截长补短与倍长中线法证明三角形全等
- 格式:doc
- 大小:167.50 KB
- 文档页数:2
专题14倍长中线法与截长补短法构造全等三形模型一:倍长中线法构造全等三角形模型二:截长补短法构造全等三角形【典例分析】【模型一:倍长中线法构造全等三角形】△ABC 中,AD 是BC 边中线方式1到E ,使DE=AD ,连接BE方式2:间接倍长(1)作CF ⊥AD 于F,作BE⊥AD 的延长线于E(2)延长MD 到N,使DN=MD,连接CN【典例1】(2021春•吉安县期末)课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC 中,若AB =8,AC =6,求BC 边上的中线AD 的取值范围.小N延长边上(不一定是底边)的中线,使所延长部分与中线相等,然后往往需要连接相应的顶点,则对应角对应边都对应相等。
此法常用于构造全等三角形,利用中线的性质、辅助线、对顶角一般用“SAS ”证明对应边之间的关系。
(在一定范围中)明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL (2)求得AD的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.【变式1-1】(2021秋•肥西县期末)一个三角形的两边长分别为5和9,设第三边上的中线长为x,则x的取值范围是()A.x>5B.x<7C.4<x<14D.2<x<7【变式1-2】如图,AE是△ABD的中线AB=CD=BD.求证:AB+AD>2AE;【变式1-3】(2021秋•齐河县期末)(1)方法呈现:如图①:在△ABC中,若AB=6,AC=4,点D为BC边的中点,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,可证△ACD≌△EBD,从而把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是(直接写出范围即可).这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在△ABC中,点D是BC的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,判断BE+CF与EF的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F、点E 是BC的中点,若AE是∠BAF的角平分线.试探究线段AB,AF,CF之间的数量关系,并加以证明.【模型二:截长补短法构造全等三角形】∙截长:1.过某一点作长边的垂线;2.在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
一、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________.例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.二、截长补短1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC2、如图,AC ∥BD ,EA,EB 分别平分∠CAB,∠DBA ,CD 过点E ,求证;AB =AC+BD3、如图,已知在ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。
求证:BQ+AQ=AB+BP4、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠, 求证: 0180=∠+∠C A5、如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PCD C B AEDFCBAED CB AEDCBACDBADCBAP21DCBAPQCBA三、平移变换例1 AD 为△ABC 的角平分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC周长记为B P .求证B P >A P .例2 如图,在△ABC 的边上取两点D 、E ,且BD=CE ,求证:AB+AC>AD+AE.四、借助角平分线造全等1、如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD2、如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F. (1)说明BE=CF 的理由;(2)如果AB=a ,AC=b ,求AE 、BE 的长.五、旋转例1 正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF ,求∠EAF 的度数.例2 D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F 。
一、手拉手模型要点一:手拉手模型特点:由两个等顶角的等腰三角形所组成,而且顶角的 极点为公共极点结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180° (3)OA 平分∠BOC 变形:例1.如图在直线ABC 的同一侧作两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明 (1)DBC ABE ∆≅∆ (2)DC AE =(3)AE 与DC 之间的夹角为︒60 (4)DFB AGB ∆≅∆ (5)CFB EGB ∆≅∆ (6)BH 平分AHC ∠(7)AC GF //变式精练1:如图两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明(1)DBC ABE ∆≅∆ (2)DC AE =(3)AE 与DC 之间的夹角为︒60(4)AE 与DC 的交点设为H ,BH 平分AHC ∠变式精练2:如图两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明(1)DBC ABE ∆≅∆ (2)DC AE =(3)AE 与DC 之间的夹角为︒60(4)AE 与DC 的交点设为H ,BH 平分AHC ∠CE AG ,,例2:如图,两个正方形ABCD 与DEFG ,连结二者相交于点H 问:(1)CDE ADG ∆≅∆是不是成立? (2)AG 是不是与CE 相等?(3)AG 与CE 之间的夹角为多少度? (4)HD 是不是平分AHE ∠?结CE AG ,,二者相例3:如图两个等腰直角三角形ADC 与EDG ,连交于点H 问:(1)CDE ADG ∆≅∆是不是成立? (2)AG 是不是与CE 相等?(3)AG 与CE 之间的夹角为多少度? (4)HD 是不是平分AHE ∠?例4:两个等腰三角形ABD ∆与BCE ∆,其中BD AB =,,EB CB =α=∠=∠CBE ABD ,连结AE 与CD ,问:(1)DBC ABE ∆≅∆是不是成立? (2)AE 是不是与CD 相等?(3)AE 与CD 之间的夹角为多少度?三、截长补短问题1:垂直平分线(性质)定理是_______________________________________________________问题2:角平分线(性质)定理是__________________________________________________________问题3:等腰三角形的两个底角________,简称______________;如果一个三角形有两个角相等,那么它们所对的边也______,简称____________.问题4:当见到线段的______________考虑截长补短,构造全等或等腰转移____、转移____,然后和_________从头组合解决问题.三角形全等之截长补短(一)一、单项选择题(共4道,每道25分)1.已知,如图,BM平分∠ABC,P为BM上一点,PD⊥BC于点D,BD=AB+CD.求证:∠BAP+∠BCP=180°.请你认真观看以下序号所代表的内容:①;②∵∠1=∠2;③∠A=∠BEP;④AP=PE;⑤;⑥;⑦;⑧.以上空缺处依次所填最恰当的是( )A.①③⑥⑦B.①③⑤⑧C.②③⑥⑦D.②④⑤⑧2.已知,如图,BM平分∠ABC,点P为BM上一点,PD⊥BC于点D,BD=AB+DC.求证:∠BAP+∠BCP=180°.请你认真观看以下序号所代表的内容:①延长BA,过点P作PE⊥BA于点E;②延长BA到E,使AE=DC,连接PE;③延长BA到E,使DC=AE;④;⑤;⑥;⑦.以上空缺处依次所填最恰当的是( )A.②④⑦B.①⑤⑥C.③④⑥D.①⑤⑦3.已知,如图,在五边形ABCDE中,AB=AE,AD平分∠CDE,∠BAE=2∠CAD,求证:BC+DE=CD.请你认真观看以下序号所代表的内容:①在CD上截取CF=CB,连接AF;②在DC上截取DF=DE,连接AF;③在DC上截取DF=DE;④AE=AF;⑤AF=AE,∠4=∠3;⑥∠4=∠3;⑦;⑧;⑨.以上空缺处依次所填最恰当的是( )A.①④⑨B.③⑤⑧C.①⑥⑦D.②⑤⑨4.已知,如图,在五边形ABCDE中,AB=AE,∠BAE=2∠CAD,∠ABC+∠AED=180°,求证:BC+DE=CD.请你认真观看以下序号所代表的内容:①延长DE到F,使EF=BC,连接AF;②延长DE到F,使BC=EF;③延长DE到F,连接AF;⑧;⑨.以上空缺处依次所填最恰当的是( )A.③⑤⑥⑧B.①④⑥⑨C.①⑤⑥⑨D.②④⑦⑧四、三角形全等旋转与截长补短专题问题一:题中显现什么的时候,咱们应该想到旋转?(构造旋转的条件)问题二:旋转都有哪些模型?【例1】如图,P是正△ABC内的一点,假设将△PBC绕点B旋转到△P'BA ,那么∠PBP'的度数是( )A.45°B.60°C.90°D.120°【例2】如图,正方形BAFE与正方形ACGD共点于A,连接BD、CF,求证:BD=CF并求出∠DOH的度数。
