《整式的乘除与因式分解》测试题
- 格式:doc
- 大小:152.00 KB
- 文档页数:4
乐元中学整式的乘法与因式分解单元检测姓名: 班级: 考号: 分数:一 选择题(每小题3分,共30分)1.下列式子中,正确的是......................................... ( )A.3x+5y=8xyB.3y 2-y 2=3C.15ab-15ab=0D.29x 3-28x 3=x 2.当a= -1时,代数式2(a+1) + a(a+3)的值等于… ( )A.-4B.4C.-2D.23.若-4x 2y 和-2x m y n 是同类项,则m ,n 的值分别是…… ( )A.m=2,n=1B.m=2,n=0C.m=4,n=1D.m=4,n=04.化简(-x)3·(-x)2的结果正确的是……………( )A.-x 6B.x 6C.x 5D.-x 55.若x 2+2(m-3)x+16是完全平方式,则m 的值等于…( )A.3B.-5C.7.D.7或-1 6.下列各式是完全平方式的是( )A 、x 2 - x + 14B 、1+4x 2C 、a 2+ab+b 2D 、x 2+2x -1 7.下列多项式中能用平方差公式分解因式的是( )(A )22)(b a -+ (B )mn m 2052- (C )22y x -- (D )92+-x8.若3x =15, 3y =5,则3x -y 等于( ).223()32x y --1a 22()()33m n m n -+--21a A .5 B .3 C .15 D .109.一个正方形的边长增加了2cm ,面积相增加了32cm 2,则这个正方形的边长为( )A 、6cmB 、5cmC 、8cmD 、7cm10.下列运算中,正确的是( )A. x 2·x 3=x 6B. (ab)3=a 3b 3C. 3a+2a=5a 2D.(x ³)²= x 5二、填空题(每小题3分,共30分)11、当x__________时,(x -4)0=1.12.计算:(x +5)(x -1)=________.13. 在实数范围内分解因式=-62a 14. =_______。
《第十四章 整式的乘除与因式分解》单元测试卷(一)(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1. 计算a 10÷a 2(a≠0)的结果是( )A.a 5B.a -5C.a 8D.a -82. 下列计算中,正确的是( )A .(a 3)4= a 12B .a 3· a 5= a 15C .a 2+a 2= a 4D .a 6÷ a 2= a 33. 运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +94. 将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .2a a +C .22a a +-D .2(2)2(2)1a a +-++5. 下列运算正确的是( )A .(12)﹣1=﹣12 B .6×107=6000000C .(2a )2=2a 2D .a 3•a 2=a 56. 把x n+3+x n+1分解因式得( )A .x n+1(x 2+1)B .n 3x x +x ()C .x (n+2x +n x )D .x n+1(x 2+x ) 7. 若4x 2+axy+25y 2是一个完全平方式,则a=( )A .20B .﹣20C .±20D .±108. 将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是( )9. 20042-2003×2005的计算结果是( )A .1B .-1C .0D .2×20042-110. 将代数式2x +4x-1化成()2x+p +q 的形式为( )A .(x-2)2+3B .(x+2)2-4C .(x+2)2 -5D .(x+2)2+4二、填空题(共6小题,每小题3分,共18分)11. 因式分解:a 3-a=12. 计算:(-5a 4)•(-8ab 2)= . 13. 已知a m =3,a n =4,则a 3m-2n =__________14. 若3x =,则代数式269x x -+的值为__________.15. 若x +y =10,xy =1 ,则x 3y +xy 3= .16. 若整式22x ky +(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 _______________(写出一个即可).三、解答题(共8题,共72分)17. (本题8分)计算:(a+b )2﹣b (2a+b )18. (本题8分)分解因式:2m (m ﹣n )2﹣8m 2(n ﹣m )19. (本题8分)如图(1),是一个长为2a 宽为2b (a >b )的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,求中间空白部分的面积(用含a 、b 的式子表示 )20. (本题8分)计算(2126)3×(1314)4×(43)321. (本题8分)简便计算:1.992+1.99×0.0122. (本题10分)当a=3,b=-1时,求()()a b a b +-的值。
1.3 积的乘方一、选择题1.计算33)2(mn -的结果是( ).A.932n m -B.938n mC.938n m -D.638n m - 2.下列各式错误的是( ).A. 12342)2(=B.844281)3(y x xy =C.93327)3(a a -=-D.442222)2(b a b a =3.计算200720082)5.0(⨯-的结果是( ). A. 21- B.12 C.2 D.2-4.下列结论中正确的是( ).A.mn n m a a a 22=⋅B.n m n m a a a +=+22C.m n m n m n b a ab 222)(⋅=D.n m n m a a +=22)(二、填空题5.计算42)31(b a -的结果为_________________.6.计算322)()(y x xy -⋅-的结果为___________________________.7.计算 532234)(2)(x xy y x ⋅--的结果为___________________.8.若63327n m x -=,则=x _________________________.9.已知7,42==n n b a 则_______)(2=n ab .三、解答题10. 计算:342532)()3( )1(x x x x ⋅+⋅- 24333)()()(8)2( )2(y y x xy ⋅-⋅-+-263434)()32( )3(y x y x -- 23322233])([5)4()( )4(xy y x y x --+---11. 计算:1)311()43( )1(+-⨯-m m 1221)321(8 )2(⨯12.已知n 为正整数,且,9)(2=n x 求n n x x 2222)(3)31(-的值.13.当0)89(9322=--+-+b a b a , 化简2232332)51()3()3()()()3(3b a ab b b a a ⋅-+-+-⋅-⋅⋅-,并求代数式的值.14. 若,16,34=-=+y x y x 求)271(311y x x xn n n -+- 的值.§15.1.4 整式的乘法一、选择题1.下列计算正确的是( ).A.y x xy x 32936=⋅B.322)3)(2(b a ab ab -=-C.3322)()(n m n m mn -=-⋅D.2329)3(3y x xy y x =-⋅-2.下列计算正确的是( ).A.222322862)43(b a b a ab ab b a -=-B.23224)12)(2(x x x x x --=++-C.234224812)123(4x x x x x x --=--D.12214321)432(++-=-m m ab b a ab b a3.下列计算正确的是( ).A.56)8)(7(2-+=-+x x x xB.4)2(22+=+x xC.3256)8)(27(x x x -=+-D.22169)43)(43(y x y x y x -=-+4.若,6))(2(2-+=+-bx x a x x 那么( ).A.5,3-==b aB.1,3==b aC.1,3-=-=b aD.5,3-=-=b a5.计算)5()52(22n m n n m m m ----)的结果是( ).A.2n -B.2nC.210n mn +-D.210n mn +二、填空题6.计算=⋅22332)2(21yz x y x __________________. 7.计算)3()2(2322y x y x xy -⋅-的结果是 .8.计算:(1)=-+)52)(32(x x ________;(2)=-+-)1)((n m n m .9.