计算机图形学-图形变换与裁剪投影变换
- 格式:pdf
- 大小:1.42 MB
- 文档页数:24
一、名词解释:1、计算机图形学:用计算机建立、存储、处理某个对象的模型,并根据模型产生该对象图形输出的有关理论、方法与技术,称为计算机图形学。
3、图形消隐:计算机为了反映真实的图形,把隐藏的部分从图中消除。
4、几何变换:几何变换的基本方法是把变换矩阵作为一个算子,作用到图形一系列顶点的位置矢量,从而得到这些顶点在几何变换后的新的顶点序列,连接新的顶点序列即可得到变换后的图形。
6、裁剪:识别图形在指定区域内和区域外的部分的过程称为裁剪算法,简称裁剪。
7、透视投影:空间任意一点的透视投影是投影中心与空间点构成的投影线与投影平面的交点。
8、投影变换:把三维物体变为二维图形表示的变换称为投影变换。
9、走样:在光栅显示器上绘制非水平且非垂直的直线或多边形边界时,或多或少会呈现锯齿状。
这是由于直线或多边形边界在光栅显示器的对应图形都是由一系列相同亮度的离散像素构成的。
这种用离散量表示连续量引起的失真,称为走样(aliasing )。
10、反走样:用于减少和消除用离散量表示连续量引起的失真效果的技术,称为反走样。
二、问答题:1、简述光栅扫描式图形显示器的基本原理。
光栅扫描式图形显示器(简称光栅显示器)是画点设备,可看作是一个点阵单元发生器,并可控制每个点阵单元的亮度,它不能直接从单元阵列中的—个可编地址的象素画一条直线到另一个可编地址的象素,只可能用尽可能靠近这条直线路径的象素点集来近似地表示这条直线。
光栅扫描式图形显示器中采用了帧缓存,帧缓存中的信息经过数字/模拟转换,能在光栅显示器上产生图形。
2、分别写出平移、旋转以及缩放的变换矩阵。
平移变换矩阵:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡1010000100001z y xT T T (2分) 旋转变换矩阵: 绕X 轴⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-10000cos sin 00sin cos 00001θθθθ(2分) 绕Y 轴⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-10000cos 0sin 00100sin 0cos θθθθ(2分)绕Z 轴⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-1000010000cos sin 00sin cos θθθθ(2分) 缩放变换矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000000000000zy x S S S (2分) 3、图形变换有什么特点?最基本的几何变换有哪些?答:图形变换的特点:大多数几何变换(如平移、旋转和变比)是保持拓扑不变的,不改变图形的连接关系和平行关系。
第五章图形变换重 点:掌握二维几何变换、二维观察变换、三维几何变换以及三维观察变换。
难 点:理解常用的平移、比例、旋转变换,特别是复合变换。
课时安排:授课4学时。
图形变换包括二维几何变换, 二维观察变换,三维几何变换和三维观察变换。
为了能使各种几何变换(平移、旋转、比例等)以相同的矩阵形式表示,从而统一使用矩阵乘法运算来实现变 换的组合,现都采用齐次坐标系来表示各种变换。
有齐次坐标系齐次坐标系:n 维空间中的物体可用 n+1维齐次坐标空间来表示。
例如二维空间直线 ax+by+c=O ,在齐次空间成为 aX+bY+cW=0 ,以X 、Y 和W 为三维变量,构成没有常数项的 三维平面(因此得名齐次空间)。
点P (x 、y )在齐次坐标系中用P (wx,wy,w )表示,其中 W 是不为零的比例系数。
所以从 n 维的通常空间到 n+1维的齐次空间变换是一到多的变换,而其反变换 是多到一的变换。
例如齐次空间点P (X 、Y 、W )对应的笛卡尔坐标是 x=X/W 和y=Y/W 。
将通一地用矩阵乘法来实现变换的组合。
常笛卡尔坐标用齐次坐标表示时, W 的值取1。