三角形全等之手拉手模型倍长中线截长补短法旋转寻找三角形全等方法归纳总结SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#一、手拉手模型要点一:手拉手模型特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180°(3)OA平分∠BOC变形:例1.如图在直线ABC的同一侧作两个等边三角形ABD∆,连结AE与∆与BCECD,证明(1)DBC∆≅ABE∆(2)DCAE=(3)AE与DC之间的夹角为︒60(4)DFB≅∆AGB∆(5)CFB≅∆EGB∆(6)BH平分AHC∠(7)ACGF//变式精练1:如图两个等边三角形ABD∆,连结AE与CD,∆与BCE证明(1)DBC∆≅ABE∆(2)DCAE=(3)AE与DC之间的夹角为︒60(4)AE与DC的交点设为H,BH平分AHC∠变式精练2:如图两个等边三角形ABD∆,∆与BCE连结AE与CD,证明(1)DBCABE∆∆≅(2)DCAE=(3)AE与DC之间的夹角为︒60(4)AE与DC的交点设为H,BH平分AHC∠例2:如图,两个正方形ABCD与DEFG,连结AG,,二者相交于点HCE问:(1)CDEADG∆∆是否成立≅(2)AG是否与CE相等(3)AG与CE之间的夹角为多少度(4)HD是否平分AHE∠例3:如图两个等腰直角三角形ADC与AG,,二者相交于点HEDG,连结CE问:(1)CDE∆是否成立ADG∆≅(2)AG是否与CE相等(3)AG与CE之间的夹角为多少度(4)HD是否平分AHE∠例4:两个等腰三角形ABD ∆与BCE ∆,其中BD AB =,,EB CB =α=∠=∠CBE ABD ,连结AE 与CD , 问:(1)DBC ABE ∆≅∆是否成立 (2)AE 是否与CD 相等(3)AE 与CD 之间的夹角为多少度 (4)HB 是否平分AHC ∠二、倍长与中点有关的线段倍长中线类考点说明:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的。
专题01 全等模型--倍长中线与截长补短全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。
模型1.倍长中线模型【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。
【常见模型及证法】1、基本型:如图1,在三角形ABC 中,AD 为BC 边上的中线.证明思路:延长AD 至点E ,使得AD =DE . 若连结BE ,则BDE CDA ∆≅∆;若连结EC ,则ABD ECD ∆≅∆;2、中点型:如图2,C 为AB 的中点.证明思路:若延长EC 至点F ,使得CF EC =,连结AF ,则BCE ACF ∆≅∆; 若延长DC 至点G ,使得CG DC =,连结BG ,则ACD BCG ∆≅∆. 3、中点+平行线型:如图3, //AB CD ,点E 为线段AD 的中点.证明思路:延长CE 交AB 于点F (或交BA 延长线于点F ),则EDC EAF ∆≅∆. 1.(2022·山东烟台·一模)(1)方法呈现:如图①:在ABC 中,若6AB =,4AC =,点D 为BC 边的中点,求BC 边上的中线AD 的取值范围. 解决此问题可以用如下方法:延长AD 到点E 使DE AD =,再连接BE ,可证ACD EBD △≌△,从而把AB 、AC ,2AD 集中在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在ABC 中,点D 是BC 的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC于点F ,连接EF ,判断BE CF +与EF 的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD 中,//AB CD ,AF 与DC 的延长线交于点F 、点E 是BC 的中点,若AE 是BAF ∠的角平分线.试探究线段AB ,AF ,CF 之间的数量关系,并加以证明.2.(2022·河南南阳·中考模拟)【教材呈现】如图是华师版八年级上册数学教材第69页的部分内容: 如图,在ABC 中,D 是边BC 的中点,过点C 画直线CE ,使//CE AB ,交AD 的延长线于点E ,求证:AD ED = 证明∵//CE AB (已知)∵ABD ECD ∠=∠,BAD CED ∠=∠(两直线平行,内错角相等). 在ABD △与ECD 中,∵ABD ECD ∠=∠,BAD CED ∠=∠(已证),BD CD =(已知), ∵()A.A.S ABD ECD △△≌,∵AD ED =(全等三角形的对应边相等).(1)【方法应用】如图①,在ABC 中,6AB =,4AC =,则BC 边上的中线AD 长度的取值范围是______. (2)【猜想证明】如图②,在四边形ABCD 中,//AB CD ,点E 是BC 的中点,若AE 是BAD ∠的平分线,试猜想线段AB 、AD 、DC 之间的数量关系,并证明你的猜想;(3)【拓展延伸】如图③,已知//AB CF ,点E 是BC 的中点,点D 在线段AE 上,EDF BAE ∠=∠,若5AB =,2CF =,求出线段DF 的长.3.(2022·河北·中考模拟)倍长中线的思想在丁倍长某条线段(被延长的线段a 要满足两个条件:①线段a 一个端点是图中一条线段b 的中点;②线段a 与这条线段b 不共线),然后进行连接,构造三角形全等,再进一步将某些线段进行等量代换,再证明全等或其他的结论,从而解决问题. 【应用举例】如图(1),已知:AD 为ABC ∆的中线,求证:2AB AC AD +>.简证:如图(2),延长AD 到E ,使得DE AD =,连接CE ,易证ABD ECD ∆≅∆,得AB = ,在ACE ∆中,AC CE +> ,2AB AC AD +>.【问题解决】(1)如图(3),在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F ,求证:AF EF =.(2)如图(4),在ABC ∆中,90,A D ∠=︒是BC 边的中点,E F 、分别在边AB AC 、上,DE DF ⊥,若3,4BE CF ==,求EF 的长.(3)如图(5),AD 是ABC ∆的中线,,AB AE AC AF ==,且90BAE FAC ∠=∠=︒,请直接写出AD 与EF 的数量关系_ 及位置关系_ .模型2.截长补短模型【模型解读】截长补短的方法适用于求证线段的和差倍分关系。
全等三角形模型——截长补短与倍长中线截长补短截长:即在一条较长的线段上截取一段较短的线段在线段AB 上截取AD AC=补短:即在较短的线段上补一段线段使其和较长的线段相等延长AC ,使得AD AB =1.ABC D 中,AD 是BAC Ð的平分线,且AB AC CD =+.若60BCA Ð=°,则ABC Ð的大小为( )A .30°B .60°C .80°D .100°【分析】可在AB 上取AC AC ¢=,则由题中条件可得BC C D ¢=¢,即2C AC D B Ð=Т=Ð,再由三角形的外角性质即可求得B Ð的大小.【解答】解:如图,在AB 上取AC AC ¢=,AD Q 是角平分线,DAC DAC ¢\Ð=Ð,ACD \D @△()AC D SAS ¢,CD C D ¢\=,又AB AC CD =+Q ,AB AC C B ¢¢=+,BC C D \¢=¢,DCBAAB CD260C AC D B ¢\Ð=Ð=Ð=°,30B \Ð=°.故选:A .2.阅读:探究线段的和.差.倍.分关系是几何中常见的问题,解决此类问题通常会用截长法或补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.(1)请完成下题的证明过程:如图1,在ABC D 中,2B C Ð=Ð,AD 平分BAC Ð.求证:AB BD AC +=.证明:在AC 上截取AE AB =,连接DE(2)如图2,//AD BC ,EA ,EB 分别平分DAB Ð,CBA Ð,CD 过点E ,求证:AB AD BC =+.【分析】(1)在AC 上截取AE AB =,连接DE ,证明ABD AED D @D ,得到B AED Ð=Ð,再证明ED EC =即可;(2)由等腰三角形的性质知AE FE =,再证明ADE FCE D @D 即可解决本题.