计算:=+--)462)(21(232y y x xy y x ___________________________. 10.已知一个长方体的长为y x 3+,宽为y x +,高为x 2,则长方体的表面积为______________________.三、解答题11.计算:2364332)4()21()32( )1(y x xy y x -⋅-⋅-)3)(32( )2(y x y x -+(3)221(2)2()3xy xy x y x xy y ⎛⎫⎡⎤---- ⎪⎣⎦⎝⎭(4)()()432342322+-+-a a a a a .12.化简求值:22)2()2()2)(12(+---+-x x x x ,其中211-=x .§15.2乘法公式§15.2.1 平方差公式一、选择题1.以下各式中, 不能用平方差公式计算的是( ).A.)32)(23(a b b a -+B.)34)(34(22bc b bc a +-C.)23)(32(b a b a +-D.)35)(53(m m -+2.下列各计算中正确的是( ).A 222)2)(2(b a b a b a -=-+ B.14)21)(12(2-=--x x xC.22))((a b b a b a -=+-+D.22))((b a b a b a --=--+3.若( ) 24225)5(x y y x -=+,则括号内应填的代数式是( ).A.25y x --B.25y x +C.25y x -D.25y x +-4.2006200420052⨯-的计算结果是( ).A.1-B.1C.2-D.2二、选择题5.计算)2)(2(--+-ab ab 的结果为____________________________.6.计算)45)(45(a a +-+的结果为_______________________________.7.计算=---)23)(23(22xy ab xy ab .8.若,344=-y x 则代数式222222)()(y x y x +-的值为_____________________.9.计算)3)(9)(3(2++-x x x 的结果是_______________________________.三、解答题10. 利用平方公式计算)3)(3( )1(ab c c ab +-+)32)(32()23)(23( )2(y x y x y x y x -+-+-)43)(34()52)(25)(3(23322332x y y x x y y x --+--+-)1)(1)(1()4(422234y x xy xy y x +-+-()()()()121212542+++·…·()1264+11. 利用平方差公式计算:5.195.20 )1(⨯ 200720092008 )2(2⨯-12. (1) 计算)12)(12)(12(42+++…)12(64+ .(2) 如图1,可以求出阴影部分的面积是 (写成两数平方的差的形式); 如图2,若将图1的阴影部分裁剪下来,重新拼成一个矩形,它的宽是 , 长是 ,面积是 (写成多项式乘法的形式);(3) 比较图1、图2的阴影部分面积,可以得到乘法公式 _____ (用式子表达).§15.2.2 完全平方公式§15.2.2 完全平方公式一、选择题1.下列各式:)2)(2( )1(x y y x -- )2)(2( )2(y x y x --+)2)(2( )3(x y y x +--- )2)(2( )4(x y y x --+-其中能用完全平方公式计算的有( ).A.1个B.2个C.3个D.4个2.下列计算正确的是( ).A.222469)23(y xy x y x +-=-B. 22211()24x y x y -=+C.22244)2(y xy x y x +-=--D. 222244()393x y x xy y -+=-+3.化简代数式22)()(y x y x -+ 的值为( ).A.44x y -B.42242x x y y -+C.222x xy y -+D.44x y +4.计算22(23)(23)x y x y --+的结果为( ).A.6xyB.12xy -C.24xy -D.24xy二、填空题5.计算2(3)x y -+=____________________________.6.计算22( 1.4)3x y -=_______________________________.7.计算297=_______________.8.5,10x y xy +==-,则22x y += _______.9.解方程2(35)(35)(31)10x x x +---=的解为___________________.三、解答题10.利用完全平方公式计算: 22(1)(43)x y -+ ; (2)(23)(23)x x +-- ;2(3)(31)x y --; (4)(21)(21)x y x y ++--;)892]()312()312[( )5(2222a b b a b a -++-.11.已知,40,422=+=-b a b a 求ab 的值.12.已知40)(,20)(22=-=+b a b a .求:22)1(b a +的值;ab )2(的值.13.解不等式:22)13()52(++-y y >)10(132-y .14.已知△ABC 的三边a 、b 、c 满足,0222=---++ac bc ab c b a 试判断 △ABC 的形状.§15.3 整式的除法§15.3.1 同底数幂的除法一、选择题1.下列计算正确的是( ).A.326x x x =÷B.257x x x =÷C.55x x x =÷D.0)()(44=-÷-x x2.下列计算正确的是( ).A.212a a a n n =÷++B.22336)(b a b a ab =÷C.3238)(x x x =÷D.33258)2()2(y x xy xy -=-÷-3.如果b b b n x =÷+2,那么x 的值为( ).A.1+nB.2+nC.3+nD.n -34.计算232234)(ab b a b a ÷⋅的结果是( ).A.77b aB.67b aC.49b aD.79b a二、填空题5.计算235x x x ⋅÷ =_________________________.6.计算01(0.2)6-的值为__________________________.7.若0)13(-x 有意义,则x 的取值范围_____________.8.计算=÷÷2582739_______________________.9.若0223=--y x ,则y x 2344÷的值为 ____________________.三、解答题10.计算下列各题: 264332)()()( )1(x x x ÷-⋅- ;m m m x x x ÷÷)( )2(25 ;)()()( )3(1117y x x y y x -÷-÷- ;])[()()( )4(332233y y y y ÷÷-⋅.11. 若,52,32==n m 求:n m -2)1(的值; n m 232)2(-的值.12.拓广探索:已知,65613,21873,7293,2433,813,273,93,3387654321========…,请你根据上面规律推测883的个位数字是多少?§15.3.2 整式的除法一、选择题1.计算33343)21()(ab b a -÷的结果是( ). A.3681b a B.3681b a -C.368b a -D.368b a2.计算n n x y y x 424)2(31)2(-÷-+的结果是( ). A.41(2)3nx y - B.1)2(3+--n y xC.2)2(3y x --D.2)2(3y x -3.已知423416287m n a b a b b ÷=,那么n m ,的取值为( ).A.4,5==n mB.3,4==n mC.3,5==n mD.4,4==n m4.下列运算结果错误的是( ).A.23)23(-=÷-x y y xyB.y x xy xy y x +=÷+24)48(22C.b ab ab c ab c b a 233)69(222+=÷+D.xy y y x y x y x +-=-÷-2223323)4()412(二、填空题5.计算)102()108(57⨯-÷⨯-的结果是_________________.6.计算=-÷)7(213649y x y x _________________________.7.计算)6()423(23x x x x -÷-+- 的结果是_______________.8.已知多项式13323+++x ax x 能被12+x 整除,且商式是13+x ,那么a 的值是 ____________.9.光的速度约为s /km 1035⨯,太阳系以外距离地球最近的一颗恒星发出的光,需要4年时间才能到达地球,一年以7103⨯秒计算,则这颗恒星与地球的距离为____ _. 10.计算=÷+-+++12342323)639(m m m m a a a a _________ ____________.三、计算题11.