采用齐次坐标系可以将平移、比例、旋转这三种基本变换都以相同的矩阵形式来表示,并统齐次坐标系在三维透视变换中有更重要的作用, 示形它使非线形变换也能采用线形变换的矩阵表式。
图形变换平移变换图示如图所示,它使图形移动位置。
新图 p'的每一图元点是原图形 p 中每个图元点在向分别移动Tx 和Ty 产生,所以对应点之间的坐标值满足关系式x'=x+Tx y'=y+Ty可利用矩阵形式表示成:[x' y' ] = : x y ] + : Tx Ty ]简记为:P'= P+T , T= : Tx Ty ]是平移变换矩阵(行向量)二堆几何变换1 1二维观察变換三维几诃变换平移变换 比例变换 陡转变换 对称变换 错切变换 仿肘变换 复合变换平移变换 比例变换 旋转变换 绕空间任意轴離转 对称变换 蜡切变换三维观察变5.1二维几何变换二维几何变换就是在平面上对二维点的坐标进行变换,从而形成新的坐标。
图形的投影与变换在我们的日常生活中,图形无处不在。
无论是建筑物的外观,还是艺术作品的构图,图形都扮演着重要的角色。
而对于图形的投影与变换,我们或许并不陌生。
在本文中,我们将探讨图形的投影与变换的概念、应用以及相关的数学原理。
一、图形的投影图形的投影是指将三维物体在二维平面上的映射。
在现实生活中,我们经常会观察到物体在光线照射下产生的投影。
例如,太阳光照射在建筑物上,形成了建筑物在地面上的投影。
在数学中,我们可以通过投影矩阵来描述图形的投影过程。
图形的投影可以分为平行投影和透视投影两种形式。
平行投影是指在投影过程中,光线是平行于投影平面的。
透视投影则是指在投影过程中,光线是从一个点出发的,即观察者的位置。
图形的投影不仅在建筑设计中有着重要的应用,还在计算机图形学中扮演着关键的角色。
在计算机图形学中,我们可以通过投影矩阵将三维物体投影到二维屏幕上,从而实现虚拟现实、游戏等领域的应用。
二、图形的变换除了投影之外,图形的变换也是图形学中的重要概念。
图形的变换包括平移、旋转、缩放等操作,可以改变图形的位置、方向和大小。
平移是指将图形沿着平移向量的方向移动一定的距离。
旋转是指将图形绕着旋转中心旋转一定的角度。
缩放则是指改变图形的大小,可以放大或缩小图形。
图形的变换在计算机图形学中也有着广泛的应用。
例如,在三维建模中,我们可以通过平移、旋转和缩放来改变模型的位置和形状。
在计算机动画中,图形的变换可以实现物体的运动和变形。
三、图形的投影与变换的数学原理图形的投影与变换涉及到一些数学原理。
投影矩阵是描述图形投影的数学工具,可以将三维物体投影到二维平面上。
在计算机图形学中,投影矩阵可以通过矩阵乘法来实现。
图形的变换也可以通过矩阵来描述。
平移、旋转和缩放操作可以分别表示为平移矩阵、旋转矩阵和缩放矩阵。
通过矩阵乘法,我们可以将图形的变换表示为一个矩阵乘法的组合。
除了矩阵乘法之外,还有一些其他的数学原理与图形的投影与变换密切相关。
计算机图形学的裁剪算法
计算机图形学的裁剪算法是图形学的一种重要算法,它的基本思想是将一个完整的几何图形(如线段、多边形、圆圈等)按照指定的裁剪窗口(矩形)进行裁剪,只保留在窗口内的部分,而把窗口外的部分抛弃掉。
由于裁剪算法的应用非常广泛,像图形显示系统、图形设备接口(GDI)和图形处理器(GPU)等都广泛使用裁剪算法。
计算机图形学的裁剪算法可以分为两种:2D裁剪算法和
3D裁剪算法。
2D裁剪算法是基于二维空间的,它将一个几何
图形投影到一个平面上,然后按照指定的窗口裁剪;而3D裁
剪算法是基于三维空间的,它将一个几何图形投影到一个三维空间,然后按照指定的窗口裁剪。
2D裁剪算法的基本步骤如下:首先,将要裁剪的几何图
形投影到平面上;其次,计算出投影后的几何图形以及裁剪窗口之间的交点;最后,将裁剪窗口内的部分保留,而把窗口外的部分抛弃掉。
3D裁剪算法的基本步骤如下:首先,将要裁剪的几何图
形投影到三维空间;其次,计算出投影后的几何图形以及裁剪窗口之间的交点;最后,将裁剪窗口内的部分保留,而把窗口外的部分抛弃掉。
计算机图形学的裁剪算法在图形处理中有着重要的作用,它不仅能够有效减少图形处理时间,而且还可以节约存储空间。
此外,它还可以有效提高图形处理效率,提高图形显示效果。