【解答】证明:在AC 上截取AE AB =,连接DE ,如图1:AD Q 平分BAC Ð,BAD DAC \Ð=Ð,在ABD D 和AED D 中,AE AB BAD DAC AD AD =ìïÐ=Ðíï=î,()ABD AED SAS \D @D ,B AED \Ð=Ð,BD DE =,又2BC Ð=Ð,2AED C \Ð=Ð,而2AED C EDC C Ð=Ð+Ð=Ð,C EDC \Ð=Ð,DE CE \=,AB BD AE CE AC \+=+=;(2)延长AE 、BC 交于F ,AB BF =Q ,BE 平分ABF Ð,AE EF \=,在ADE D 和FCE D 中,DAE F AE EFAED CEF Ð=Ðìï=íïÐ=Ðî,()ADE FCE ASA \D @D ,AD CF \=,AB BF BC CF BC AD \==+=+.3.如图,在ABC D 中,AD 平分BAC Ð交BC 于D ,在AB 上截取AE AC =.(1)求证:ADE ADC D @D ;(2)若6AB =,5BC =,4AC =,求BDE D的周长.【分析】(1)根据SAS 证明ADE ADC D @D 即可;(2)根据全等三角形的性质和线段之间的关系进行解答即可.【解答】证明:(1)AD Q 平分BAC Ð,EAD CDA \Ð=Ð,在ADE D 与ADC D 中,AE AC EAD CDA AD AD =ìïÐ=Ðíï=î,()ADE ADC SAS \D @D ,(2)ADE ADC D @D Q ,ED DC \=,BDE \D 的周长6457BE BD DE AB AE BC DC DC AB AC BC DC DC AB AC BC =++=-+-+=-+-+=-+=-+=4.(2020秋•武昌区期中)如图,ABC D 中,60ABC Ð=°,AD 、CE 分别平分BAC Ð、ACB Ð,AD 、CE 相交于点P(1)求CPD Ð的度数;(2)若3AE =,7CD =,求线段AC 的长.【分析】(1)利用60ABC Ð=°,AD 、CE 分别平分BAC Ð,ACB Ð,即可得出答案;(2)由题中条件可得APE APF D @D ,进而得出APE APF Ð=Ð,通过角之间的转化可得出CPF CPD D @D ,进而可得出线段之间的关系,即可得出结论.【解答】解:(1)60ABC Ð=°Q ,AD 、CE 分别平分BAC Ð,ACB Ð,120BAC BCA \Ð+Ð=°,1()602PAC PCA BAC BCA Ð+Ð=Ð+Ð=°,120APC \Ð=°,60CPD \Ð=°.(2)如图,在AC 上截取AF AE =,连接PF .AD Q 平分BAC Ð,BAD CAD \Ð=Ð,在APE D 和APF D 中AE AF EAP FAP AP AP =ìïÐ=Ðíï=î,()APE APF SAS \D @D ,APE APF \Ð=Ð,120APC Ð=°Q ,60APE \Ð=°,60APF CPD CPF \Ð=Ð=°=Ð,在CPF D 和CPD D 中,FPC DPC CP CPFCP DCP Ð=Ðìï=íïÐ=Ðî,()CPF CPD ASA \D @D CF CD \=,3710AC AF CF AE CD \=+=+=+=.5.如图,在ABC D 中,60BAC Ð=°,AD 是BAC Ð的平分线,且AC AB BD =+,求ABC Ð的度数.【分析】在AC上截取AE AB=,根据角平分线的定义可得BAD CADÐ=Ð,然后利用“边角边”证明ABDD和AEDD全等,根据全等三角形对应边相等可得BD DE=,全等三角形对应角相等可得B AEDÐ=Ð,再求出CE BD=,从而得到CE DE=,根据等边对等角可得C CDEÐ=Ð,根据三角形的一个外角等于与它不相邻的两个内角的和可得2AED CÐ=Ð,然后根据三角形的内角和定理列方程求出CÐ,即可得解.【解答】解:如图,在AC上截取AE AB=,ADQ平分BACÐ,BAD CAD\Ð=Ð,在ABDD和AEDD中,AE ABBAD CAD AD AD=ìïÐ=Ðíï=î,()ABD AED SAS\D@D,BD DE\=,B AEDÐ=Ð,AC AE CE=+Q,AC AB BD=+,CE BD\=,CE DE\=,C CDE\Ð=Ð,即2B CÐ=Ð,在ABCD中,180BAC B CÐ+Ð+Ð=°,602180C C\°+Ð+Ð=°,解得40CÐ=°,24080ABC\Ð=´°=°.6.如图,五边形ABCDE 中,AB AE =,BC DE CD +=,120BAE BCD Ð=Ð=°,180ABC AED Ð+Ð=°,连接AD .求证:AD 平分CDE Ð.【分析】连接AC ,将ABC D 绕A 点旋转120°到AEF D ,由AB AE =,120BAE Ð=°,得到AB 与AE 重合,并且AC AF =,又由180ABC AED Ð+Ð=°,得到180AEF AED Ð+Ð=°,即D ,E ,F 在一条直线上,而BC DE CD +=,得CD DF =,则易证ACD AFD D @D ,于是ADC ADF Ð=Ð.【解答】证明:如图,连接AC ,将ABC D 绕A 点旋转120°到AEF D ,AB AE =Q ,120BAE Ð=°,AB \与AE 重合,并且AC AF =,又180ABC AED Ð+Ð=°Q ,而ABC AEF Ð=Ð,180AEF AED Ð+Ð=°Q ,D \,E ,F 在一条直线上,而BC EF =,BC DE CD +=,CD DF \=,又AC AF =Q ,ACD AFD \D @D ,ADC ADF \Ð=Ð,即AD 平分CDE Ð.7.已知:如图,在ABC D 中,D 是BA 延长线上一点,AE 是DAC Ð的平分线,P 是AE 上的一点(点P 不与点A 重合),连接PB ,PC .通过观察,测量,猜想PB PC +与AB AC +之间的大小关系,并加以证明.【分析】根据全等三角形的判定与性质,可得FP CP =,根据三角形的两边之和大于第三边,可得答案.【解答】解:PB PC AB AC +>+,理由如下:在BA 的延长线上截取AF AC =,连接PF ,在FAP D 和CAP D 中,AF AC FAP CAP AP AP =ìïÐ=Ðíï=î,()FAP CAP SAS \D @D ,FP CP \=.在FPB D 中,FP BP FA AB +>+,即PB PC AB AC +>+.8.已知ABC D 中,AB AC =,BE 平分ABC Ð交边AC 于E .(1)如图(1),当108BAC Ð=°时,证明:BC AB CE =+;(2)如图(2),当100BAC Ð=°时,(1)中的结论还成立吗?若不成立,是否有其他两条线段之和等于BC,若有请写出结论并完成证明.【分析】(1)如图1中,在BC 上截取BD BA =.只要证明BEA BED D @D ,CE CD =即可解决问题;(2)结论:BC BE AE =+.如图2中,在BA 、BC 上分别截取BF BE =,BH BE =.则EBH EBF D @D ,再证明EA EH EF CF ===即可解决问题;【解答】解:(1)如图1中,在BC 上截取BD BA =.BA BD =Q ,EBA EBD Ð=Ð,BE BE =,BEA BED \D @D ,BA BD \=,108A BDE Ð=Ð=°,AB AC =Q ,36C ABC \Ð=Ð=°,72EDC Ð=°,72CED \Ð=°,CE CD \=,BC BD CD AB CE \=+=+.(2)结论:BC BE AE =+.理由:如图2中,在BA 、BC 上分别截取BF BE =,BH BE =.则EBH EBF D @D ,EF EH \=,100BAC Ð=°Q ,AB AC =,40ABC C \Ð=Ð=°,20EBA EBC \Ð=Ð=°,80BFE H EAH \Ð=Ð=Ð=°,AE EH \=,BFE C FEC Ð=Ð+ÐQ ,40CEF C \Ð=Ð=°,EF CF \=,BC BF CF BE AE \=+=+.9.(2020秋•建华区期末)阅读下面文字并填空:数学习题课上李老师出了这样一道题:“如图1,在ABC D 中,AD 平分BAC Ð,2B C Ð=Ð.求证:AB BD AC +=.”李老师给出了如下简要分析:要证AB BD AC +=,就是要证线段的和差问题,所以有两个方法:方法一:“截长法”.如图2,在AC 上截取AE AB =,连接DE ,只要证BD = EC 即可,这就将证明线段和差问题 为证明线段相等问题,只要证出△ @△ ,得出B AED Ð=Ð及BD = ,再证出Ð = ,进而得出ED EC =,则结论成立.此种证法的基础是“已知AD 平分BAC Ð,将ABD D 沿直线AD 对折,使点B 落在AC 边上的点E 处”成为可能.方法二:“补短法”.如图3,延长AB 至点F ,使BF BD =.只要证AF AC =即可,此时先证Ð C =Ð,再证出△ @△ ,则结论成立.“截长补短法”是我们今后证明线段或角的“和差倍分”问题常用的方法.【分析】方法一、如图2,在AC 上截取AE AB =,由“SAS ”可证ABD AED D @D ,可得B AED Ð=Ð,BD DE =,由角的数量关系可求DE CE =,即可求解;方法二、如图3,延长AB 至点F ,使BF BD =,由“AAS ”可证AFD ACD D @D ,可得AC AF =,可得结论.