高一数学必修4任意角和弧度制课件
- 格式:docx
- 大小:14.35 KB
- 文档页数:7
第四章 三角函数与解三角形§4.1 任意角和弧度制、三角函数的概念考试要求1.了解任意角的概念和弧度制.2.能进行弧度与角度的互化,体会引入弧度制的必要性.3.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.角的概念(1)定义:角可以看成一条射线绕着它的旋转所成的图形.(2)分类按旋转方向不同分为、 、______按终边位置不同分为和轴线角.(3)相反角:我们把射线OA 绕端点O 按不同方向旋转相同的量所成的两个角叫做互为相反角.角α的相反角记为 .(4)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S = .端点正角负角零角象限角-α{β|β=α+k ·360°,k ∈Z }2.弧度制的定义和公式半径长(1)定义:把长度等于的圆弧所对的圆心角叫做1弧度的角,弧度单位用符号rad表示.知识梳理(2)公式角α的弧度数公式角度与弧度的换算弧长公式弧长l =____扇形面积公式S = =______|α|r3.任意角的三角函数(1)任意角的三角函数的定义:设P(x,y)是角α终边上异于原点的任意一点,其到原点O的距离为r,则(2)三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦,如图.常用结论1.象限角2.轴线角判断下列结论是否正确(请在括号中打“√”或“×”)×√×(3)若sin α>0,则α是第一或第二象限角.( )√1.-660°等于√2.某次考试时间为120分钟,则从开始到结束,墙上时钟的分针旋转了-4π______弧度.某次考试时间为120分钟,则从开始到结束,墙上时钟的分针顺时针旋转了-720°,即-4π.3.已知角α的终边经过点P(2,-3),则sin α=________,tan α=_____.第二部分例1 (1)(2023·宁波模拟)若α是第二象限角,则A.-α是第一象限角√D.2α是第三或第四象限角或在y轴负半轴上对于D,可得π+4kπ<2α<2π+4kπ,k∈Z,所以2α是第三或第四象限角或在y轴负半轴上,所以D正确.延伸探究 若α是第一象限角,则是第几象限角?因为α是第一象限角,所以k·360°<α<k·360°+90°,k∈Z,-675°和-315°(2)在-720°~0°范围内所有与45°终边相同的角为________________.所有与45°终边相同的角可表示为β=45°+k×360°(k∈Z),当k=-1时,β=45°-360°=-315°,当k=-2时,β=45°-2×360°=-675°.思维升华跟踪训练1 (1)“α是第四象限角”是“ 是第二或第四象限角”的√A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件对称,写出一个符合题意的θ=____________________________.关于y轴对称,例2 已知一扇形的圆心角为α(α>0),弧长为l,周长为C,面积为S,半径为r.(1)若α=35°,r=8 cm,求扇形的弧长;(2)若C=16 cm,求S的最大值及此时扇形的半径和圆心角.方法一 由题意知2r+l=16,∴l=16-2r(0<r<8),∴S的最大值是16 cm2,此时扇形的半径是4 cm,圆心角α=2 rad.当且仅当l=2r,即r=4(cm)时,S的最大值是16 cm2.此时扇形的圆心角α=2 rad.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为基本不等式或二次函数的最值问题.跟踪训练2 某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知OA =10,OB =x (0<x <10),线段BA ,CD 与 , 的长度之和为30,圆心角为θ弧度.(1)求θ关于x的函数表达式;BC AD 根据题意,可算得 =θx , =10θ.因为AB +CD ++ =30,所以2(10-x )+θx +10θ=30, BC AD BC AD(2)记铭牌的截面面积为y,试问x取何值时,y的值最大?并求出最大值.√√√所以点(tan θ,sin α)在第一象限,D正确.√(3)若sin αtan α<0,且 >0,则角α是√A.第一象限角B.第二象限角C.第三象限角D.第四象限角由sin αtan α<0,知α是第二象限或第三象限角,所以角α是第二象限角.思维升华(1)利用三角函数的定义,已知角α终边上一点P的坐标,可以求出α的三角函数值;已知角α的三角函数值,也可以求出点P的坐标. (2)利用角所在的象限判定角的三角函数值的符号时,特别要注意不要忽略角的终边在坐标轴上的情况.