计算 )3()912( )1(235x x x -÷- )5.0()61313.0)(2(234232b a b a b a b a -÷--472632211(3)()()393a b a b ab -÷234233324112(4)323a b c a b c a b ⎛⎫⎛⎫÷-÷ ⎪ ⎪⎝⎭⎝⎭x x y x y y x 34)6()3()5(2÷-+---][22322644)2(])()3()4(16)[6(a a a a a a -÷÷---12.先化简,再求值.[]a b a b a b a b a 4)25)(2()23)(23(÷-+-+-,其中203,10-==b a .§15.4 因式分解§15.4.1 提公因式法一、选择题1.下列各式中从左到右的变形是因式分解的是( ).A.9)3)(3(2-=-+a a aB.1)3)(2(52++-=-+x x x xC.)(22b a ab ab b a +=+D.)1(12x x x x +=+2.代数式3322328714b a b a b a -+各项的公因式是( ).A.327b aB.227b aC.b a 27D.27ab3.把多项式)2()2(2a m a m ---分解因式等于( ).A.))(2(2m m a +-B.))(2(2m m a --C.)1)(2(--m a mD.)1)(2(+-m a m4.把下列各式进行因式分解,正确的是( ).A.)7(722x x y y xy y x +=++B.)2(363322+-=+-a a b b ab b aC.)34(2682x xyz y x xyz -=-D.)32(26422c b a a ac ab a -+-=-+- 二、填空题5.因式分解:=--xz z xy yz x 36923____________________.6.分解因式:=-+-)1()1(y y y x ______________________.7.因式分解:=-----))(())((m y m x y y m x m m __________________.8.因式分解:=--+12m m a a __________________________.9.如果,2,3-=-=+xy y x 那么3223y x y x +的值为_______________________.三、解答题10.把下列多项式在有理数范围内因式分解:)1( 2348x x - m m m 26164)2(23-+-(3) 224262424xy y x y x -+-(4) ))((3))((2z y x z y z y x y x -+-+-++(5) )(6)(4)(8a x c x a b a x a ---+-(6) 3222)(15)(20x y xy y x y x ---11.利用因式分解计算 8208208 )1(2⨯- 4.297.145.07.145.3 )2(-⨯+⨯12.证明:139792781--能被45整除.§15.4.2 公式法(1)一、选择题1.下列多项式中不能用平方差分解的是( ).A.22b a +- B.22y x -- C.22249z y x - D.2242516p n m - 2.分解因式的结果是)3)(3(y x y x +--的是( ).A.229y x -B.229y x +C.229y x --D.229y x +-3.多项式()()2223b a b a --+分解因式的结果是( ) A.()()b a b a ++24B. ()()b a b a 324++C.()232b a +D. ()22b a + 4.下列各式中,计算正确的是( )A.()()x x +-22=22-x B.()()432322-=-+x x x C.()()222c b a c ab c ab -=+- D.()()22y x y x y x -=+-- 5.一个长方形的面积为22y x -,以它的长边为边长的正方形的面积为( )A. 22y x +B. xy y x 222-+C. xy y x 222++ D.以上都不对二、填空题6.(2x -3y )( )=9y 2-4x 2.7.一个正方形的边长增加了2cm ,面积相应增加了322cm ,这个正方形的边长为 .三、解答题8.用简便方法计算(1)6.42-3.62; (2)21042-10429. 把下列多项式因式分解:3(1)a a -; 44483)2(y x -(3))()(22x y n y x m -+- 22)(9)(25)4(y x y x +--10.如图大正方形的边长为a ,小正方形的边长为b ,利用此图证明平方差公式.11.已知n 为正整数,试证明()()2215--+n n 的值一定能被12整除.12.已知:15,1222=+=+y xy xy x ,求:()()()y x y x y x -+-+2的值. a b (第10题)§15.4.2 公式法(2)一、选择题1.要使a x x +-62成为形如()2b x -的完全平方式,则b a ,的值() A.9,9==b a B. 3,9==b aC. 3,3==b a A =3D. 2,3-=-=b a2.若42++mx x 是一个完全平方公式,则m 的值为( )A.2B.2或-2C.4D.4或-4 3.下列各代数式中是完全平方式的是( ).96)1(2+-a a 22964)2(y xy x +- 241)3(a +41)4(2+-x x2236)5(y xy x ++A.)2)(1(B.)4)(1(C.)4)(2(D.)5)(2( 4.多项式4225101x x +-在有理数范围内因式分解的结果为( ).A.)51)(51(22x x +-B.23)51(x -C.22)51(x -D.)51)(51(x x -+二、填空题5.分解因式:3244a a a -+= .6.简便计算:=+⨯⨯+22646436236___________.7.多项式A ab b a ++622是完全平方式,则=A ______________.8.多项式162+-kx x 是完全平方式,则=k ___________________. 9.多项式a ax 42-与多项式244x x -+的公因式是 .三、解答题10.223612)1(y xy x +-()14422--x x4)(12)(9)3(2+---y x y xab b a 4))(4(2+-222224))(5(y x y x -+81)(72)(16)6(24++-+y x y x11.已知:9)(,25)(22=-=+y x y x ,求xy 与22y x +的值.12.已知,12,19=-=y x 求代数式229124y xy x ++的值.。
第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列运算正确的是()A.x6•x2=x12B.(﹣3x)2=6x2C.x3+x3=x6D.(x5)2=x102.计算的结果为()A.B.﹣1C.﹣2D.23.下列由左到右的变形,属于因式分解的是()A.x2﹣4=(x+2)(x﹣2)B.x(x+1)=x2+xC.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣24.多项式4x3yz2﹣8x2yz4+12x4y2z3的公因式是()A.4x3yz2B.﹣8x2yz4C.12x4y2z3D.4x2yz25.若2x+y﹣3=0,则52x•5y=()A.15B.75C.125D.1506.如果(2x﹣m)与(x+6)的乘积中不含x的一次项,那么m的值为()A.12B.﹣12C.0D.67.如果4a2﹣kab+b2是一个完全平方式,那么k的值是()A.4B.﹣4C.±2D.±48.从边长为a的大正方形纸板正中央挖去一个边长为b的小正方形后,将其裁成四个大小和形状完全相同的四边形(如图1),然后拼成一个平行四边形(如图2),那么通过计算两个图形阴影部分的面积,可以验证成立的等式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.如图所示,两个正方形的边长分别为a和b,如果a+b=12,ab=28,那么阴影部分的面积是()A.40B.44C.32D.5010.已知a,b,c是△ABC的三边长,且a2+2ab=c2+2bc,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形二、填空题(每小题3分,满分18分)11.已知x2﹣2x﹣1=0,代数式(x﹣1)2+2024=.12.若m﹣n=﹣2,且m+n=5,则m2﹣n2=.13.若ab=3,a+b=2,则ab2+a2b﹣3ab=.14.3m=4,3n=5,则33m﹣2n的值为.14.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是.16.如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB =9,两正方形的面积和S1+S2=45,则图中阴影部分面积为.