【解答】解:方法一、在AC 上截取AE AB =,连接DE ,如图2:AD Q 平分BAC Ð,BAD DAC \Ð=Ð,在ABD D 和AED D 中,AE AB BAD DAC AD AD =ìïÐ=Ðíï=î,()ABD AED SAS \D @D ,B AED \Ð=Ð,BD DE =,又2B C Ð=ÐQ ,2AED C \Ð=Ð,而2AED C EDC C Ð=Ð+Ð=Ð,C EDC \Ð=Ð,DE CE \=,AB BD AE CE AC \+=+=,故答案为:EC ,转化,ABD ,AED ,DE ,EDC ,C Ð;方法二、如图3,延长AB 至点F ,使BF BD =,F BDF \Ð=Ð,2ABD F BDF F \Ð=Ð+Ð=Ð,2ABD C Ð=ÐQ ,F C \Ð=Ð,在AFD D 和ACD D 中,FAD CAD F CAD AD Ð=ÐìïÐ=Ðíï=î,()AFD ACD AAS \D @D ,AC AF \=,AC AB BF AB BD \=+=+,故答案为F ,AFD ,ACD .倍长中线倍长中线:即延长三角形的中线,使得延长后的线段是原中线的两倍.其目的是构造一对对顶的全等三角形;其本质是转移边和角.其中BD CD =,延长AD 使得DE AD =,则BDE CDA △≌△.10.三角形ABC 中,AD 是中线,且4AB =,6AC =,求AD 的取值范围是 .【分析】延长AD 到E ,使AD DE =,连接BE ,证ADC EDB D @D ,推出8AC BE ==,在ABE D 中,根据三角形三边关系定理得出AB BE AE AB BE -<<+,代入求出即可.【解答】解:延长AD 到E ,使AD DE =,连接BE ,AD Q 是BC 边上的中线,BD CD \=,在ADC D 和EDB D 中,Q AD DE ADC EDB DC BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,4AC BE \==,在ABE D 中,AB BE AE AB BE -<<+,64264AD \-<<+,15AD \<<,故答案为:15AD <<.11.(2021春•碑林区校级期中)问题背景:课外兴趣小组活动时,老师提出了如下问题:如图1,ABCD 中,若4AB =,3AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下ED ABC的解决方法:延长AD 到点E ,使DE AD =,则得到ADC EDB D @D ,小明证明BED CAD D @D 用到的判定定理是: (用字母表示);问题解决:小明发现:解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.请写出小明解决问题的完整过程;拓展应用:以ABC D 的边AB ,AC 为边向外作ABE D 和ACD D ,AB AE =,AC AD =,90BAE CAD Ð=Ð=°,M 是BC 中点,连接AM ,DE .当3AM =时,求DE 的长.【分析】问题背景:先判断出BD CD =,由对顶角相等BDE CDA Ð=Ð,进而得出()ADC EDB SAS D @D ;问题解决:先证明()ADC EDB SAS D @D ,得出3BE AC ==,最后用三角形三边关系即可得出结论;拓展应用:如图2,延长AM 到N ,使得MN AM =,连接BN ,同(1)的方法得出()BMN CMA SAS D @D ,则BN AC =,进而判断出ABN EAD Ð=Ð,进而判断出ABN EAD D @D ,得出AN ED =,即可求解.【解答】解:问题背景:如图1,延长AD 到点E ,使DE AD =,连接BE ,AD Q 是ABC D 的中线,BD CD \=,在ADC D 和EDB D 中,AD ED CDA BDE CD BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,故答案为:SAS;问题解决:如图1,延长AD 到点E ,使DE AD =,连接BE ,AD Q 是ABC D 的中线,BD CD \=,在ADC EDB D @D 中,AD ED CDA BDE CD BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,BE AC \=,在ABE D 中,AB BE AE AB BE -<<+,4AB =Q ,3AC =,4343AE \-<<+,即17AE <<,DE AD =Q ,12AD AE \=,\1722AD <<;拓展应用:如图2,延长AM 到N ,使得MN AM =,连接BN ,由问题背景知,()BMN CMA SAS D @D ,BN AC \=,CAM BNM Ð=Ð,AC AD =Q ,//AC BN ,BN AD \=,//AC BN Q ,180BAC ABN \Ð+Ð=°,90BAE CAD Ð=Ð=°Q ,180BAC EAD \Ð+Ð=°,ABN EAD \Ð=Ð,在ABN D 和EAD D 中,AB EA ABN EAD BN AD =ìïÐ=Ðíï=î,()ABN EAD SAS \D @D ,AN DE \=,MN AM =Q ,2DE AN AM \==,3AM =Q ,6DE \=.12.如图,ABC D 中,D 为BC 的中点.(1)求证:2AB AC AD +>;(2)若5AB =,3AC =,求AD 的取值范围.【分析】(1)再延长AD 至E ,使DE AD =,构造ADC EDB D @D ,再根据三角形的三边关系可得2AB AC AD +>;(2)直接利用三角形的三边关系:三角形两边之和大于第三边,三角形的两边差小于第三边可得53253AD -<<+,再计算即可.【解答】(1)证明:由BD CD =,再延长AD 至E ,使DE AD =,D Q 为BC 的中点,DB CD \=,在ADC D 和EDB D 中AD DE ADC BDE DB CD =ìïÐ=Ðíï=î,BE AC \=,在ABE D 中,AB BE AE +>Q ,2AB AC AD \+>;(2)5AB =Q ,3AC =,53253AD \-<<+,14AD \<<.13.如图,平面直角坐标系中,A 为y 轴正半轴上一点,B 、C 分别为x 轴负半轴,x 轴正半轴上的点,AB AD =,AC AE =,90BAD CAE Ð=Ð=°,连DE .如图,F 为BC 的中点,求证:2DE AF =.【分析】延长AF 至点N ,使FN AF =,连接BN ,证明BFN CFA D @D ,根据全等三角形的性质得到BN AC =,FBN FCA Ð=Ð,证明ABN DAE D @D ,根据全等三角形的性质证明;【解答】证明:延长AF 至点N ,使FN AF =,连接BN ,在BFN D 和CFA D 中,FB FC BFN CFA FN AF =ìïÐ=Ðíï=î,BN AC \=,FBN FCA Ð=Ð,BN AE \=,ABN DAE Ð=Ð,在ABN D 和DAE D 中,AB AD ABN DAE BN AE =ìïÐ=Ðíï=î,()ABN DAE SAS \D @D ,AN DE \=,2DE AF \=.14.如图,AD 是ABC D 的边BC 上的中线,CD AB =,AE 是ABD D 的边BD 上的中线.求证:2AC AE =.【分析】延长AE 至点F ,使EF AE =,连接DF ,由SAS 证得ABE FDE D @D ,得出DF AB CD ==,EDF B Ð=Ð,易证AB BD =,得出ADB BAD Ð=Ð,证明ADC ADF Ð=Ð,由SAS 证得ADF ADC D @D ,即可得出结论.【解答】证明:延长AE 至点F ,使EF AE =,连接DF ,如图所示:AE Q 是ABD D 的边BD 上的中线,BE DE \=,在ABE D 与FDE D 中,AE EF AEB FED BE DE =ìïÐ=Ðíï=î,()ABE FDE SAS \D @D ,DF AB CD \==,EDF B Ð=Ð,AD Q 是ABC D 的边BC 上的中线,CD AB =,AB BD \=,ADB BAD \Ð=Ð,ADC B BAD BDA EDF ADF \Ð=Ð+Ð=Ð+Ð=Ð,在ADF D 与ADC D 中,AD AD ADF ADC DF DC =ìïÐ=Ðíï=î,()ADF ADC SAS \D @D ,2AC AF AE \==.15.如图,在ABC D 中,D ,E 是AB 边上的两点,AD EB =,CF 是AB 边上的中线,则求证AC BC CD CE +>+.【分析】如图,延长CF 至H ,使FH CF =,连接AH ,DH ,延长CD 交AH 于点G ,通过证明AFH BFC D @D ,BCE AHD D @D ,可得BC AH =,CE DH =,利用三角形的三边关系可求解.【解答】证明:如图,延长CF 至H ,使FH CF =,连接AH ,DH ,延长CD 交AH 于点G,Q是AB边上的中线,CF\=,且CFB AFHAF BF=,Ð=Ð,CF FH()\D@DAFH BFC SAS=,Ð=Ð,且AD BE\=,CBE HADBC AH\D@D()BCE AHD SAS\=,CE DH在AGC+>+,D中,AC AG DC DG在GDH+>,D中,DG GH DHAC AG DG GH DC DG DH\+++>++,\+>+,AC AH DC DH\+>+.AC BC CD CE16.如图1,ABCÐ=Ð.D中,CD为ABCD的中线,点E在CD上,且AED BCD(1)求证:AE BC=.(2)如图2,连接BE,若2CBEÐ的度数为 (直接写出结果),Ð=°,则ACDAB AC DE==,14【分析】(1)如图1,延长CD到F,使DF CDD@D,可得=,连接AF,由“SAS”可证ADF BDCAF BC=,F BCDÐ=Ð,由等腰三角形的性质可得结论;(2)由等腰三角形的性质可得DEB DBEÐ=Ð,可得14DCB DEBÐ=Ð-°,14ACB ABC DEBÐ=Ð=Ð+°,即可求解.