主轴设计之轴承选择
- 格式:pdf
- 大小:3.30 MB
- 文档页数:40
绪论随着市场上产品更新换代的加快和对零件精度提出更高的要求,传统机床已不能满足要求。
数控机床由于众多的优点已成为现代机床发展的主流方向。
它的发展代表了一个国家设计、制造的水平,在国内外都受到高度重视。
现代数控机床是信息集成和系统自动化的基础设备,它集高效率、高精度、高柔性于一身,具有加工精度高、生产效率高、自动化程度高、对加工对象的适应强等优点。
实现加工机床及生产过程的数控化,已经成为当今制造业的发展方向。
可以说,机械制造竞争的实质就是数控技术的竞争。
本课题的目的和意义在于通过设计中运用所学的基础课、技术基础课和专业课的理论知识,生产实习和实验等实践知识,达到巩固、加深和扩大所学知识的目的。
通过设计分析比较机床的某些典型机构,进行选择和改进,学习构造设计,进行设计、计算和编写技术文件,达到学习设计步骤和方法的目的。
通过设计学习查阅有关设计手册、设计标准和资料,达到积累设计知识和提高设计能力的目的。
通过设计获得设计工作的基本技能的训练,提高分析和解决工程技术问题的能力,并为进行一般机械的设计创造一定的条件。
一、设计题目及参数1.1 题目本设计的题目是数控车床的主轴组件的设计。
它主要由主轴箱,主轴,电动机,主轴脉冲发生器等组成。
我主要设计的是主轴部分。
主轴是加工中心的关键部位,其结构优劣对加工中心的性能有很大的影响,因此,在设计的过程中要多加注意。
主轴前后的受力不同,故要选用不同的轴承。
1.2参数床身回转空间400mm尾架顶尖与主轴端面距离1000mm主轴卡盘外径Φ200mm最大加工直径Φ600mm棒料作业能力50~63mm主轴前轴承内和110~130mm最大扭矩480N·m二、主轴的要求及结构2.1主轴的要求2.1.1旋转精度主轴的旋转精度是指装配后,在无载荷,低转速的条件下,主轴前端工件或刀具部位的径向跳动和轴向跳动。
主轴组件的旋转精度主要取决于各主要件,如主轴、轴承、箱体孔的的制造,装配和调整精度。
目录一.主传动的运动设计1.主电机的选定2.转速图的拟定3.齿轮的确定4.齿轮的布置二.传动件的估算与验算1.传动件的估算与验算2•齿轮模数的估算和计算3•轴承选择三.夹具设计1・工艺加工过程2 •设计夹具四致五参考资料1-1主传动的运动设计1.主电机的选定山总体设讣方案可知:Z5140钻床的总功率为4kW,转速为1450 r/min,根据机械设计手选取电机为JO2-32,其外型见下图,其安装尺寸见下表:其螺栓直径为。
2. 转速图的拟定拟定立式钻床的主传动系统的转速图,山总体设汁方按可知:主轴的转速围JB9—59一GB52166GB921 — 66GB7766, 一(4JO3 — 112^JO3 —铀燃图寂豔5(1〜3如注阀) 8(4・5迦肖阳)P匚为31.5〜1400 r/min,异步电动机的转速为1450 r/mino1. 选定公比0中型通用机床,常用的公比e 为1・26或1.41,考虑到适当减小本钻床的相 对速度损 失,选定0二1・41。
=46Z = 1 + -1?A = 1 + -I ^- = 11.8,取 Z=12 lg°lgl.41按标准转速数列为:31, 45, 63, 90, 125, 180, 1250, 355, 500, 710, 1000, 1450r/min o2. 选择结构式1) 确定变速组的数LI 和各变速组中传动副的数LI大多数的机床广泛应用滑移齿轮的变速方式,为了满足结构设计和操纵方便 的要求,通常采用双联或三联滑移齿轮。
