火电厂废水零排放技术及工艺案例
- 格式:pdf
- 大小:5.60 MB
- 文档页数:42
精品文档供您编辑修改使用专业品质权威编制人:______________审核人:______________审批人:______________编制单位:____________编制时间:____________序言下载提示:该文档是本团队精心编制而成,希望大家下载或复制使用后,能够解决实际问题。
文档全文可编辑,以便您下载后可定制修改,请根据实际需要进行调整和使用,谢谢!同时,本团队为大家提供各种类型的经典资料,如办公资料、职场资料、生活资料、学习资料、课堂资料、阅读资料、知识资料、党建资料、教育资料、其他资料等等,想学习、参考、使用不同格式和写法的资料,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic materials for everyone, such as office materials, workplace materials, lifestylematerials, learning materials, classroom materials, reading materials, knowledge materials, party building materials, educational materials, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!垃圾焚烧发电厂废水“零排放”技术及工程案例分析1. 引言垃圾焚烧发电厂作为一种可持续进步的能源利用方式,解决了垃圾处理和能源需求的问题。
工艺方法——燃煤电厂废水零排放处理技术工艺简介在燃煤式发电厂废水处理过程中,通常把废水中的盐类与水进行分离,分离后得到的纯净水可重复利用。
得到的盐类大致有两种处理方法,一是分离后盐类处理达到工业盐的标准进行使用,二是与灰渣进行混合使用。
一、废水减量化处理技术(1)反渗透膜技术反渗透膜技术是20世纪60年代兴起的一门新型分离技术,是目前最为先进的分离技术之一,应用广泛。
反渗透是渗透的逆过程,它主要是在压力的推动下,借助半透膜的截留作用,迫使溶液中的溶剂与溶质分开的膜分离过程。
反渗透膜技术具有净化效率高、成本低和环境友好等优点,使得它在近几十年的时间里发展非常迅速,已经广泛应用于海水和苦咸水淡化纯水和超纯水制备、工业或生活废水处理等领域。
反渗透膜技术的主要缺点在于废水中杂质沉积造成的膜污染和膜氧化,而且膜的截留性能仍需进一步提高。
(2)正渗透膜技术正渗透膜技术属于膜分离过程。
水从高水化学势区通过选择性渗透膜向低水化学势区进行转移。
选择性渗透膜分隔的高水化学势区和低水化学势区所存在的渗透压差是正渗透过程的驱动力。
正渗透技术具有低能耗、较高的水通量和回收率、不易结垢和可处理高浓盐水等优点。
在废水处理方面,正渗透的高水化学势区为待处理的废水,低水化学势区为待定选择的汲取液。
正渗透技术的难点则在于高水通量、良好的耐酸碱性和机械性能的选择性渗透膜以及能产生较高渗透压及水通量的汲取液的选择。
华能长兴电厂引进了正渗透膜技术处理脱硫废水,18m3/h的脱硫废水可以浓缩至3-4m3/h,浓水中污染物质可全部以结晶和污泥的形式分离,废水100%回用。
运行中蒸汽、药剂、电的消耗量大大降低,处理1t废水的能耗由传统蒸发结晶法的20-40kWh降低到10kWh,运行成本降低30%。