跟踪训练3 (1)若角α的终边上有一点P(a,2a)(a≠0),则2sin α-cos α的值是√若α的终边上有一点P(a,2a)(a≠0),(2)sin 2cos 3tan 4的值√A.小于0B.大于0C.等于0D.不存在∴sin 2cos 3tan 4<0.第三部分1.与-2 023°终边相同的最小正角是√A.137°B.133°C.57°D.43°因为-2 023°=-360°×6+137°,所以与-2 023°终边相同的最小正角是137°.√√4.(2023·惠州模拟)如果点P(2sin θ,sin θ·cos θ)位于第四象限,那么角θ所在的象限为√A.第一象限B.第二象限C.第三象限D.第四象限∵点P(2sin θ,sin θ·cos θ)位于第四象限,∴角θ所在的象限是第二象限.5.(2023·南昌模拟)我国在文昌航天发射场用长征五号运载火箭成功发射探月工程嫦娥五号探测器,顺利将探测器送入预定轨道,经过两次轨道修正,嫦娥五号顺利进入环月轨道飞行,嫦娥五号从椭圆形环月轨道变为近圆形环月轨道,若这时把近圆形环月轨道看作圆形轨道,嫦娥五号距离月球表面400 千米,已知月球半径约为1 738 千米,则嫦娥五号绕月每旋转弧度,飞过的路程约为(取π≈3.14)A.1 069千米B.1 119千米√C.2 138千米D.2 238千米嫦娥五号绕月飞行半径为400+1 738=2 138(千米),6.(2023·丽江模拟)屏风文化在我国源远流长,可追溯到汉代.某屏风工艺厂设计了一款造型优美的扇环形屏风,如图,扇环外环弧长为3.6 m,内环弧长为1.2 m,径长(外环半径与内环半径之差)为1.2 m,若不计外框,则扇环内需要进行工艺制作的面积的估计值为A.2.58 m2B.2.68 m2√C.2.78 m2D.2.88 m2设扇形的圆心角为α,内环半径为r m,外环半径为R m,则R-r=1.2(m),由题意可知,α·r=1.2,α·R=3.6,所以α(R+r)=4.8,。
高一数学必修4任意角和弧度制课件
高一数学必修4任意角和弧度制课件
第一课时1.1.1任意角
教学要求:理解任意大小的角正角、负角和零角,掌握终边相同的角、象限角、区间角、终边在坐标轴上的角.
教学重点:理解概念,掌握终边相同角的表示法.
教学难点:理解角的任意大小.
教学过程:
一、复习准备:
1.提问:初中所学的角是如何定义角的范围
(角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;0°~360°)
2.讨论:实际生活中是否有些角度超出初中所学的范围?→说明研究推广角概念的必要性
(钟表;体操,如转体720°;自行车车轮;螺丝扳手)
二、讲授新课:
1.教学角的概念:
①定义正角、负角、零角:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,未作任何旋转所形成的角叫零角.
②讨论:推广后角的大小情况怎样(
包括任意大小的正角、负角和零角)
③示意几个旋转例子,写出角的度数.
④如何将角放入坐标系中?→定义第几象限的角.
(概念:角的顶点与原点重合,角的始边与轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.)
⑤练习:试在坐标系中表示300°、390°、-330°角,并判别在第几象限?
⑥讨论:角的终边在坐标轴上,属于哪一个象限?
结论:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角.
口答:锐角是第几象限角第一象限角一定是锐角吗再分别就直角、钝角来回答这两个问题.
⑦讨论:与60°终边相同的角有哪些都可以用什么代数式表示
与α终边相同的角如何表示?
⑧结论:与α角终边相同的角,都可用式子×360°+α表示,∈Z,写成集合呢?
⑨讨论:给定顶点、终边、始边的角有多少个?
注意:终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差360°的整数倍
2.教学例题:
①出示例1:在0°~360°间,找出下列终边相同角:-150°、
1040°、-940°.
(讨论计算方法:除以360求正余数→试练→订正)
②出示例2:写出与下列终边相同的`角的集合,并写出-720°~360°间角.
120°、-270°、1020°
(讨论计算方法:直接写,分析的取值→试练→订正)
③讨论:上面如何求的值(
解不等式法)
④练习:写出终边在x轴上的角的集合,轴上呢坐标轴上呢第一象限呢
⑤出示例3:写出终边直线在=x上的角的集合S,并把S中适合不等式
的元素写出来.(师生共练→小结)
3.小结:角的推广;象限角的定义;终边相同角的表示;终边落在坐标轴时等;区间角表示.
三、巩固练习:
1.写出终边在第一象限的角的集合第二象限呢第三象限呢第四象限呢直线=-x呢
2.作业:书P6练习3③④、4、5题.