第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.分解因式:(1)3a2﹣6ab+3b2;(2)25(m+n)2﹣(m﹣n)2;18.已知:a﹣b=3,ab=1,试求:(1)a2+3ab+b2的值;(2)(a+b)2的值.19.若关于x的代数式(x2+mx+n)(2x﹣1)的化简结果中不含x2的项和x的项,求m+n的值.20.在计算(2x+a)(x+b)时,甲错把a看成了﹣a,得到结果是:2x2﹣10x+12;乙由于漏抄了第一个多项式中x的系数,得到结果:x2+x﹣12.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.21.已知5m=4,5n=6,25p=9.(1)求5m+n的值;(2)求5m﹣2p的值;(3)写出m,n,p之间的数量关系.22.将边长为x的小正方形ABCD和边长为y的大正方形CEFG按如图所示放置,其中点D在边CE上.(1)若x+y=10,y2﹣x2=20,求y﹣x的值;(2)连接AG,EG,若x+y=8,xy=14,求阴影部分的面积.23.对于任意实数m,n,我们规定:F(m,n)=m2+n2,H(m,n)=﹣mn,例如:F(1,2)=12+22=5,H(3,4)=﹣3×4=﹣12.(1)填空:①F(﹣1,3)=;②若H(2,x)=﹣6,则x=;③若F(a,b)=H(a,2b),则a+b0.(填“>”,“<”或“=”)(2)若x+2y=5,且F(2x+3y,2x﹣3y)+H(7,x2+2y2)=13,求xy与(x ﹣2y)2的值;(3)若正整数x,y满足F(x,y)=k2+17,H(x,y)=﹣3k+4,求k的值.24.我们定义:如果两个多项式M与N的和为常数,则称M与N互为“对消多项式”,这个常数称为它们的“对消值”.如MF=2x2﹣x+6与N=﹣2x2+x﹣1互为“对消多项式”,它们的“对消值”为5.(1)下列各组多项式互为“对消多项式”的是(填序号):①3x2+2x与3x2+2;②x﹣6与﹣x+2;③﹣5x2y3+2xy与5x2y3﹣2xy﹣1.(2)多项式A=(x﹣a)2与多项式B=﹣bx2﹣2x+b(a,b为常数)互为“对消多项式”,求它们的“对消值”;(3)关于x的多项式C=mx2+6x+4与D=﹣m(x+1)(x+n)互为“对消多项式”,“对消值”为t.若a﹣b=m,b﹣c=mn,求代数式a2+b2+c2﹣ab﹣bc﹣ac+2t的最小值.25.【阅读理解】对一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如,由图1可以得到完全平方公式:(x+y)2=x2+2xy+y2,这样的方法称为“面积法”.【解决问题】(1)如图2,利用上述“面积法”,可以得到数学等式:(a+b+c)2=.(2)利用(1)中所得到的等式,解决下面的问题:①已知a+b+c=8,ab+bc+ac=17.求a2+b2+c2的值.②若m、n满足如下条件:(n﹣2021)2+(2023﹣2n)2+(n+1)2=m2﹣2m﹣20,(n﹣2021)(2023﹣2n)+(n﹣2021)(n+1)+(2023﹣2n)(n+1)=2+m,求m的值.【应用迁移】如图3,△ABC中,AB=AC,点O为底边BC上任意一点,OM ⊥AB,ON⊥AC,CH⊥AB,垂足分别为M,N,H,连接AO.若OM=1.2,ON=2.5,利用上述“面积法”,求CH的长.。
3整式的乘除与因式分解中考题要点一:幕的运算性质 、选择题 1、 (2010义乌中考)28 cm 接近于( A .珠穆朗玛峰的高度 B .三层楼的高度 C .明的身高 D .一纸的厚度2、(2009新疆中考)下列运算正确的是( 3、4、 5、 6、 7、 9、A . aa ?g 4 aa 6B . (x 2)5 x 7C . (2009东营中考)计算 3a 2b 3 4的结果是 (A) 81a 8b 12 ( B ) 12a 6b 7(2010 中考)1.计算(T)2 + ( T)3 = A. -2 B. -11 2 3(2009中考)化简(x ) x 的结果是 A . x 5 B . x 4(2009中考)下列运算正确的是( A . 3a 2— a 2= 3 B . (a 2) 3= a 5 (2009崇左中考)下列运算正确的是( 2 2 4 A . 2x 2 • 3x 2 6x 4 B . 2x 2C 2x 2 3x 2 - x 2D 2x 23'(2009中考) (2009中考) A . a 2• a 3F 列运算中,正确的是(B. a a 23ab 2 3a 2b 0). 12a 6b 7C. 0 ).3x 2 3x 2a 2F 列计算中,结果正确的是 a 6B . 2a • 3a6a10. (2009襄樊中考)下列计算正确的是(A . a 2-a 3a 6 B . a 8 a 4 a 2 a 3. a 6= a 95x 4C . C .C . a 3 11、 (2009 中考)若 2x 3,4y 5,则2x-2y 的值为((2a)2 a 2 (D)81a 8b 12D. 2(2a ) 2= 2a 24a 2 D . (a 3)2 a 6 D .a 6 a 2 a 52a 2a 5a 3368a 63、填空题要点二、整式的运算、选择题3 A.-5B. -2C.3、56 D.-5(2007 中考)计算: (103) (2007 中考) 计算 [( x) 3]解答题(2010 中考) 计算:(3)(2009 中考) 计算:2(2008中考) 2 16、 2 17、18 19、2x 2 32I 111. (2010眉山中考)下列运算中正确的是2、 2A . 3a 2a 5a C . 2a 2 a 3 2a 6(2009中考)下列计算正确的是( A.2x+x=x 3 B.(3x) 2=6x 232(2009中考)计算2xX 的结果是(2 a (2 a b)(2a b) 4a 2 b 2 b)2 4a 2 b 2C.(x — 2)2=x 2- 4D.x 3^x=x 212、 (2009威海中考)计算(2 3) 1(、21)0的结果是13、 (2009中考) 已知 10m 2,0n 3,则 103m 2n 14、 (2008中考) 计算(a 3)215、20、 (2009 中考) 计算: .1621、 (2010 •中考)计算:22、 (2009中考)计算:1)2 31.45 6A . XB . 2xC . 2xD . 2x4、 ( 2009眉山中考)下列运算正确的是().2 X 35224A . (x )xB . 3x 4x 7xC . ( x)9 ( x)3 x 6D . x(x 2 x 1) x 3 x 2 x5、 ( 2009中考)下列运算正确的是 ( ). A . 3a 2a a 5 B . a 2 a 36aC . (a 2 2D . (a.、22 . 2b)(a b) a bb)a b【解析】选C.根据平方差公式得结论(2008中考)下列计算结果正确的是( )A . 2x2 33 4y 2xy 2x yB .3x 2y 5xy 2= 2x 2 y4 C . 28x 2 - 3,y 7x y 4xyD . (3a 2)( 3a 2) 9a 2 4答案:选C7、( 2008中考)下列各式计算正确的是()A . 2a 2 a 3 3a 5B . 3xy 2 xy 3xyC . 2b 2 3 8b 5D . 2x?3x 5 6x 6答案:选D 二、填空题8、( 2010中考)计算:a 3为2 = ___________【解析】a 3为2 =a 3 2=a 答案:a31 29、 (2009黄冈中考)计算: 3x ( -x )=9答案:一-x 5.— 16a 8.310、 ___________________________________________ (2009 中考) 计算(3a )2-a 5 =7答案:9a32, ab 1,化简(a 2)(b 2)的结果是(2a 2)4= ________11、 (2009中考)已知:a b答案:212、 (2008中考)当x 3,y1时,代数式(x y )(x y ) y 的值是 _____________ .答案:913、 (2007中考)利用图形中面积的等量关系可以得到某些数学公式•例如,根据图甲,我们可以得到两数和的平方公式:(a+b ) 2=a 2+2ab+b 2.你根据图乙能得到的数学公式是答案:(a b)2 a 2 2ab b 2 三、解答题14、(2009中考)先化简,再求值:2 21(a b)(a b) (a b)2 2a 2,其中 a 3, b -.2【解析】(a b)(a b) (a b)22a a 2 b 2 a 2 2abb 22a 22ab11 a 3,b 3时,2ab 231 3220082b2008 20092 2 22008 1 2008二 a<b .200715、(2009 中考)若 a, b20082008融,试不用将分数化小数的方法比较a 、b 的大小.