(3)膜蒸馏技术膜蒸馏是一种新型的分离技术,是以疏水性微孔膜两侧蒸汽压差为传质推动力的膜分离过程。
其特征是:膜是微孔膜;膜不能被所处理的液体浸润;膜孔内无毛细管冷凝现象发生;只有蒸汽能通过膜孔传质;膜不能改变操作液体中各组分的汽液平衡;膜至少有一侧要与操作液体直接接触;对每一组分而言,膜操作的推动力是该组分的气相分压梯度。
火电厂废水零排放技术及工艺案例随着环境保护意识的增强和环境法规的日益严格,火电厂的环境管理也面临着更大的挑战。
废水是火电厂产生的一种主要污染物,如果不能有效处理和排放,将对周边环境造成严重影响。
因此,实现火电厂废水零排放是当前的一个重要课题。
废水零排放是指通过有效的技术手段,将产生的废水经过处理后全部达到国家废水排放标准,不对环境造成任何污染。
下面将介绍一种常用的火电厂废水零排放技术及工艺案例。
膜分离技术作为一种高效、节能的固液(气)分离技术,在废水处理中得到了广泛应用。
其基本原理是通过选择性渗透和分离作用,将废水中的污染物分离并浓缩,最终得到清洁的水和浓缩的废液。
下面以火电厂烟气脱硫废水处理为例,介绍膜分离技术在火电厂废水零排放中的应用。
火电厂烟气脱硫废水主要是脱硫过程中产生的废水,其中含有高浓度的SO42-和颗粒物等有害物质。
为了实现废水的零排放,可以采用多级反渗透(RO)工艺处理该废水。
具体工艺流程如下:1.预处理:将烟气脱硫废水首先进行过滤和沉淀,去除悬浮物和杂质,以保护后续膜组件的正常运行。
2.一级反渗透:使用一级反渗透膜组件对废水进行处理,通过膜的选择性渗透作用,去除大部分的溶解性污染物和离子。
3.二级反渗透:对一级反渗透处理后的水再次进行反渗透处理,进一步浓缩废水中的溶质和离子,提高水的纯净度。
4.浓缩液处理:根据实际情况,对二级反渗透得到的浓缩液进行处理,可以采取蒸发结晶、离子交换等技术进行处理和回收。
通过以上工艺步骤,火电厂烟气脱硫废水中的有害物质可以被有效去除和浓缩,清洁的水可达到国家的排放标准,实现零排放。
当然,废水零排放的实现需要综合考虑技术、经济和环境等因素。
不同的火电厂废水特性和废水处理目标,可能需要选择不同的技术和工艺组合来实现零排放。
因此,在实际应用中,需要对火电厂废水进行详细的实地调查和实验研究,结合具体情况来确定最佳的处理方法。
总之,火电厂废水零排放是一项具有挑战性的任务,但通过应用膜分离技术等先进工艺,结合工程实践和科学研究,可以有效地实现废水的零排放,为火电厂的可持续发展提供有力保障。
垃圾焚烧发电厂废水“零排放”技术及工程案例分析垃圾焚烧发电厂废水“零排放”技术及工程案例分析1. 引言随着全球城市化进程的加快和废弃物问题的日益突出,垃圾焚烧发电厂被广泛建设和使用。
然而,垃圾焚烧过程中产生的大量废水对环境和人类健康造成极大威胁。
因此,开发和应用垃圾焚烧发电厂废水“零排放”技术具有重要意义。
本文将探讨这些技术的原理、应用和工程案例,并分析可行性以及环境效益。
2. 原理及技术垃圾焚烧发电厂废水主要包含高浓度的重金属、酸性物质和有机物等污染物,处理这些废水需要先行分离和预处理。
基于技术原理可分为物理、化学和生物处理方法。
其中,膜分离技术被广泛应用于物理处理过程中,包括超滤、纳滤和反渗透等。
此外,中和、沉淀和氧化等化学方法,以及厌氧发酵、好氧生化等生物处理方法,也常用于去除废水中的特定污染物。
3. 技术应用垃圾焚烧发电厂废水“零排放”技术已经在很多实际工程中得到应用。