【解答】证明:(1)如图1,延长CD到F,使DF CD=,连接AF,CDQ为ABCD的中线,AD BD\=,且ADF BDCÐ=Ð,且CD DF=,()ADF BDC SAS\D@D,AF BC\=,F BCDÐ=Ð,AED BCDÐ=ÐQ,AED F\Ð=Ð,AE AF\=,AE BC\=;(2)12DE AB=Q,CD为ABCD的中线,DE AD DB\==,DEB DBE\Ð=Ð,14 ABC DBE CBE DEB\Ð=Ð+Ð=Ð+°,DEB DCB CBEÐ=Ð+ÐQ,14DCB DEB\Ð=Ð-°,AC AB=Q,14ACB ABC DEB\Ð=Ð=Ð+°28ACD ACB DCB\=Ð-Ð=°,故答案为:28°.17.如图,ABC D 中,点D 是BC 中点,连接AD 并延长到点E ,连接BE .(1)若要使ACD EBD D @D ,应添上条件: ;(2)证明上题:(3)在ABC D 中,若5AB =.3AC =,可以求得BC 边上的中线AD 的取值范围4AD <.请看解题过程:由ACD EBD D @D 得:AD ED =,3BE AC ==,因此AE AB BE <+,即8AE <,而12AD AE =,则4AD <请参考上述解题方法,可求得AD m >,则m 的值为 .(4)证明:直角三角形斜边上的中线等于斜边的一半.(提示:画出图形,写出已知,求证,并加以证明)【分析】(1)根据“边角边”求证三角形全等的方法可以添加条件AD DE =;(2)易证BD CD =,根据“边角边”求证三角形全等的方法即可解题;(3)根据三角形三边关系即可解题;(4)已知RT ABC D 中90BAC Ð=°,AD 是斜边中线,求证12AD BC =;证明:延长AD 到点E 使得DE AD =,连接BE ,易证ACD EBD D @D ,可得C DBE Ð=Ð,AC BE =,即可证明BAC ABE D @D ,可得BC AE =,即可解题.【解答】解:(1)应添上条件:AD DE =,故答案为AD DE =;(2)Q 点D 是BC 中点,BD CD \=,Q 在ACD D 和EBD D 中,BD CD ADC BDE AD DE =ìïÐ=Ðíï=î,()ACD EBD SAS \D @D ;(3)Q 三角形两边之差小于第三边,AE AB BE \>-,即2AE >,12AD AE =Q ,1AD \>,故答案为 1;(4)已知RT ABC D 中90BAC Ð=°,AD 是斜边中线,求证12AD BC =,证明:延长AD 到点E 使得DE AD =,连接BE ,Q 点D 是BC 中点,BD CD \=,Q 在ACD D 和EBD D 中,BD CD ADC BDE AD DE =ìïÐ=Ðíï=î,()ACD EBD SAS \D @D ;C DBE \Ð=Ð,AC BE =,90ABC C Ð+Ð=°Q ,90ABC DBE \Ð+Ð=°,即90ABE Ð=°,Q 在BAC D 和ABE D 中,90AB BA ABE BAC AC BE =ìïÐ=Ð=°íï=î,()BAC ABE SAS \D @D ;BC AE \=,12AD BC \=.。
一、手拉手模型要点一:手拉手模型特点:由两个等顶角的等腰三角形所组成,并且顶角的 顶点为公共顶点结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180° (3)OA 平分∠BOC 变形:例 1.如图在直线ABC 的同一侧作两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明(1)DBC ABE ∆≅∆ (2)DC AE =(3)AE 与DC 之间的夹角为︒60 (4)DFB AGB ∆≅∆ (5)CFB EGB ∆≅∆ (6)BH 平分AHC ∠ (7)AC GF //变式精练1:如图两个等边三角形ABD ∆与BCE ∆,连结AE 与CD , 证明(1)DBC ABE ∆≅∆ (2)DC AE =(3)AE 与DC 之间的夹角为︒60(4)AE 与DC 的交点设为H ,BH 平分AHC ∠变式精练2:如图两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明(1)DBC ABE ∆≅∆ (2)DC AE =(3)AE 与DC 之间的夹角为︒60(4)AE 与DC 的交点设为H ,BH 平分AHC ∠例2:如图,两个正方形ABCD 与DEFG ,连结CE AG ,,二者相交于点H问:(1)CDE ADG ∆≅∆是否成立? (2)AG 是否与CE 相等?(3)AG 与CE 之间的夹角为多少度? (4)HD 是否平分AHE ∠?例3:如图两个等腰直角三角形ADC 与EDG ,连结CE AG ,,二者相交于点H问:(1)CDE ADG ∆≅∆是否成立? (2)AG 是否与CE 相等?(3)AG 与CE 之间的夹角为多少度? (4)HD 是否平分AHE ∠?例4:两个等腰三角形ABD ∆与BCE ∆,其中BD AB =,,EB CB =α=∠=∠CBE ABD ,连结AE 与CD , 问:(1)DBC ABE ∆≅∆是否成立? (2)AE 是否与CD 相等?(3)AE 与CD 之间的夹角为多少度? (4)HB 是否平分AHC ∠?二、倍长与中点有关的线段倍长中线类☞考点说明:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的。
第六讲 全等三角形辅助线之倍长中线与截长补短一、全等三角形知识点复习 1.判定和性质② 全等三角形面积相等. 2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 性质 1、全等三角形的对应角相等、对应边相等。
2、全等三角形的对应边上的高对应相等。
3、全等三角形的对应角平分线相等。
4、全等三角形的对应中线相等。
5、全等三角形面积相等。
6、全等三角形周长相等。
(以上可以简称:全等三角形的对应元素相等) 7、三边对应相等的两个三角形全等。
(SSS)8、两边和它们的夹角对应相等的两个三角形全等。
(SAS) 9、两角和它们的夹边对应相等的两个三角形全等。
(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3、当图中出现两个以上等边三角形时,应首先考虑用SAS 找全等三角形。
4、用在实际中,一般我们用全等三角形测等距离。
以及等角,用于工业和军事。
有一定帮助。
5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 做题技巧一般来说考试中线段和角相等需要证明全等。
因此我们可以来采取逆思维的方式。
来想要证全等,则需要什么条件另一种则要根据题目中给出的已知条件,求出有关信息。
完整版)全等三角形常用辅助线做法证明三角形全等时,有时需要添加辅助线,对于初学几何证明的学生来说,这往往是一个难点。
下面介绍证明全等时常见的五种辅助线,供同学们研究时参考。
一、截长补短当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法。
具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法适用于证明线段的和、差、倍、分等类的题目。
例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB。
要证明AC=AE+CD,因为AE、CD不在同一直线上,所以在AC上截取AF=AE,只要证明CF=CD即可。
具体证明过程为:在AC上截取AF=AE,连接OF。
由于AD、CE分别平分∠BAC、∠ACB,∠ABC=60°,因此∠1+∠2=60°,∠4=∠6=∠1+∠2=60°。
显然,△AEO≌△AFO,因此∠5=∠4=60°,∠7=180°-(∠4+∠5)=60°。
在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC,因此△DOC≌△FOC,CF=CD,所以XXX。
另一个例子是在图甲中,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。
要证明CD=AD+BC。
因为结论是CD=AD+BC,可以考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证明DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。
具体证明过程为:在CD上截取CF=BC,如图乙,因此△XXX≌△BCE(SAS),∴∠2=∠1.又因为AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠XXX°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,∴△XXX≌△ADE(ASA),∴DF=DA,因此CD=DF+CF,∴XXX。