第二课时:1.1.2弧度制(一)
教学要求:掌握弧度制的定义,学会弧度制与角度制互化,并进而建立角的集合与实数集R一一对应关系的概念.
教学重点:掌握换算.
教学难点:理解弧度意义.
教学过程:
一、复习准备:
1.写出终边在x轴上角的集合.
2.写出终边在轴上角的集合.
3.写出终边在第三象限角的集合.
4.写出终边在第一、三象限角的集合.
5.什么叫1°的角计算扇形弧长的公式是怎样的
二、讲授新课:
1.教学弧度的意义:
①如图:∠AOB所对弧长分别为L、L’,半径分别为r、r’,求证:=.
②讨论:是否为定值其值与什么有关系→结论:==定值.
③讨论:在什么情况下为值为1是否可以作为角的度量
④定义:长度等于半径长的弧所对的圆心角叫1弧度的角.用rad 表示,读作弧度.
⑤计算弧度:180°、360°→思考:-360°等于多少弧度?
⑥探究:完成书P7表1.1-1后,讨论:半径为r的圆心角α所对弧长为l,则α弧度数=?
⑦规定:正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.半径为r的圆心角α所对弧长为l,则α弧度数
的绝对值为|α|=.用弧度作单位来度量角的制度叫弧度制.
⑧讨论:由弧度数的定义可以得到计算弧长的公式怎样?
⑨讨论:1度等于多少弧度1弧度等于多少度→度表示与弧度表示有啥不同
-720°的圆心角、弧长、弧度如何看?
2.教学例题:
①出示例1:角度与弧度互化:;.
分析:如何依据换算公式(抓住:180°=prad)→如何设计算法→计算器操作:模式选择MODEMODE1(2);输入数据;功能键SHIFTDRG1(2)=
②练习:角度与弧度互化:0°;30°;45°;;;120°;135°;150°;
③讨论:引入弧度制的意义(
在角的集合与实数的集合之间建立一种一一对应的关系)
④练习:用弧度制表示下列角的集合:终边在x轴上;终边在轴上.
3.小结:弧度数定义;换算公式(180°=prad);弧度制与角度制互化.
三、巩固练习:
1.教材P10练习1、2题.
2.用弧度制表示下列角的集合:终边在直线=x;终边在第二象限;终边在第一象限.
3.作业:教材P115、7、8题.
第三课时:1.1.2弧度制(二)
教学要求:更进一步理解弧度的意义,能熟练地进行弧度与角度的换算.掌握弧长公式,能用弧度表示终边相同的角、象限角和终边在坐标轴上的角.掌握并运用弧度制表示的弧长公式、扇形面积公式教学重点:掌握扇形弧长公式、面积公式.
教学难点:理解弧度制表示.
教学过程:
一、复习准备:
1.提问:什么叫1弧度的角1度等于多少弧度1弧度等于多少度扇形弧长公式
2.弧度与角度互换:-π、π、-210°、75°
3.口答下列特殊角的弧度数:0°、30°、45°、60°、90°、120°、135°、…
二、讲授新课:
1.教学例题:
①出示例:用弧度制推导:S=LR;.
分析:先求1弧度扇形的面积(πR)→再求弧长为L、半径为R 的扇形面积?
方法二:根据扇形弧长公式、面积公式,结合换算公式转换.
②练习:扇形半径为45,圆心角为120°,用弧度制求弧长、面积.
③出示例:计算sin、tan1.5、cs
(口答方法→共练→小结:换算为角度;计算器求)
②练习:求、、的正弦、余弦、正切.
2.练习:
①.用弧度制写出与下列终边相同的角,并求0~2π间的角.
π、-675°
②用弧度制表示终边在x轴上角的集合、终边在轴上角的集合终边在第三象限角的集合
③讨论:α=×360°+与β=2π+30°是否正确?
④α与-的终边相同,且-2π⑤已知扇形AOB的周长是6c,该扇形的中心角是1弧度,求该扇形的面积.
解法:设扇形的半径为r,弧长为l,列方程组而求.
3.小结:
扇形弧长公式、面积公式;弧度制的运用;计算器使用.
三、巩固练习:
1.时间经过2小时30分,时针和分针各转了多少弧度?
2.一扇形的中心角是54°,它的半径为20c,求扇形的周长和面积.
3.已知角α和角β的差为10°,角α和角β的和是10弧度,则α、β的弧度数分别是.
4.作业:教材P10练习4、5、6题.。