该机床的变速围较大,必须经过较长的 传动链减速才能把电动机的转速降到主轴所需的转速,故主轴转速为12级的变 速系统需要2个或3个变速组,即Z=12=4X3,或Z=12=4X2X2-4,或Z=12=3 X2X2o 为了结构紧凑和主轴箱不过分的大,故选取Z=12=4X2X2-4.2) 确定不同传动副数的各变速组的排列次序按着传动顺序,各变速组排列方案有:12=4X2X2-4 12=2X2X4-4 12=2X4X2-4因本钻床在结构上有特殊要求,根据设计要点,应遵守“前多后少”的原则, 选择12=4X2X2-4的方案。
主轴同轴度标准范围主轴同轴度是机床加工精度中的一个重要参数,用来评估机床主轴旋转时与其轴线的偏离程度。
主轴同轴度一般用于企业内部质量控制或者国际标准化组织(ISO)的质量认证标准,用来确保机床的加工精度符合要求。
主轴同轴度的标准范围是通过机床的设计参数和制造工艺来确定的。
一般来说,主轴同轴度应尽可能小,以确保加工件的几何形状和尺寸精度。
根据不同的加工需求和机床类型,主轴同轴度的标准范围可以有所变化。
主轴同轴度的标准范围受到以下几个因素的影响:1.机床类型:不同类型的机床对主轴同轴度的要求有所不同。
例如,高精密加工中心和数控车床对主轴同轴度的要求较高,而普通车床和铣床对主轴同轴度的要求相对较低。
2.加工要求:加工工件的精度要求不同,对主轴同轴度的要求也会有所差异。
对于一些要求精度较高的工件,主轴同轴度的标准范围会更严格。
3.检测方法:主轴同轴度的检测方法有许多种,如机床坐标测量、光学系统测量等。
不同的检测方法对主轴同轴度的测量结果可能会有一定的差异,因此标准范围也会有所不同。
在机床制造过程中,通常会采用以下措施来保证主轴同轴度在标准范围内:1.选择合适的轴承:轴承是主轴同轴度的重要影响因素之一。
选择质量好、精度高的轴承可以降低主轴同轴度。
2.加工工艺控制:在加工主轴和轴承座部件时,需要控制加工工艺,如精密车削、磨削等,以保证主轴与轴承座配合度的一致性,从而降低主轴同轴度。
3.严格检测:在机床出厂前,需要进行严格的主轴同轴度检测。
在机床使用过程中,还需要定期进行维护和检测,以确保主轴同轴度在标准范围内。
总的来说,主轴同轴度的标准范围是根据机床类型、加工要求、检测方法等因素综合考虑确定的。
通过合理选择轴承、优化加工工艺并进行严格检测,可以确保主轴同轴度在标准范围内,从而保证机床加工精度的稳定性和可靠性。
主轴结构设计范文
一、主轴的结构设计
1、主轴体结构设计
主轴体(Spindle body)采用铣削加工,采用45钢制作。
45钢因其良
好的机械性能及耐磨性适合制作主轴体的要求,为确保精度和强度,选用
Φ80mm*1200mm的热轧精密直线棒。
主轴体需要制作出一定的宽度,用于使主轴体的精度达到要求,因此
需要进行精密精磨加工,精磨的精度达到Ra0.2μm即可。
主轴体内部空间设计,开槽,定位孔以及衔接及调整孔等,均采用数
控车床加工,要求加工精度±0.002mm。
2、主轴头设计
主轴头(Spindle head)由胶合铸铁制成,经加工可以达到较好的整体
结构强度。
其内部空间设计,开槽,定位孔以及衔接孔均采用数控车床加工,要求加工精度±0.002mm。
主轴头上分别设有润滑油嘴,润滑油嘴采用国标标准的6mm螺纹连接,连接紧固等级为A4-80。
3、主轴轴承座设计
主轴轴承座(Bearing seat)采用铝合金制作,内部空间设计,开槽,
定位孔以及衔接孔均采用数控车床加工,要求加工精度±0.002mm,需要
抗震力及耐磨性好的材料。
4、关节螺母设计
关节螺母(Joint nut)采用耐热的特殊材料制作,内部空间设计,开槽,定位孔以及衔接孔均采用数控车床加工,要求加工精度±0.002mm。