【解析】 2007 2009a= 2008 2009(2008 1) (2008 1)2008 20092 22008 1 2008 20091要点三、因式分解、选择题【解析】a 2—ab =a(a —b) 答案:a (a —b )【解析】 选C.选项A 提取公因式不彻底,选项 B 提取公因式后符号处理不正确, D 不是因式分解.【解析】选C.利用完全平方公式因式分解16、(2008中考)先化简,再求值: (a b)(a b) b(b 2),其中 a【解析】原式 a 2 2 2b b 2ba 2 2b当a 1 , b 1时,原式 (1)217、(2008中考)先化简, 再求值:(2 a b)(2a b) b(2ab) 4a 2bb ,其中【解析】原式 4a 2 b 2 2ab b 2 4a 22ab1、 (2010中考)分解因式:a 2 —ab =2、 (2008中考)下列分解因式正确的是(2A . 2x xy x 2x(x y 1)2xy2xy 3y y(xy 2x 3)2C . x(x y) y(x y) (x y)D . X 2x 3 x(x 1)3选项3、 (2010眉山中考)把代数式 mx 2 6mx9m 分解因式,下列结果中正确的是(4、5、2A . m(x 3)B . m(x 3)(x 3)2 2C . m(x 4)D . m(x 3)【解析】:选Dmx 2 6mx 9m =m(x 2— 6x + 9)=m(x — 3)2(2009中考)将整式9 — x 2分解因式的结果是 A . (3 — x)2B . (3 + x)(3 — x)C . (9 — x)2D . (9 + x)(9 — x)【解析】选B.根据平方差公式因式分解(2009中考)把多项式x 2 一 4x+4分解因式,所得结果是(). A . x(x 一 4)+4B.(x 一 2)(x+2) C . (x 一 2)2 D . (z+2)23 2 26、(2009中考)把x 2x y xy分解因式,结果正确的是(2 c 2 2 2A. xxyxyB. xx 2xy y C xxy D xxy【解析】选D.先提取公因式,在利用完全平方公式因式分解7、(2009江中考)在边长为a的正方形中挖去一个边长为b的小正方形(a b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证A. (a b)2 2 a2ab b2B. (a 2 2b) a2ab b2D. (a2b)(a b)a2ab 2 bC.2 a b2(a b)(a b)【解析】选C.图甲中阴影部分的面积为a2—b2,图乙中阴影部分的面积为(a+b)(a—b),所以a2—b2=(a+b)(a 一b),故选C.8、(2008中考)下列多项式中,能用公式法分解因式的是()A.x2—xyB. x2+ xyC. x2—y2D. x2+ y2【解析】选C.选项C可以利用平方差公式因式分解.9、(2008中考)下列式子中是完全平方式的是()A. B .C. D.【解析】选D.完全平方式符合首平方、尾平方、2倍的首尾在中央.二、填空题10、 ______________________________________________ (2010 中考)分解因式:2a2 -4a + 2=【解析】2a2-4a + 2=2 (a2^a +1)=2 (a -1)211、 _____________________________________________ (2009中考)分解因式:x22x=答案:x (x —2)12、(2009中考)因式分解:2a24a ___________答案:2a(a 2)13、 ______________________________________________________ (2009威海中考)分解因式:(x+3)2—(x+3)____________________________________.答案:(x+3)(x+2)14、 ______________________________________ (2009中考)分解因式2x38x= .答案:2x(x+2)(x —2)15、(2009中考)在实数围因式分解x4 4 = ____________ •答案:(x22)( x ,2)(x .、2)三、解答题16、(2009中考)在三个整式x22xy,y22xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解【关键词】整式的运算、因式分解【解析】(x22xy)x22x22xy2x(x y);或(y22xy)x2(x y)2;或(x22xy)(y222xy) x2y(x y)(x y)或(y22xy)(x222xy) y 2 x(y x)(y x)1 2 1 2 1 217、(2009中考)给出三个多项式:一X 2x 1 , - x 4x 1 , - x 2x .请选择你最2 2 2喜欢的两个多项式进行加法运算,并把结果因式分解.【解析】情况一:12 2x2x1 21 x 4x21 =2=x6x =x(x 6)情况二: 1 2 x22x1 12 x22x =x21 =(x1)(x1).情况三: 1 2 x4x1 1 2 x2x = x22x1=(x1)2.2218、(2008中考)分解因式【解析】原式===。
整式的乘除因式分解习题精选一.解答题(共12小题)1.计算:①;②[(﹣y5)2]3÷[(﹣y)3]5•y2③④(a﹣b)6•[﹣4(b﹣a)3]•(b﹣a)2÷(a ﹣b)2.计算:①(2x﹣3y)2﹣8y2;②(m+3n)(m﹣3n)﹣(m﹣3n)2;③(a﹣b+c)(a﹣b﹣c);④(x+2y﹣3)(x﹣2y+3);⑤(a﹣2b+c)2;⑥[(x﹣2y)2+(x﹣2y)(2y﹣x)﹣2x(2x﹣y)]÷2x.⑦(m+2n)2(m﹣2n)2 ⑧.3.计算:(1)6a5b6c4÷(﹣3a2b3c)÷(2a3b3c3).(2)(x﹣4y)(2x+3y)﹣(x+2y)(x﹣y).4.计算:(1)(x2)8•x4÷x10﹣2x5•(x3)2÷x.(2)3a3b2÷a2+b•(a2b﹣3ab﹣5a2b).(3)(x﹣3)(x+3)﹣(x+1)(x+3).(4)(2x+y)(2x﹣y)+(x+y)2﹣2(2x2﹣xy).5.因式分解:①6ab3﹣24a3b;②﹣2a2+4a﹣2;③4n2(m﹣2)﹣6(2﹣m);④2x2y﹣8xy+8y;⑤a2(x﹣y)+4b2(y﹣x);⑥4m2n2﹣(m2+n2)2;⑦;⑧(a2+1)2﹣4a2;⑨3x n+1﹣6x n+3x n﹣1⑩x2﹣y2+2y﹣1;4a2﹣b2﹣4a+1;4(x﹣y)2﹣4x+4y+1;3ax2﹣6ax﹣9a;x4﹣6x2﹣27;(a2﹣2a)2﹣2(a2﹣2a)﹣3.6.因式分解:(1)4x3﹣4x2y+xy2.(2)a2(a﹣1)﹣4(1﹣a)2.7.给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.8.先化简,再求值:(2a+b)(2a﹣b)+b(2a+b)﹣4a2b÷b,其中a=﹣,b=2.9.当x=﹣1,y=﹣2时,求代数式[2x2﹣(x+y)(x﹣y)][(﹣x﹣y)(﹣x+y)+2y2]的值.10.解下列方程或不等式组:①(x+2)(x﹣3)﹣(x﹣6)(x﹣1)=0;②2(x﹣3)(x+5)﹣(2x﹣1)(x+7)≤4.11.先化简,再求值:(1)(x+2y)(2x+y)﹣(x+2y)(2y﹣x),其中,.(2)若x﹣y=1,xy=2,求x3y﹣2x2y2+xy3.12.解方程或不等式:(1)(x+3)2+2(x﹣1)2=3x2+13.(2)(2x﹣5)2+(3x+1)2>13(x2﹣10).整式的乘除因式分解习题精选参考答案与试题解析一.解答题(共12小题)1.计算:①;②[(﹣y5)2]3÷[(﹣y)3]5•y2④(a﹣b)6•[﹣4(b﹣a)3]•(b﹣a)2÷(a﹣b)考点:整式的混合运算.专题:计算题.分析:①原式先计算乘方运算,再计算乘除运算即可得到结果;②原式利用幂的乘方与积的乘方运算法则计算,即可得到结果;③原式利用多项式除以单项式法则计算即可得到结果;④余数利用同底数幂的乘除法则计算即可得到结果.解答:解:①原式=5a2b÷(﹣ab)•(4a2b4)=﹣60a3b4;②原式=y30÷(﹣y)15•y2=﹣y17;③原式=a2b﹣ab2﹣;④原式=4(a﹣b)10.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.2.计算:①(2x﹣3y)2﹣8y2;②(m+3n)(m﹣3n)﹣(m﹣3n)2;③(a﹣b+c)(a﹣b﹣c);④(x+2y﹣3)(x﹣2y+3);⑤(a﹣2b+c)2;⑥[(x﹣2y)2+(x﹣2y)(2y﹣x)﹣2x(2x﹣y)]÷2x.⑦(m+2n)2(m﹣2n)2⑧.考点:整式的混合运算.专题:计算题.