0 3.3 4.56(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF 为等边三角形时,BE 的长度约为 cm.26.已知二次函数)0(222≠--=a ax ax y .(1)该二次函数图象的对称轴是直线 ;(2)若该二次函数的图象开口向上,当-1≤x ≤5时,函数图象的最高点为M ,最低点为N ,点M 的纵坐标为211,求点M 和点N 的坐标;(3)对于该二次函数图象上的两点A (x 1,y 1),B (x 2,y 2),设t ≤ x 1 ≤ t +1,当x 2≥3时,均有y 1 ≥y 2,请结合图象,直接写出t 的取值范围.27.如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE= AD,∠EAD=90°,CE交AB于点F,CD=DF.(1)∠CAD= 度;(2)求∠CDF的度数;(3)用等式表示线段CD和CE之间的数量关系,并证明.28. 对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于1,则称P 为直线m 的平行点. (1)当直线m 的表达式为y =x 时,①在点P 1(1,1),P 2(0,2),P 3(22-,22)中,直线m 的平行点是 ; ②⊙O 的半径为10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线x y 3=的平行点,直接写出n 的取值范围.北京市朝阳区九年级综合练习(二)数学试卷答案及评分参考 2018.6一、选择题(本题共16分,每小题2分) 题号 1 2 3 4 5 6 7 8 答案 ABCCDDBA二、填空题 (本题共16分,每小题2分)9. 答案不唯一,如: 2 10. ③ 11. n n m -+3312. 2 13. 答案不唯一,理由须支撑推断的合理性. 14. (4,2) 15. ②③ 16. 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义 . 三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27题,每小题7分,第28题8分) 17. 解:原式 2133332-+⨯-= ……………………………………………………………4分 13-=. ……………………………………………………………………………5分18. 解:去分母,得 3x +1-6> 4x -2, ………………………………………………………………1分移项,得 3x -4x >-2+ 5,………………………………………………………………2分 合并同类项,得 -x > 3,……………………………………………………………………3分 系数化为1,得 x <-3. …………………………………………………………………4分 不等式的解集在数轴上表示如下:…………………………………………………………………………………………5分19. (1)如图:………………………………………………………………………………………………2分(2)AE 与 CD 的数量关系为AE=CD .……………………………………………………………3分证明: ∵∠C =90°,AC =BC , ∴∠A =45°. ∵DE ⊥AB ,∴∠ADE =∠A =45°.∴AE=DE . ……………………………………………………………………………………4分 ∵BD 平分∠ABC ,∴CD=DE . ……………………………………………………………………………………5分 ∴AE=CD .20. 解:(1)[])3(4)1(222---=∆m m 168+-=m .∵方程有两个不相等的实数根, ∴0>∆.即 0168>+-m .解得 2<m . ……………………………………………………………………………2分(2)∵2<m ,且m 为非负整数,∴0=m 或1=m . ………………………………………………………………………3分 ① 当0=m 时,原方程为0322=--x x , 解得 31=x ,12-=x ,不符合题意. ② 当1=m 时,原方程为022=-x , 解得 21=x ,22-=x ,符合题意.综上所述,1=m . ……………………………………………………………………5分 21. 解:(1)∵A (1,5)在直线61+=x k y 上,∴11-=k . ………………………………………………………………………………1分 ∵A (1,5)在)0(2>=x xk y 的图象上, ∴52=k . ………………………………………………………………………………2分 (2)0< n <1或者n > 5. ……………………………………………………………………5分22. (1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD . ∵DE =CD , ∴AB =DE .∴四边形ABDE 是平行四边形. ………………………………………………2分(2)解:∵AD =DE =4,∴AD =AB =4.