全等三角形模型+例题【考纲要求】1. 了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明.【考点梳理】【全等三角形】知识点一、全等三角形的概念及表示1.两个能够完全重合的三角形叫做全等三角形全等三角形是特殊的全等图形,同样的,判断两个三角形是否为全等三角形,主要看这两个三角形的形状和大小是否完全相同,与它们所处的位置无关.2.全等三角形的对应关系:两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.3.全等三角形的表示:全等用符号“≌”表示,读作“全等于”.在记两个三角形全等时,要把对应顶点的字母写在对应的位置上,如△ABC和△DEF全等,记作△ABC≌△DEF,读作△ABC全等于△DEF.4.确定全等三角形对应关系的方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角)一对最短的边(或最小的角)是对应边(或角).知识点二、全等三角形的性质1.最主要的性质:全等三角形的对应边相等,对应角相等.2.其它性质:(1)全等三角形对应边上的高线相等,对应边上的中线相等,对应角的角平分线相等;(2)全等三角形的周长相等,面积相等,但是,周长或面积相等的三角形不一定是全等三角形.知识点三、全等变换在不改变图形的形状和大小的前提下,只改变图形的位置叫做全等变换.常见的全等变换有平移变换、翻折变换、旋转变换,如下图所示:【探索三角形全等的条件】边角边两边及其夹角分别相等的两个三角形全等,简写为“边角边”或“SAS ”.在△ABC与△A’B’C’中,已知角边角两角及其夹边分别相等的两个三角形全等,简写“角边角”或“ASA ”.在△ABC与△A’B’C’中,已知角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,简称为“角角边”或“AAS ”. 在△ABC 与△A’B’C’中,已知边边边三边分别相等的两个三角形全等,简称为“边边边”或“SSS ”.在△ABC 与△A’B’C’中,已知.斜边、直角边斜边和一条直角边分别相等的两个直角三角形全等,简称为“斜边、直角边”或“HL ”在Rt △ABC 与Rt △A’B’C’中,,已知.1. 只有两边及其夹角分别对应相等,才能判定两个三角形全等,“边边角”不能判定三角形全等;2. 在书写过程中,要按照边角边对应顺序书写,即对应顶点的字母写在对应的位置上.探究SSA全等篇异侧半角模型1.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45º,则BE +DF=EF .简证:如图,将△ADF 绕点A 顺时针旋转90º得到△ABG ,使得AD 与AB 重合, 通过证明△AEF ≌△AEG 即可得到BE +DF =EF .2.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45º,则AE 平分∠BEF ,AF 平分∠DFE .简证:如图,将△ADF 绕点A 顺时针旋转90º得到△ABG ,使得AD 与AB 重合;将△ABE 绕点A 逆时针旋转90º得到△ADH ,使得AB 与AD 重合.3. 如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45º,则.简证:通过上述的全等直接可以得到,不再证明.4.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45º,过点A 作AH ⊥EF 交EF 于点H ,则AH =AB .简证:由上述结论可知AE 平分∠BEF ,又∵AB ⊥BC ,∴AH =AB . 5.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45º,则.简证:由结论1可得EF =BE +DF ,则=CE +CF +EF =CE +CF +BE +DF =2AB .6. 如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45º,AE 、AF 分别与BD 相交于点M 、N ,则.简证:如图,将△AND 绕点A 顺时针旋90º得到△AGB ,连接GM .通过证明△AMG ≌△AMN 得MN =MG ,DN =BG ,∠GBE =90º,即可证.补充:等腰直角三角形与“半角模型”DCPBACDPB ADPCAB如图所示,在等腰直角三角形ABC中,若∠DCE=45º,则.证明:如图,将△ACD绕着点C顺时针旋转90º得到△,连接.1.1二次全等证明1.已知:如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DF⊥AB于F,DE⊥AC于E.2.求证:△BDF≌△CDE.3.4.5.已知:如图,点A,E,F,C在同一直线上,AE=CF,过点E,F分别作DE⊥AC,BF⊥AC,连接AB,CD,BD,BD交AC于点G,AB=CD.6.求证:△DEG≌△BFG.7.3.已知:如图,在Rt△ACD中,∠ADC=90°,BE⊥AC于E,交CD于点F,AE=AD.求证:△CEF≌△BDF.4.已知:如图,在四边形ABCD中,AB=BC=CD=AD,BD平分∠ABC,E为BD上任意一点,连接AE,CE.求证:△ADE≌△CDE.5.已知:如图,在△ABC中,∠ACB=∠ABC=60°,∠EDF=60°,BD=CD,∠DBC=∠DCB=30°,∠BDC=120°,延长AC到点G,使CG=BE.6.求证:△EFD≌△GFD.7.6、已知:如图,点A,C在直线EF上,BC=AD,AB=CD,AE=CF.求证:∠E=∠F.7、已知,如图,AE=BF,AD=BC,CE=DF.求证:AO=BO.8、已知:如图,∠D=∠E,AM=ME=CN=DN.试猜想AB和BC的数量关系,并证明你的猜想.9、10、9.如图,在正方形ABCD中,∠ABC=∠BCD=90°,AB=BC=CD=AD.E为BC边上一点,且AE=DE,AE与对角线BD交于点F,∠ABF=∠CBF,连接CF交DE于点G.求证:DE⊥CF.10.已知:如图,在等边△ABC中,△C=△ABD=60°,AB=BC=AC,点D,E分别为BC,AC边上一点且AE=CD,连接AD,BE 相交于点F.11.求证:△1=△2.12.1.2截长补短 倍长中线例题1、如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,求证:AC BE =.例题2、在Rt ABC ∆中,90BAC ∠=︒,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED FD ⊥.以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?例题3、八年级一班数学兴趣小组在一次活动中进行了探究试验活动,请你和他们一起活动吧.【探究与发现】(1)如图1,AD 是△ABC 的中线,延长AD 至点E ,使ED=AD ,连接BE ,写出图中全等的两个三角形______【理解与应用】(2)填空:如图2,EP 是△DEF 的中线,若EF=5,DE=3,设EP=x ,则x 的取值范围是______.(3)已知:如图3,AD 是△ABC 的中线,∠BAC=∠ACB ,点Q 在BC 的延长线上,QC=BC ,求证:AQ=2AD .F E D CB AF EDC B A例题4、如图,在△ABC中,已知∠ABC=45°,过点C作CD⊥AB于点D,过点B作BM⊥AC于点M,CD与BM相交于点E,且点E是CD的中点,连接MD,过点D作DN⊥MD,交BM于点N.(1)求证:△DBN≌△DCM;(2)请探究线段NE、ME、CM之间的数量关系,并证明你的结论.例题5、阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.例题8、(1)如图,四边形ABPC中,AB AC∠=︒,求证:PB PC PABPC+=.=,60BAC∠=︒,120(2)如图,四边形ABCD中,AB BCAPC∠=︒,求证:ABC∠=︒,P为四边形ABCD内一点,且120=,60++≥.PA PC PD BDC 1A B C ED D E(C )B A C 1C 1A B C E D 1A B C E D1.3一线三等角例1:已知AB ⊥BD ,ED ⊥BD ,AB =CD ,BC =DE ,⑴求证:AC ⊥CE ;⑵若将△CDE 沿CB 方向平移得到①②③④等不同情形,1AB C D ,其余条件不变,试判断AC ⊥C 1E 这一结论是否成立?若成立,给予证明;若不成立,请说明理由.① ② ③ ④例2:等腰直角△ABC ,其中AB=AC ,∠BAC=90°,过B 、C 作经过A 点直线L 的垂线,垂足分别为M 、N .(1)你能找到一对三角形的全等吗?并说明.(2)BM ,CN ,MN 之间有何关系?若将直线l 旋转到如图2的位置,其他条件不变,那么上题的结论是否依旧成立?例3.(1)如图,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2)如图,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC =a,其中a为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3) 拓展与应用:如图,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC 平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.1.4半角模型1.