以某垃圾焚烧发电厂为例,是全球首座实现废水“零排放”的工程。
采用的废水处理技术包括生物处理和化学处理的结合。
首先,使用膜生物反应器进行生化处理,通过好氧生化过程去除有机物和氨氮。
然后,通过向后处理单元中加入化学剂实现污泥浓缩和混凝沉淀,以达到净化废水的目的。
该案例的成功运行证明了垃圾焚烧发电厂废水零排放技术的可行性。
4. 工程案例分析此外,在其他垃圾焚烧发电厂中也有一些成功的工程案例。
例如,上海某垃圾焚烧发电厂采用了集成生物反应器和超滤膜系统来处理废水。
该系统通过微生物降解有机物,并利用超滤膜的筛选作用去除悬浮物和胶体颗粒。
通过该工程案例的运行,废水的COD(化学需氧量)和BOD(生化需氧量)浓度分别降低到了5mg/L和2mg/L以下,实现了废水“零排放”。
5. 可行性和环境效益综合分析工程案例,垃圾焚烧发电厂废水“零排放”技术具有较高的可行性和环境效益。
首先,采用综合技术处理废水能够高效去除各类污染物,确保出水符合环保标准。
火力发电厂废水零排放技术方案为实现火力发电厂废水零排放的目标,对脱硫废水预处理工艺、脱硫废水浓缩处理工艺以及末端浓盐水的蒸发结屏,处理工艺进行技术对比,选取适合电厂实际情况的技术方案。
处理后的冷凝水可以作为工业水,使电厂水处理系统实现闭式循环,没有任何外排水,真正实现废水零排放。
1脱硫废水处理的意义我国属于水资源严重短缺且分布不均衡的国家,只有全面综合利用才是解决缺水和排污对环境污染的有效途径。
国家及社会对环保要求越来越高,同时也对火力发电厂提出了更高的要求,全厂废水必须做到零排放。
火力发电厂主要污水有生活污水、含油废水、含煤废水、工业废水、循环水冷却塔排污水以及脱硫废水,这些废水一般经过简单物化、生化处理后直接排放或部分回收利用。
火力发电厂废水回收基本上是将各部分废水用于脱硫用水,所以脱硫废水处理是全厂废水零排放的关键。
目前,国内对脱硫废水的处置方式主要是初步处理后排放。
一般是通过系列氧化还原反应将废水中的重金属污染物转化为胺化物,再通过絮凝反应沉淀除去重金属及悬浮物固体,最后调节 pH值使其达到DL/T997-2006《火电厂石灰石一石膏湿法脱硫废水控制指标》的要求,但处理之后依然为高氯根、高含盐且含有微量重金属的废水。
因此,电厂湿法脱硫废水回收利用是电厂实现零排放的最大难点和关键。
2脱硫废水预处理脱硫废水中含有重金属、氟离子、化学需氧量(COD)等污染物,产生的污泥需要进行专业处理。
为减少污泥处理量,并保证后续装置运行的稳定性,脱硫废水经现有脱硫废水处理系统处理后,再进入高盐废水浓缩处理系统。
脱硫废水总硬度达到100〜200mmol/L,需要进行软化处理,以避免后续浓缩处理系统以及蒸发设备结垢。
脱硫废水软化处理主要有以下2种方案。
(1)方案1:石灰一碳酸钠软化一沉淀池一过滤器处理工艺。
首先,化学加药使Ca2+,Mg2+以及硅产生沉降,然后用沉淀池做固液分离,沉淀池的上清液自流至重力滤池进行过滤除浊,出水作为高含盐废水浓缩处理系统进水。
火电厂湿法脱硫废水零排放工艺技术火电厂湿法脱硫废水零排放工艺技术是指通过一系列工艺处理,将火电厂湿法脱硫产生的废水中的污染物去除或转化为无害物质,实现废水的零排放。
这种技术在环保领域具有重要意义,既可以保护水资源,又可以减少排放对环境的影响。
火电厂湿法脱硫废水主要含有浓度较高的硫酸盐、氯离子、氟离子等物质,如果直接排放到江河湖海中,会对水体生态系统造成严重污染。