∴□ABCD 是菱形. ………………………………………………………………………3分∴AB =BC ,AC ⊥BD ,BO =BD 21,∠ABO =ABC ∠21.又∵∠ABC =60°,∴∠ABO =30°. 在Rt △ABO 中,2sin =∠⋅=ABO AB AO ,32cos =∠⋅=ABO AB BO .∴BD =34.∵四边形ABDE 是平行四边形, ∴AE ∥BD ,34==BD AE . 又∵AC ⊥BD , ∴AC ⊥AE .在Rt △AOE 中,13222=+=AO AE OE . ……………………………………………5分23. (1)证明:连接OC .∵AB 为⊙O 直径,∴∠ACB =90°. ………………1分∵CD 为⊙O 切线∴∠OCD =90°. ………………2分 ∴∠ACO =∠DCB =90°-∠OCB ∵CA=CD , ∴∠CAD =∠D . ∴∠COB =∠CBO . ∴OC= BC .∴OB= BC . ………………………………………………………………………………3分(2)解:连接AE ,过点B 作BF ⊥CE 于点F .∵E 是AB 中点 ∴AE=BE=2. ∵AB 为⊙O 直径, ∴∠AEB =90°.∴∠ECB =∠BAE= 45°,22=AB . ∴221==AB CB .∴1==BF CF . ∴3=EF .∴3=CE.…………………………………………………………………………5分1+24. 解:(1)①…………………………………2分②3.4, 3 ………………………………………………………………………………………4分(2)70 …………………………………………………………………………………………5分25. 解:(1)60 …………………………………………………………………………………………1分答案不唯一,如:x/cm0123456y/cm 6.9 5.3 4.0 3.3 3.5 4.56………………………………………………………………………………………………………2分……………5分(3)(4)3.22 ……………………………………………………………………………………6分26.(1)x =1 ……………………………………………………………………………………1分(2)解:∵该二次函数的图象开口向上,对称轴为直线x =1,-1≤x ≤5,∴当x =5时,y 的值最大,即M (5,211). …………………………………3分把M (5,211)代入y =ax 2-2ax -2,解得a =21. ………………………………4分∴该二次函数的表达式为y =2212--x x .当x =1时,y =25-,∴N (1,25-). ………………………………………………………………5分(3)-1≤t ≤2. …………………………………………………………………………7分27. 解:(1)45 ……………………………………………………………………………………1分(2)解:如图,连接DB.∵90 AB AC BAC =∠=,°,M 是BC 的中点,∴∠BAD=∠CAD=45°.∴△BAD ≌△CAD . ………………………………2分 ∴∠DBA =∠DCA ,BD = CD . ∵CD =DF ,∴B D =DF . ………………………………………3分 ∴∠DBA =∠DFB =∠DCA . ∵∠DFB +∠DFA =180°, ∴∠DCA +∠DFA =180°. ∴∠BAC +∠CDF =180°.∴∠CDF =90°. …………………………………………………………………………4分 (3)CE =)21CD . ………………………………………………………………………5分证明:∵90 EAD ∠=°,∴∠EAF =∠DAF =45°. ∵AD =AE ,∴△EAF ≌△DAF . ……………………………………………………………………6分 ∴DF =EF .由②可知,CF 2CD . ………………………………………………………………7分 ∴CE =()21C D .28.(1)①P 2,P 3 ……………………………………………………………………………………2分② 解:由题意可知,直线m 的所有平行点组成平行于直线m ,且到直线m 的距离为1的直线.设该直线与x 轴交于点A ,与y 轴交于点B .如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH=1. 由直线m 的表达式为y =x ,可知∠OAB=∠OBA =45°.所以OB=2.直线AB 与⊙O 的交点即为满足条件的点Q . 连接OQ 1,作Q 1N ⊥y 轴于点N ,可知OQ 1=10. 在Rt △OHQ 1中,可求HQ 1=3. 所以BQ 1=2.在Rt △BHQ 1中,可求NQ 1=NB=2. 所以ON=22.所以点Q 1的坐标为(2,22).同理可求点Q 2的坐标为(22-,2-).……………………………………4分如图2,当点B 在原点下方时,可求点Q 3的坐标为(22,2)点Q 4的坐标为 (2-,22-). …………………………………………………………………6分综上所述,点Q 的坐标为(2,22),(22-,2-),(22,2),(2-,22-).(2)334-≤n ≤334. ……………………………………………………………………8分。