分析:①原式利用完全平方公式展开,去括号合并即可得到结果;②原式第一项利用平方差公式计算,第二项利用完全平方公式展开,去括号合并即可得到结果;③原式利用平方差公式化简,再利用完全平方公式展开即可得到结果;④原式利用平方差公式化简,再利用完全平方公式展开即可得到结果;⑤原式利用完全平方公式展开,即可得到结果;⑥原式中括号中利用完全平方公式化简,去括号合并后利用多项式除以单项式法则计算即可得到结果;⑦原式逆用积的乘方运算法则变形,计算即可得到结果;⑧原式利用平方差公式计算即可得到结果.解答:解:①原式=4x2﹣12xy+9y2﹣8y2=4x2﹣12xy+y2;④原式=x2﹣(2y﹣3)2=x2﹣4y2+12y﹣9;⑤原式=(a﹣2b)2+2c(a﹣2b)+c2=a2﹣4ab+4b2+2ac﹣4bc+c2;⑥原式=(x2﹣4xy+4y2﹣x2+4xy﹣4y2﹣4x2+2xy)÷2x=(﹣4x2+2xy)÷2x=﹣2x+y;⑦原式=[(m+2n)(m﹣2n)]2=(m2﹣4n2)2=m4﹣8m2n2+16n4;⑧原式=a(﹣a+b+c)=﹣a2+ab+ac.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.计算:(1)6a5b6c4÷(﹣3a2b3c)÷(2a3b3c3).(2)(x﹣4y)(2x+3y)﹣(x+2y)(x﹣y).(3)[(﹣2x2y)2]3•3xy4.(4)(m﹣n)(m+n)+(m+n)2﹣2m2.考点:整式的混合运算.专题:计算题.分析:(1)原式利用单项式除以单项式法则计算即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果;(3)原式先利用积的乘方与幂的乘方运算法则计算,再利用单项式乘单项式法则计算即可得到结果;(4)原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并即可得到结果.解答:解:(1)原式=﹣2a3b3c3÷(2a3b3c3)=﹣1;(2)原式=2x2﹣5xy﹣12y2﹣x2﹣xy+2y2=x2﹣6xy﹣10y2;(3)原式=64x12y6•3xy4=192x13y10;(4)原式=m2﹣n2+m2+2mn+n2﹣2m2=2mn.点评:此题考查了整式的混合运算,涉及的整式有:完全平方公式,平方差公式,单项式乘除单项式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.4.计算:(1)(x2)8•x4÷x10﹣2x5•(x3)2÷x.(2)3a3b2÷a2+b•(a2b﹣3ab﹣5a2b).(3)(x﹣3)(x+3)﹣(x+1)(x+3).(4)(2x+y)(2x﹣y)+(x+y)2﹣2(2x2﹣xy).考点:整式的混合运算.专题:计算题.分析:(1)原式先利用幂的乘方运算法则计算,再利用同底数幂的乘除法则计算,合并即可得到结果;(2)原式利用单项式除以单项式,以及单项式乘以多项式法则计算,去括号合并即可得到并即可得到结果;(4)原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并即可得到结果.解答:解:(1)原式=x16•x4÷x10﹣2x5•x6÷x=x10﹣2x10=﹣x10;(2)原式=3ab2+a2b2﹣3ab2﹣5a2b2=﹣4a2b2;(3)原式=x2﹣9﹣x2﹣4x﹣3=﹣4x﹣12;(4)原式=4x2﹣y2+x2+2xy+y2﹣4x2+2xy=x2+4xy.点评:此题考查了整式的混合运算,涉及的整式有:完全平方公式,平方差公式,单项式乘除单项式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.5.因式分解:①6ab3﹣24a3b;②﹣2a2+4a﹣2;③4n2(m﹣2)﹣6(2﹣m);④2x2y﹣8xy+8y;⑤a2(x﹣y)+4b2(y﹣x);⑥4m2n2﹣(m2+n2)2;⑦;⑧(a2+1)2﹣4a2;⑨3x n+1﹣6x n+3x n﹣1⑩x2﹣y2+2y﹣1;⑪4a2﹣b2﹣4a+1;⑫4(x﹣y)2﹣4x+4y+1;⑬3ax2﹣6ax﹣9a;⑭x4﹣6x2﹣27;⑮(a2﹣2a)2﹣2(a2﹣2a)﹣3.考点:提公因式法与公式法的综合运用;因式分解-分组分解法;因式分解-十字相乘法等.分析:①直接提取公因式6ab,进而利用平方差公式进行分解即可;②直接提取公因式﹣2,进而利用完全平方公式分解即可;③直接提取公因式2(m﹣2)得出即可;④直接提取公因式2y,进而利用完全平方公式分解即可;⑤直接提取公因式(x﹣y),进而利用平方差公式进行分解即可;⑥直接利用平方差公式分解因式,进而利用完全平方公式分解即可;⑦首先提取公因式﹣,进而利用平方差公式进行分解即可;⑧首先利用平方差公式分解因式,进而利用完全平方公式分解即可;⑨直接提取公因式3x n﹣1,进而利用完全平方公式分解即可⑩将后三项分组利用完全平方公式分解因式,进而利用平方差公式分解即可;⑬首先提取公因式3a,进而利用十字相乘法分解因式得出;⑭首先利用十字相乘法分解因式进而利用平方差公式分解即可;⑮将a2﹣2a看作整体,进而利用十字相乘法分解因式得出即可.解答:解:①6ab3﹣24a3b=6ab(b2﹣4a2)=6ab(b+2a)(b﹣2a);②﹣2a2+4a﹣2=﹣2(a2﹣2a+1)=﹣2(a﹣1)2;③4n2(m﹣2)﹣6(2﹣m)=2(m﹣2)(2n2+3);④2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2;⑤a2(x﹣y)+4b2(y﹣x)=(x﹣y)(a2﹣4b2)=(x﹣y)(a+2b)(a﹣2b);⑥4m2n2﹣(m2+n2)2=(2mn+m2+n2)(2mn﹣m2﹣n2)=﹣(m+n)2(m﹣n)2;⑦=﹣(n2﹣4m2)=﹣(n+2m)(n﹣2m);⑧(a2+1)2﹣4a2=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2;⑨3x n+1﹣6x n+3x n﹣1=3x n﹣1(x2﹣2x+1)=3x n﹣1(x﹣1)2;⑩x2﹣y2+2y﹣1=x2﹣(y﹣1)2=(x+y﹣1)(x﹣y+1);⑪4a2﹣b2﹣4a+1=(4a2﹣4a+1)﹣b2=(2a﹣1)2﹣b2=(2a﹣1+b)(2a﹣1﹣b);⑫4(x﹣y)2﹣4x+4y+1=4(x﹣y)2﹣4(x﹣y)+1=[2(x﹣y)﹣1]2=(2x﹣2y﹣1)2;⑬3ax2﹣6ax﹣9a=3a(x2﹣2x﹣3)=3a(x﹣3)(x+1);⑮(a2﹣2a)2﹣2(a2﹣2a)﹣3=(a2﹣2a﹣3)(a2﹣2a+1)=(a﹣3)(a+1)(a﹣1)2.点评:此题主要考查了提取公因式法、公式法十字相乘法和分组分解法分解因式,熟练应用公式法以及分组分解法分解因式是解题关键.6.因式分解:(1)4x3﹣4x2y+xy2.(2)a2(a﹣1)﹣4(1﹣a)2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:(1)原式提取公因式x后,利用完全平方公式分解即可;(2)原式第二项变形后,提取公因式,再利用平方差公式分解即可.解答:解:(1)原式=x(4x2﹣4xy+y2)=x(2x﹣y)2;(2)原式=(a﹣1)(a2﹣4a+4)=(a﹣1)(a﹣2)2.点评:此题考查了提公因式法与公式法的综合运用,熟练掌握公式是解本题的关键.7.(2009•漳州)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.考点:提公因式法与公式法的综合运用;整式的加减.专题:开放型.分析:本题考查整式的加法运算,找出同类项,然后只要合并同类项就可以了.解答:解:情况一:x2+2x﹣1+x2+4x+1=x2+6x=x(x+6).情况二:x2+2x﹣1+x2﹣2x=x2﹣1=(x+1)(x﹣1).情况三:x2+4x+1+x2﹣2x=x2+2x+1=(x+1)2.点评:本题考查了提公因式法,公式法分解因式,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.熟记公式结构是分解因式的关键.平方差公式:a2﹣b2=(a+b)(a﹣b);完全平方公式:a2±2ab+b2=(a±b)2.8.(2008•三明)先化简,再求值:(2a+b)(2a﹣b)+b(2a+b)﹣4a2b÷b,其中a=﹣,b=2.考点:整式的混合运算—化简求值.专题:计算题.分析:根据平方差公式,单项式乘多项式,单项式除单项式的法则化简,再代入求值.解答:解:(2a+b)(2a﹣b)+b(2a+b)﹣4a2b÷b,=4a2﹣b2+2ab+b2﹣4a2,=2ab,当a=﹣,b=2时,原式=2×(﹣)×2=﹣2.点评:考查了整式的混合运算,主要考查了整式的乘法、除法、合并同类项的知识点.注意运算顺序以及符号的处理.9.当x=﹣1,y=﹣2时,求代数式[2x2﹣(x+y)(x﹣y)][(﹣x﹣y)(﹣x+y)+2y2]的值.考点:整式的混合运算—化简求值.分析:先根据整式混合运算的法则把原式进行化简,再把x、y的值代入进行计算即可.