因此,通过零排放工艺技术处理火电厂湿法脱硫废水,才能实现环保要求。
火电厂湿法脱硫废水零排放工艺技术大致包括以下几个步骤:预处理、中水回用、深度脱水和污泥处理。
首先,预处理是指对废水进行初步处理,主要是去除废水中的悬浮物、颜色及重金属等杂质。
这一步骤通常采用物理化学方法,如沉淀、过滤、絮凝等过程。
然后,通过中水回用技术将预处理后的废水中的水分回收利用。
利用一系列处理工艺,如过滤、反渗透、蒸发浓缩等方式,将回收的水分重新用于火力发电过程中的冷却等环节。
这种方法能够减少水的消耗,降低用水成本。
接下来,深度脱水是指对回收利用后的水进行进一步处理,将其中的废物浓缩成为固体,以便后续处理。
通常采用的方法有压滤、离心等技术,将水分脱除,得到固体废物。
最后,对产生的固体废物进行处理。
焚烧、填埋、消纳等处理方法可以有效地处理固体废物,并确保固体废物不会对环境造成二次污染。
通过以上几个步骤的综合运用,火电厂湿法脱硫废水零排放工艺技术能够实现废水的零排放。
这一技术的应用不仅可以保护水环境,减少对生态系统的影响,同时也达到了节约水资源的效果,符合可持续发展的要求。
火电厂湿法脱硫废水零排放工艺技术是当前环保领域研究的热点之一,其重要性不言而喻。
随着环保意识的提高和环境监管的加强,火电厂湿法脱硫废水零排放工艺技术的研究和应用已成为国内外研究学者和环保专家关注的焦点,大量的研究和实践表明,火电厂湿法脱硫废水零排放工艺技术在减少污染物排放、提高资源利用率等方面具有巨大的潜力和优势。
火力发电厂脱硫废水“零排放〞处理技术随着中国水环保政策趋于严控,火力发电厂脱硫废水"零排放";理念不断升温。
脱硫废水是火电厂最难处理的末端废水,单一技术路线的废水处理方案往往难以兼顾目标与本钱。
本文分析了各种深度处理方法以及具体的应用环境,提出针对不同成分的废水需要有不同的应对处理措施,对于推动脱硫废水处理工作,实现脱硫废水零排放具有重要意义。
一、脱硫废水来源采用湿法脱硫工艺的燃煤电厂在运行中,需要维持脱硫装置〔FGD〕当中浆液循环系统的平衡度,防止离子等可能对脱硫系统和设备带来的不利影响,同时排放系统中的废水,保持脱硫系统水平衡。
从来源上看,脱硫废水主要从石膏旋流器或废水旋流器的溢流处产生。
经研究发现,在脱硫废水中,有相当比例的重金属以及各种无机盐等,如果这些含有高浓度盐分的废水不经过有效处理就直接排放到大自然环境中,会严重影响生态健康,也不利于地下水资源的保护。
二、脱硫废水进行零排放处理的必要性目前,燃煤电厂烟气脱硫装置应用最广泛的是石灰石-石膏湿法脱硫工艺。
为保证脱硫系统的平安运行和保证石膏品质而排放的脱硫废水,其中含有大量的杂质,如悬浮物、无机盐离子、重金属离子等,很多物质为国家环保标准中要求严格控制的第一类污染物,需要进行净化处理才能排放水体。
国内多数燃煤电厂净化脱硫废水采用的常规处理工艺即"三联箱";技术,采用物理化学方法,通过中和、沉降、絮凝和澄清等过程对脱硫废水进行处理,通常使用的药剂包括氢氧化钙/氢氧化钠、有机硫、铁盐、助凝剂、盐酸等。
该工艺能够去除脱硫废水中对环境危害较大的重金属等有害物质和悬浮物,但不能去除氯离子,处理出水为高含盐废水,具有强腐蚀性,无法回收利用。
排入自然水系后还会影响环境,潜在环境风险高。
随着国家对环境污染的治理日益提速,对废水的排放要求也越来越严格。
燃煤电厂在资源约束与排放限制方面的压力陡然上升,脱硫废水排放已经是燃煤电厂面临的严重的环保问题。