在等腰Rt△ABC中,CA=CB,∠ACB=90º,O为AB的中点,∠EOF=45º,交CA于F,交BC的延长线于E.(1)求证:EF=CE+AF;(2)如图2,当E在BC上,F在CA的反向延长线上时,探究线段AF、CE、EF之间的数量关系,并证明.2.如图,在四边形ABCD中,AB=AD,∠B+∠D=180º,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,求证:EF=BE+FD.3. 如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,∠BDC=120º,以D为顶点作一个60º的角,使其两边分别交AB于M,交AC于N,连接MN,则△AMN的周长是多少?4.如图,在等边△ABC中,∠ABC与∠ACB的角平分线相交于点O,点E、F分别在线段AB、BC上,连接EO、FO,满足∠EOF=60º,连接EF.(1)①求证:OB=OC;②求∠BOC的度数;(2)求证:CF=BE+EF.5. 在四边形ABDC中,AC=AB,DC=DB,∠CAB=60º,∠CDB=120º,E是AC上一点,F是AB延长线上一点,且CE=BF.(1)试说明:DE=DF;(2)在图1中,若G在AB上且∠EDG=60º,试猜想CE、EG、BG之间的数量关系并证明;(3)若题中条件“∠CAB=60º,∠CDB=120º”改为“∠CAB=,∠CDB=,G在AB上,那么∠EDG 满足什么条件时,(2)中的结论仍然成立?”(直接写结果,不需证明).。
全等三角形模型+例题【考纲要求】1. 了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明.【考点梳理】【全等三角形】知识点一、全等三角形的概念及表示1.两个能够完全重合的三角形叫做全等三角形全等三角形是特殊的全等图形,同样的,判断两个三角形是否为全等三角形,主要看这两个三角形的形状和大小是否完全相同,与它们所处的位置无关.2.全等三角形的对应关系:两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.3.全等三角形的表示:全等用符号“≌”表示,读作“全等于”.在记两个三角形全等时,要把对应顶点的字母写在对应的位置上,如△ABC和△DEF全等,记作△ABC≌△DEF,读作△ABC全等于△DEF.4.确定全等三角形对应关系的方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角)一对最短的边(或最小的角)是对应边(或角).知识点二、全等三角形的性质1.最主要的性质:全等三角形的对应边相等,对应角相等.2.其它性质:(1)全等三角形对应边上的高线相等,对应边上的中线相等,对应角的角平分线相等;(2)全等三角形的周长相等,面积相等,但是,周长或面积相等的三角形不一定是全等三角形.知识点三、全等变换在不改变图形的形状和大小的前提下,只改变图形的位置叫做全等变换.常见的全等变换有平移变换、翻折变换、旋转变换,如下图所示:【探索三角形全等的条件】边角边两边及其夹角分别相等的两个三角形全等,简写为“边角边”或“SAS ”.在△ABC与△A’B’C’中,已知角边角两角及其夹边分别相等的两个三角形全等,简写“角边角”或“ASA ”.在△ABC与△A’B’C’中,已知角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,简称为“角角边”或“AAS ”. 在△ABC 与△A’B’C’中,已知边边边三边分别相等的两个三角形全等,简称为“边边边”或“SSS ”.在△ABC 与△A’B’C’中,已知.斜边、直角边斜边和一条直角边分别相等的两个直角三角形全等,简称为“斜边、直角边”或“HL ”在Rt △ABC 与Rt △A’B’C’中,,已知.1. 只有两边及其夹角分别对应相等,才能判定两个三角形全等,“边边角”不能判定三角形全等;2. 在书写过程中,要按照边角边对应顺序书写,即对应顶点的字母写在对应的位置上.探究SSA全等篇异侧半角模型1.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45º,则BE +DF=EF .简证:如图,将△ADF 绕点A 顺时针旋转90º得到△ABG ,使得AD 与AB 重合, 通过证明△AEF ≌△AEG 即可得到BE +DF =EF .2.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45º,则AE 平分∠BEF ,AF 平分∠DFE .简证:如图,将△ADF 绕点A 顺时针旋转90º得到△ABG ,使得AD 与AB 重合;将△ABE 绕点A 逆时针旋转90º得到△ADH ,使得AB 与AD 重合.3. 如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45º,则.简证:通过上述的全等直接可以得到,不再证明.4.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45º,过点A 作AH ⊥EF 交EF 于点H ,则AH =AB .简证:由上述结论可知AE 平分∠BEF ,又∵AB ⊥BC ,∴AH =AB . 5.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45º,则.简证:由结论1可得EF =BE +DF ,则=CE +CF +EF =CE +CF +BE +DF =2AB .6. 如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45º,AE 、AF 分别与BD 相交于点M 、N ,则.简证:如图,将△AND 绕点A 顺时针旋90º得到△AGB ,连接GM .通过证明△AMG ≌△AMN 得MN =MG ,DN =BG ,∠GBE =90º,即可证.补充:等腰直角三角形与“半角模型”DCPBACDPB ADPCAB如图所示,在等腰直角三角形ABC中,若∠DCE=45º,则.证明:如图,将△ACD绕着点C顺时针旋转90º得到△,连接.1.1二次全等证明1.已知:如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DF⊥AB于F,DE⊥AC于E.2.求证:△BDF≌△CDE.3.4.5.已知:如图,点A,E,F,C在同一直线上,AE=CF,过点E,F分别作DE⊥AC,BF⊥AC,连接AB,CD,BD,BD交AC于点G,AB=CD.6.求证:△DEG≌△BFG.7.3.已知:如图,在Rt△ACD中,∠ADC=90°,BE⊥AC于E,交CD于点F,AE=AD.求证:△CEF≌△BDF.4.已知:如图,在四边形ABCD中,AB=BC=CD=AD,BD平分∠ABC,E为BD上任意一点,连接AE,CE.求证:△ADE≌△CDE.5.已知:如图,在△ABC中,∠ACB=∠ABC=60°,∠EDF=60°,BD=CD,∠DBC=∠DCB=30°,∠BDC=120°,延长AC到点G,使CG=BE.6.求证:△EFD≌△GFD.7.6、已知:如图,点A,C在直线EF上,BC=AD,AB=CD,AE=CF.求证:∠E=∠F.7、已知,如图,AE=BF,AD=BC,CE=DF.求证:AO=BO.8、已知:如图,∠D=∠E,AM=ME=CN=DN.试猜想AB和BC的数量关系,并证明你的猜想.9、10、9.如图,在正方形ABCD中,∠ABC=∠BCD=90°,AB=BC=CD=AD.E为BC边上一点,且AE=DE,AE与对角线BD交于点F,∠ABF=∠CBF,连接CF交DE于点G.求证:DE⊥CF.10.已知:如图,在等边△ABC中,△C=△ABD=60°,AB=BC=AC,点D,E分别为BC,AC边上一点且AE=CD,连接AD,BE 相交于点F.11.求证:△1=△2.12.1.2截长补短 倍长中线例题1、如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,求证:AC BE =.例题2、在Rt ABC ∆中,90BAC ∠=︒,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED FD ⊥.以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?例题3、八年级一班数学兴趣小组在一次活动中进行了探究试验活动,请你和他们一起活动吧.【探究与发现】(1)如图1,AD 是△ABC 的中线,延长AD 至点E ,使ED=AD ,连接BE ,写出图中全等的两个三角形______【理解与应用】(2)填空:如图2,EP 是△DEF 的中线,若EF=5,DE=3,设EP=x ,则x 的取值范围是______.(3)已知:如图3,AD 是△ABC 的中线,∠BAC=∠ACB ,点Q 在BC 的延长线上,QC=BC ,求证:AQ=2AD .F E D CB AF EDC B A例题4、如图,在△ABC中,已知∠ABC=45°,过点C作CD⊥AB于点D,过点B作BM⊥AC于点M,CD与BM相交于点E,且点E是CD的中点,连接MD,过点D作DN⊥MD,交BM于点N.