解答:解:原式=[2x2﹣x2+y2][(﹣x)2﹣y2+2y2]=(x2+y2)(x2+y2)=(x2+y2)2,当x=﹣1,y=﹣2时,原式=(1+4)2=25.点评:本题考查的是整式的混合运算﹣化简求值,熟知整式混合运算的法则是解答此题的关键.10.解下列方程或不等式组:①(x+2)(x﹣3)﹣(x﹣6)(x﹣1)=0;②2(x﹣3)(x+5)﹣(2x﹣1)(x+7)≤4.考点:整式的混合运算;解一元一次方程;解一元一次不等式.专题:计算题.分析:①方程去括号,移项合并,将x系数化为1,即可求出解;②不等式去括号,移项合并,将x系数化为1,即可求出解集.解答:解:①去括号得:x2﹣x﹣6﹣x2+7x﹣6=0,移项合并得:6x=12,解得:x=2;②去括号得:2x2+4x﹣30﹣2x2﹣13x+7≤4,移项合并得:﹣9x≤27,解得:x≥﹣3.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.(1)(x+2y)(2x+y)﹣(x+2y)(2y﹣x),其中,.(2)若x﹣y=1,xy=2,求x3y﹣2x2y2+xy3.考点:整式的混合运算—化简求值.分析:(1)先根据整式混合运算的法则把原式进行化简,再把x,y的值代入进行计算即可;(2)先根据整式混合运算的法则把原式进行化简,再把x﹣y=1,xy=2的值代入进行计算即可.解答:解:(1)原式=(x+2y)(2x+y﹣2y+x)=(x+2y)(3x﹣y)=3x2+5xy﹣2y2,当x=,y=时,原式=3×+5××﹣2×=;(2)原式=xy(x﹣y)2,当x﹣y=1,xy=2时,原式=2×1=2.点评:本题考查的是整式的混合运算﹣化简求值,熟知整式混合运算的法则是解答此题的关键.12.解方程或不等式:(1)(x+3)2+2(x﹣1)2=3x2+13.(2)(2x﹣5)2+(3x+1)2>13(x2﹣10).考点:整式的混合运算;解一元一次方程;解一元一次不等式.专题:计算题.分析:(1)方程左边两项利用完全平方公式展开,移项合并后,将x系数化为1,即可求出解;(2)不等式左边两项利用完全平方公式展开,移项合并后,将x系数化为1,即可求出范围.解答:解:(1)整理得:x2+6x+9+2x2﹣4x+2=3x2+13,移项合并得:2x=2,解得:x=1;(2)不等式整理得:4x2﹣20x+25+9x2+6x+1>13x2﹣130,移项合并得:﹣14x>﹣156,解得:x<11.点评:此题考查了整式的混合运算,涉及的整式有:完全平方公式,平方差公式,单项式乘除单项式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.。
可编辑修改精选全文完整版Array第十四章、整式乘除与因式分解14.1 整式的乘法(1)(-3x)2(x+1)(x+3)+4x(x-1)(x2+x+1),其中x=-1;解:原式=9x2(x2+3x+x+3)+4x(x3+x2+x-x2-x-1)=9x2(x2+4x+3)+4x(x3-1)=9x4+36x3+27x2+4x4-4x=13x4+36x3+27x2-4x当x=-1时原式=13×(-1)4+36×(-1)3+27×(-1)2-4×(-1)=13-36+27+4=8(2)y n(y n+3y-2)-3(3y n+1-4y n),其中y=-2,n=2.解:原式=y2n+3y n+1-2y n-9y n+1+12y n=y2n-6y n+1+10y n当y=-2,n=2时原式=(-2)2×2-6×(-2)2+1+10×(-2)2=16+48+40=10415、已知不论x、y为何值时(x+my)(x+ny)=x2+2xy-8y2恒成立.求(m+n)mn的值.解:x2+nxy+mxy+mny2=x2+2xy-8y2x2+(m+n)xy+mny2=x2+2xy-8y2∴m+n=2,mn=-8∴(m+n)mn=2×(-8)=-166、已知31=+a a,则221a a +=( B ) A .5 B .7 C .9 D .117、如果x 2+kx +81是一个完全平方式,则k 的值是( D )A .9B .-9C .±9D .±188、下列算式中不正确的有( C )①(3x 3-5)(3x 3+5)=9x 9-25②(a +b +c +d)(a +b -c -d)=(a +b)2-(c +d)2③22)31(5032493150-=⨯ ④2(2a -b)2·(4a +2b)2=(4a -2b)2(4a -2b)2=(16a 2-4b 2)2A .0个B .1个C .2个D .3个9、代数式2)(2y x +与代数式2)(2y x -的差是( A ) A .xy B .2xy C .2xy D .0 10、已知m 2+n 2-6m +10n +34=0,则m +n 的值是( A )A .-2B .2C .8D .-8二、解答题11、计算下列各题:(1)(2a +3b)(4a +5b)(2a -3b)(5b -4a)(2)(x +y)(x -y)+(y -z)(y +z)+(z -x)(z +x);(3)(3m 2+5)(-3m 2+5)-m 2(7m +8)(7m -8)-(8m)2(1) 解:原式=(2a +3b)(2a -3b)(4a +5b)(5b -4a)=(4a 2-9b 2)(25b 2-16a 2)=100a 2b 2-64a 4-225b 4+144a 2b 2=-64a 4+244a 2b 2-225b 4(2) 解:原式=x 2-y 2+y 2-z 2+z 2-x 2=0(3) 解:原式=25-9m 4-m 2(49m 2-64)-64m 2=-58m 4+2512、化简求值:(1)4x(x 2-2x -1)+x(2x +5)(5-2x),其中x =-1(2)(8x 2+4x +1)(8x 2+4x -1),其中x =21 (3)(3x +2y)(3x -2y)-(3x +2y)2+(3x -2y)2,其中x =31,y =-21 (1) 解:原式=4x 3-8x 2-4x +x(25-4x 2)=4x 3-8x 2-4x +25x -4x 3=-8x 2+21x当x =-1时原式=-8×(-1)2+21×(-1)=-8-21=-29(2) 解:原式=(8x 2+4x)2-1当x =时,原式=[8×()2+4×]2-1=(2+2)2-1=15(3) 解:原式=9x 2-4y 2-9x 2-12xy -4y 2+9x 2-12xy +4y 2=9x 2-24xy -4y 2当x =,y =-时原式=9×()2-24××(-)-4×(-)2=1+4-1=413、解下列方程:(1)(3x)2-(2x +1)2=5(x +2)(x -2)解:9x 2-4x 2-4x -1=5x 2-205x 2-4x -1=5x 2-204x =19∴x =419(2)6x +7(2x +3)(2x -3)-28(x -21)(x +21)=4解:6x +28x 2-63-28x 2+7=46x -56=46x =60∴x =1014、解不等式:(1-3x)2+(2x -1)2>13(x -1)(x +1)解:1-6x +9x 2+4x 2-4x +1>13x 2-1313x 2-10x +2>13x 2-13-10x>-15∴x<2315、若n 满足(n -2004)2+(2005-n)2=1,求(2005-n)(n -2004)的值.解:(n -2004)2+2·(n -2004)·(2005-n)+(2005-n)2=1+2(n -2004)(2005-n)(n -2004+2005-n)2=1+2(n -2004)(2005-n)1=1+2(2005-n)(n -2004)∴(2005-n)(n -2004)=014.3 因式分解一、选择题1、下列各式,从左到右的变形是因式分解的为( B )A .x 2-9+5x =(x +3)(x -3)+5xB .x 2-4x +4=(x -2)2C .(x -2)(x -3)=x 2-5x +6D .(x -5)(x +2)=(x +2)(x -5)2、把多项式x 2-mx -35分解因式为(x -5)(x +7),则m 的值是( B)A .2B .-2C .12D .-123、分解因式:x 2-2xy +y 2+x -y 的结果是( A )A .(x -y )(x -y +1)B .(x -y )(x -y -1)C .(x +y )(x -y +1)D .(x +y )(x -y -1)4、若9x 2-12xy +m 是一个完全平方公式,那么m 的值是( B )。