但是,它也存在着一定的局限性,比如,当几何图形的运动变得复杂时,它就会变得费时费力,这就对性能产生了一定的影响。
总之,计算机图形学的裁剪算法是图形学的重要算法,它的应用非常广泛,在图形处理中有着重要的作用。
虽然它也存在着一定的局限性,但是它仍然是一种有效的图形处理算法。
《计算机图形学》(Computer Graphics)教学大纲一、课程代码:03080251二、课程类型:必修课三、课程性质:专业基础课四、学分:3 课时:48(36理论+12实验)五、考核方式:考试六、先修课程:C程序设计,数据结构,高等数学,线性代数,计算机组成原理七、适用专业:计算机科学与技术专业八、课程教学目标:通过学习达到下列基本要求:1.掌握计算机图形学及图形系统的基本概念,了解图形外围设备的工作原理和特性,了解计算机图形标准的基本知识;2.掌握基本图元及常用曲线的生成算法;3.熟练掌握投影变换、图形变换、裁剪、填充等图形处理的常用算法;4.熟练掌握三维形体及常用曲面的表示方法,能够处理三维图形的消隐问题;5.熟练掌握一种语言的图形函数和图形程序的设计技能,具有开发以图形为主的软件设计基本能力。
九、说明:计算机图形学是一门复杂的综合性新兴学科,是建立在传统的图学理论,现代数学和计算机科学基础上的一门边缘性学科,是面向二十一世纪计算机学科的主科目。
通过本课程的学习使学生系统掌握计算机图形学的基本理论,基本算法;能正确评价、完善、编程实现所学的算法,具备创造更高效算法的意识;具有编写计算机图形应用软件的能力。
具备将图形学的研究思想运用到其它领域以解决相关问题的能力;初步具备在图形学领域进行研究的能力。
1、使用教材及参考资料教材选用:《计算机图形学基础教程》孙家广编著,清华大学出版社参考教材:《计算机图兴学》,孙家广编著,清华大学出社, 2002《计算机图形学》,张全伙张剑达编著,机械工业出版社《计算机图形学教程》,唐荣锡、汪嘉业等编著,科学出版社2005十、基本教学内容及课时分配:(一)教学内容:第一章:绪论【教学目的与要求】理解计算机图形学的基本思想。
掌握下列概念:图像、图形、计算机辅助设计与制造、可视化、图形显示和图形绘制。
了解计算机图形学的研究内容及发展简史、计算机图形学的应用和图形设备的基本原理。
计算机图形学中的三维变换与投影算法计算机图形学是研究计算机中图形的表示、生成、处理和显示的学科。
在计算机图形学中,三维变换和投影算法是非常重要的技术,它们可以用来对三维物体进行位置、姿态和尺寸的调整,并将其投影到二维画面上。
三维变换是指通过对三维物体的顶点进行一系列变换操作,来改变物体的位置、形状和方向。
常用的三维变换操作包括平移、旋转和缩放。
平移操作改变物体的位置,旋转操作改变物体的方向,而缩放操作改变物体的尺寸。
通过组合不同的变换操作,可以实现复杂的三维物体的变换。
平移是通过将物体的每个顶点按照指定的距离移动来改变物体的位置。
旋转是通过将物体的每个顶点绕着旋转中心按照指定的角度旋转来改变物体的方向。
缩放是通过将物体的每个顶点按照指定的比例因子进行缩放来改变物体的尺寸。
这些变换操作可以通过矩阵运算来进行计算,从而实现对三维物体的变换。
投影是将三维物体投影到二维画面上的操作。
在计算机图形学中,常用的投影算法有平行投影和透视投影。
平行投影是将物体的每个顶点沿着平行于视线的方向进行投影,得到二维画面上的对应点。
透视投影则考虑到物体离视点的距离,并根据投影面和视点的位置关系而调整投影结果。
通过投影操作,可以将三维物体在计算机屏幕上展示出来,从而实现真实感的图形显示。
在实际应用中,三维变换和投影算法被广泛应用于计算机游戏、虚拟现实、计算机辅助设计等领域。
通过三维变换,可以实现物体的动画效果,使得游戏或虚拟现实场景更加逼真。
而通过投影算法,可以实现对物体的观察和测量,帮助设计师更好地进行产品设计和展示。
总结来说,计算机图形学中的三维变换和投影算法是实现三维物体在计算机中显示和操作的关键技术。
通过对物体进行平移、旋转和缩放等变换操作,可以改变物体的位置、方向和尺寸;而通过投影操作,可以将三维物体投影到二维画面上展示出来。
这些技术在计算机游戏、虚拟现实和计算机辅助设计等领域发挥着重要的作用,推动了计算机图形学的发展。