(1)求证:△DBN≌△DCM;(2)请探究线段NE、ME、CM之间的数量关系,并证明你的结论.例题5、阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.例题8、(1)如图,四边形ABPC中,AB AC∠=︒,求证:PB PC PABPC+=.=,60BAC∠=︒,120(2)如图,四边形ABCD中,AB BCAPC∠=︒,求证:ABC∠=︒,P为四边形ABCD内一点,且120=,60++≥.PA PC PD BDC 1A B C ED D E(C )B A C 1C 1A B C E D 1A B C E D1.3一线三等角例1:已知AB ⊥BD ,ED ⊥BD ,AB =CD ,BC =DE ,⑴求证:AC ⊥CE ;⑵若将△CDE 沿CB 方向平移得到①②③④等不同情形,1AB C D ,其余条件不变,试判断AC ⊥C 1E 这一结论是否成立?若成立,给予证明;若不成立,请说明理由.① ② ③ ④例2:等腰直角△ABC ,其中AB=AC ,∠BAC=90°,过B 、C 作经过A 点直线L 的垂线,垂足分别为M 、N .(1)你能找到一对三角形的全等吗?并说明.(2)BM ,CN ,MN 之间有何关系?若将直线l 旋转到如图2的位置,其他条件不变,那么上题的结论是否依旧成立?例3.(1)如图,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2)如图,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC =a,其中a为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3) 拓展与应用:如图,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC 平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.1.4半角模型1.在等腰Rt△ABC中,CA=CB,∠ACB=90º,O为AB的中点,∠EOF=45º,交CA于F,交BC的延长线于E.(1)求证:EF=CE+AF;(2)如图2,当E在BC上,F在CA的反向延长线上时,探究线段AF、CE、EF之间的数量关系,并证明.2.如图,在四边形ABCD中,AB=AD,∠B+∠D=180º,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,求证:EF=BE+FD.3. 如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,∠BDC=120º,以D为顶点作一个60º的角,使其两边分别交AB于M,交AC于N,连接MN,则△AMN的周长是多少?4.如图,在等边△ABC中,∠ABC与∠ACB的角平分线相交于点O,点E、F分别在线段AB、BC上,连接EO、FO,满足∠EOF=60º,连接EF.(1)①求证:OB=OC;②求∠BOC的度数;(2)求证:CF=BE+EF.5. 在四边形ABDC中,AC=AB,DC=DB,∠CAB=60º,∠CDB=120º,E是AC上一点,F是AB延长线上一点,且CE=BF.(1)试说明:DE=DF;(2)在图1中,若G在AB上且∠EDG=60º,试猜想CE、EG、BG之间的数量关系并证明;(3)若题中条件“∠CAB=60º,∠CDB=120º”改为“∠CAB=,∠CDB=,G在AB上,那么∠EDG 满足什么条件时,(2)中的结论仍然成立?”(直接写结果,不需证明).。
全等三角形的经典模型(一)全等三角形的经典模型(一)在研究三角形的时候,全等三角形是一个非常重要的概念。
这里介绍一些经典的模型,帮助大家更好地理解和应用全等三角形。
三角形7级:倍长中线与截长补短倍长中线与截长补短是一个非常经典的全等三角形模型。
当三角形的中线等于另一条边的一半时,可以证明三角形全等。
此外,如果一条边被截成两段,其中一段的长度等于另一条边的长度减去另一段的长度,那么这两个三角形也是全等的。
三角形8级:全等三角形的经典模型(一)这是一个非常基础的全等三角形模型,利用的是三边对应相等的原理。
如果两个三角形的三条边分别相等,那么这两个三角形是全等的。
三角形9级:全等三角形的经典模型(二)这个模型利用的是两边一角相等的原理。
如果两个三角形的两条边和夹角分别相等,那么这两个三角形是全等的。
题型一:等腰直角三角形模型等腰直角三角形是一个非常特殊的三角形,可以利用其特殊的性质来解决问题。
常见的辅助线包括作高和补全为正方形等。
思路导航如果要解决一个等腰直角三角形的问题,可以尝试以下思路:1.利用特殊边特殊角证题,如AC=BC或90°,45,45。
2.常见辅助线为作高,利用三线合一的性质解决问题。
3.补全为正方形。
等腰直角三角形数学模型思路:⑴利用特殊边特殊角证题(AC=BC或90°,45,45).如图1;⑵常见辅助线为作高,利用三线合一的性质解决问题.如图2;⑶补全为正方形.如图3,4.典题精练例1】已知:如图所示,Rt△ABC中,AB=AC,BAC90°,O为BC的中点。
B⑴写出点O到△ABC的三个顶点A、B、C的距离的关系(不要求证明)⑵如果点M、N分别在线段AC、AB上移动,且在移动中保持AN=CM.试判断△XXX的形状,并证明你的结论.⑶如果点M、N分别在线段CA、AB的延长线上移动,且在移动中保持AN=CM,试判断⑵中结论是否依然成立,如果是请给出证明.解析】⑴OA=OB=OC⑴连接OA。
1 / 2
1、截长补短法证明三角形全等
例1已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 练习1如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
2.已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE 3如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,
CE 的连线交AP 于D .求证:AD +BC =AB .
4在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②
BE AD DE +=;
(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.
6.如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 和∠DBA ,CD 过点E ,则AB 与AC+BD 相等 吗?请说明理由
例2已知,如图1-1,在四边形ABCD 中,BC >AB ,AD =DC ,BD 平分∠ABC .
求证:∠BAD +∠BCD =180°.
例1. 练习已知,如图3-1,∠1=∠2,P 为BN 上一点,且PD
⊥BC 于点D ,AB +BC =2BD . 求证:∠BAP +∠BCP =180°. 2、倍长中线法证三角形全等
例1 、求证:三角形一边上的中线小于其他两边和的一半。
练习 1:△ABC 中,AB=5,AC=3,求中线AD 的取值范围 例2.已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE
练习2已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF
例3已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC.
P
E
D
C
B
A F
E
C
A
B
D F
E D
A
B
C
第 1 题图
A
B
F A
B
C D
图1-1
A
B
C
D
P
1
2
N
图3-1
2 / 2
求证:AE 平分BAC ∠
练习3已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE 作业
1、已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =
AE 2、五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180AD 平分∠CDE
3、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,与DC
的延长线相交于点F 。
试探究线段AB 与AF 、CF 并证明你的结论
4、已知:如图,∆ABC 中,∠C=90︒,CM ⊥AB 于M ,AT 平分∠BAC 交于D ,交BC 于T ,过D 作DE//AB 交BC 于E ,求证:CT=BE. 5:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF
6:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE
7、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF 试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论
A。