整式的乘除与因式分解一、选择题:1.下列计算正确的是( )A .105532a a a =+B .632a a a =⋅C .532)(a a =D . 8210a a a =÷2.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a3.两个三次多项式相加,结果一定是 ( )A .三次多项式B .六次多项式C .零次多项式D .不超过三次的多项式4.把多项式()()()111---+x x x 提取公因式()1-x 后,余下的部分是( )A .()1+xB .()1+-xC .xD .()2+-x5.计算24(1)(1)(1)(1)x x x x -++--的结果是 ( )A 、2B 、0C 、-2D 、-56.已知代数式12x a -1y 3与-3x -b y 2a+b 是同类项,那么a 、b 的值分别是( )A .2,1a b =-⎧⎨=-⎩B .2,1a b =⎧⎨=⎩C .2,1a b =⎧⎨=-⎩D .2,1a b =-⎧⎨=⎩7.已知2239494b b a b a n m =÷,则( )A .3,4==n mB .1,4==n mC .3,1==n mD .3,2==n m8.如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为()A .m 2+12mnB .22mn n -C .22m mn+ D .222m n +9.若2()9a b +=,2()4a b -=,则ab 的值是( )A 、54B 、-54C 、1D 、-1 二、填空题: 1.分解因式2233ax ay -= .2.分解因式ab b a 8)2(2+- =_______.3.分解因式221218x x -+= .4.若22210a b b -+-+=,则a = ,b = .5.代数式4x 2+3mx +9是完全平方式,则m =___________.6. 已知a+b=5,ab=3,求下列各式的值:(1)a 2+b 2= ;(2)-3a 2+ab-3b 2= .7. 已知522=+b a ,()()223232a b a b --+=-48,则a b +=________. 8. 已知正方形的面积是2269y xy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 .9.观察下列等式: 第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n 行的等式为____________ .三、解答题:1.计算题(1)(-3xy 2)3·(61x 3y )2 (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2)(3)222)(4)(2)x y x y x y --+( (4)221(2)(2))x x x x x-+-+-(2.因式分解(1)3123x x - (2)2222)1(2ax x a -+(3)xy y x 2122--+ (4))()3()3)((22a b b a b a b a -+++-3.解方程:41)8)(12()52)(3(=-+--+x x x x4.已知x 2+x -1=0,求x 3+2x 2+3的值5.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.四.综合拓展:1.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.2.已知2006x+2006y=1,x+3y=2006,试求2x 2+8xy+6y 2的值五.巩固练习:1.若n221623=÷,则n 等于( )A .10B .5C .3D .62.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x3.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+4.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为___5.若(a+b )2=13(a-b )2=7求a 2+b 2和ab 的值。
《整式的乘除与因式分解》测试题
班级__________ 姓名______________ 座号______ 得分 一、选择题
1.下列计算中正确的是 ( ) A .5
3
2
2a b a =+ B .4
4
a a a =÷ C .8
4
2
a a a =⋅ D .()
63
2
a a -=-
2. ()()
22a ax x a x ++-的计算结果是 ( ) A .3
2
3
2a ax x -+ B .3
3
a x - C .3
2
3
2a x a x -+ D .3
2
2
3
22a a ax x -++ 3.下面是某同学在一次测验中的计算摘录,其中正确的个数有( ) ①()
523623x x x -=-⋅; ②()
a b a b a 22423-=-÷; ③()
52
3
a a =; ④()()23
a a a -=-÷-
A .1个
B .2个
C .3个
D .4个
4.已知被除式是x 3
+2x 2
-1,商式是x ,余式是-1,则除式是( ) A 、x 2
+3x -1 B 、x 2
+2x C 、x 2
-1 D 、x 2
-3x+1 5.是完全平方式的是( )
A 、412
+
-x x B 、21x + C 1++xy x D 、122-+x x 6.把多项式)2()2(2
a m a m -+-分解因式等于( )
A 、))(2(2m m a +-
B 、))(2(2m m a --
C 、m(a-2)(m-1)
D 、m(a-2)(m+1) 7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A. –3
B. 3
C. 0
D. 1
8.若3x
=15,3y
=5,则3x -y
等于( )
A 、5
B 、3
C 、15
D 、10 二、填空题
9.=--+-
)32
)(32(n m n m ___________. 10.=--2
)2
332(y x ______________,
11当x ___________时,()0
4-x 等于__________;
12.若。
=,,则b a b b a ==+-+-01222 13.已知31=+
a a ,则221
a
a +的值是 。
14.若25)(162
++-M b a 是完全平方式M=________
15.(
)22)3(6+=++x x x , ()22)3(9-=++x x
16.若229y k x ++是完全平方式,则k=_______
17.若442
-+x x 的值为0,则51232
-+x x 的值是________。
18.若)15)(1(152-+=--x x ax x 则a =_____, 19.若6,422=+=+y x y x 则=xy ___。
三、解答题: 20.计算题 (1)()()()ab b a ab 53
3
2
2-⋅-⋅ (2)()()3
22
4a a ⋅-
(3)x x x x 1015155
3
-+--- (4)()()
()52552-++x x x
(5) 2
2
)1)2)(2(x
x x x x +-+--( (6) [(x+y )2-(x -y )2]÷2xy
(7)43222
(21a b-12a b -4a )(-3a )÷ (8) (a+2b-c)(a-2b+c)
(9)简便方法计算 1198992
++ (10) 0.7566.24
3
66.3⨯-⨯
(11) 2000
2001
2121⎪⎭
⎫ ⎝⎛+⎪
⎭
⎫ ⎝⎛- (12)2
200620082007.⨯-.
21.因式分解:
(1)25x 2
-16y 2
(2)(a-b)(x-y)-(b-a)(x+y) (3)a 2
-4ab+4b 2
(4)x 3-9x (5)16x 4-1 (6)6xy 2-9x 2y -y 3
(7) (2a -b)2+8ab (8)2
3
4
352x x x -- (9)11
44-+--n n n x x x
(10) 22)2(4)2(25x y y x --- (11)22414y xy x +-- (12)x x -5
(13) 2
232xy y x x --- (14) 2
3
3
2
108n m n m +-
(15) 322)2()2(x a a a x a --- (16) 1)(4)(42++++b a b a
(17)(a 2
+b 2
)2
-4a 2b 2
(18)x 4+2x 2-3;
22.先化简,再求值.
(1).2)3)(3()2)(3(2-=-+-+-a a a x x 其中,x=1
(2)()()()()2
12152323-----+x x x x x ,其中3
1-
=x .
23.代数式求值 (1)已知3
1
2=-y x ,2=xy ,求 43342y x y x -的值。
(2)若051294422=+-+-y y x x 求 y x 3
2
6+的值
(3)已知2=+b a ,求)(8)(22222b a b a +--的值
24.对于任意的正整数n ,代数式n(n+7)-(n+3)(n-2)的值是否总能被6整除,请说明理由。
25.已知x-y=-1,z-y=2,求xz yz xy z y x ---++2
2
2
的值。