DE x
PF
(b)
(1)
(2)
MA(F) 0
FT AB sin 300 P AD F AE 0
(3)
由(3)解得
FT
2P 3F 4sin 300
2 4 3 10 4 0.5
19 kN
y
以FT之值代入(1)、(2),可得:FAx A
FT
300
B
DE x
FAx=16.5 kN, FAy=4.5 kN。 FAy
PF
(b)
即铰链A的反力及与x轴正向的夹角为:
FA FA2 x FA2 y 17.1 kN
y
arctan FA y 15.30
FAx A
FA x
FA y
FT
300
B
DE x
PF
(b)
(1) 由右图所示的受力图,试按
MA(F) 0
MB(F) 0 Fx 0
y FAx A
FT
300
Fx 0, Fy 0,
P mg
FCBcos 30 FABcos 45 0 P FCBsin 30 FABsin 45 0
联立上述两方程,解得:
FAB= 88.0 N, FCB= 71.8 N。
F F 由于求出的 AB 和 CB 都是正值,所以原先假设的方向是正确的,即 BC
平面交汇力 系的平衡
FR这个力矢量会 收缩成一个点
力的多边形自行封闭
平面汇交力系的平衡例题
思考题
试指出图示各力之间的关系。
(a)
(b)
(c)
(d)
2.1 平面汇交力系的简化与平衡(3)
解析法
复习:运用力的平行四边形公理可以将两个共点的力合成为一个力。 联想:同样,一个已知力也可以分解为两个力。但需注意,一个已知 力分解为两个分力可有无数个解。当平行四边形为矩形时,如右图所 示,可以对力进行正交分解。