2019年中考数学试题分类汇编 知识点11 一元一次不等式(组)的应用
- 格式:doc
- 大小:119.00 KB
- 文档页数:9
一、选择题1. (2019湖南怀化,10,4分)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则可有一户可分得母羊但不足3只.这批种羊共( )只.A.55B.72C.83D.89【答案】C.【思路分析】设该村有x 户,根据每户发放母羊5只,则多出17只母羊得出母羊的数量为(5x +17)只,根据题意列出不等式组,进而得出该村的户数,进而得出答案.【解答过程】解:设该村有x 户,则这批种羊中母羊有(5x +17)只,根据题意可得()()517710517713x x x x +--⎧⎪⎨+--⎪⎩><, 解得10.5<x <12.∵x 为正整数,∴x =11,∴这批种羊共有11+5×11+17=83只.故选C.【知识点】一元一次不等式组的应用2. (2019江苏省无锡市,10,3)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为 ( )A. 10B. 9C. 8D. 7【答案】B【思路分析】设原计划 m 天完成,开工 n 天后有人外出,列方程与不等式,最后整体代入解不等式.【解题过程】设原计划 m 天完成,开工 n 天后有人外出,则 15am =2160,am =144,15an +12(a +2)(m -n )<2160,化简可得:an +4am +8m -8n <720,将am =144 代入得 an +8m -8n <144,an +8m -8n <am ,a (n-m )<8(n -m ),其中 n -m <0,a >8, 至少为 9 ,故选 B.【知识点】方程;不等式;整体思想3. (2019四川绵阳,9,3分)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有( )A .3种B .4种C .5种D .6种【答案】C【解析】解:设该店购进甲种商品x 件,则购进乙种商品(50﹣x )件,根据题意,得: >, 解得:20≤x <25,∵x 为整数,∴x =20、21、22、23、24,∴该店进货方案有5种,故选C .【知识点】一元一次不等式组的应用4.(2019•无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A.10 B.9 C.8 D.7【分析】根据15名工人的前期工作量+12名工人的后期工作量<2160列出不等式并解答.【解答】解:设原计划n天完成,开工x天后3人外出培训,则15an=2160,得到an=144.所以15ax+12(a+2)(n﹣x)<2160.整理,得ax+4an+8n﹣8x<720.∵an=144.∴将其代入化简,得ax+8n﹣8x<144,即ax+8n﹣8x<an,整理,得8(n﹣x)<a(n﹣x).∵n>x,∴n﹣x>0,∴a>8.∴a至少为9.故选:B.5.(2019•重庆)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A.13 B.14 C.15 D.16【分析】根据竞赛得分=10×答对的题数+(﹣5)×未答对的题数,根据本次竞赛得分要超过120分,列出不等式即可.【解答】解:设要答对x道.10x+(﹣5)×(20﹣x)>120,10x﹣100+5x>120,15x>220,解得:x>,根据x必须为整数,故x取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题.故选:C.6.(2019•西藏)把一些书分给几名同学,如果每人分3本,那么余6本;如果前面的每名同学分5本,那么最后一人就分不到3本,这些书有______本,共有______人.()A.27本,7人B.24本,6人C.21本,5人D.18本,4人【分析】设有x名同学,则就有(3x+6)本书,根据每名同学分5本,那么最后一人就分不到3本的不等关系建立不等式组求出其解即可.【解答】解:设有x名同学,则就有(3x+6)本书,由题意,得:0≤3x+6﹣5(x﹣1)<3,解得:4<x≤5.5,∵x为非负整数,∴x=5.∴书的数量为:3×5+6=21.故选:C.7.(2019•绥化)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种【分析】设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意列出不等式组进行解答便可.【解答】解:设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意得,,解得,3<x≤8,∵x为整数,也为整数,∴x=4或6或8,∴有3种购买方案.故选:C.8.(2019•台湾)阿慧在店内购买两种蛋糕当伴手礼,如图为蛋糕的价目表.已知阿慧购买10盒蛋糕,花费的金额不超过2500元.若他将蛋糕分给75位同事,每人至少能拿到一个蛋糕,则阿慧花多少元购买蛋糕?()A.2150 B.2250 C.2300 D.2450【分析】可设阿慧购买x盒桂圆蛋糕,则购买(10﹣x)盒金爽蛋糕,根据不等关系:①购买10盒蛋糕,花费的金额不超过2500元;②蛋糕的个数大于等于75个,列出不等式组求解即可.【解答】解:设阿慧购买x盒桂圆蛋糕,则购买(10﹣x)盒金爽蛋糕,依题意有,解得2≤x≤3,∵x是整数,∴x=3,350×3+200×(10﹣3)=1050+1400=2450(元).答:阿慧花2450元购买蛋糕.故选:D.9.(2019•开州区)列方程组或不等式解应用题现有A,B两种商品,买2件A商品和1件B商品用了80元,买4件A商品和3件B商品用了180元.(1)求A,B两种商品每件各是多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过260元,至少买多少件B商品?【分析】(1)直接利用买2件A商品和1件B商品用了80元,买4件A商品和3件B商品用了180元,分别得出等式求出答案;(2)利用购买A,B两种商品共10件,总费用不超过260元,得出不等式求出答案.【解答】解:(1)设A,B两种商品每件各是x元,y元,根据题意可得:,解得:,答:A,B两种商品每件各是30元,20元;(2)设买B种商品a件,由题意可得:30(10﹣a)+20a≤260,解得:a≥4,答:至少买4件B商品.10.(2019•辽阳)为了进一步丰富校园活动,学校准备购买一批足球和篮球,已知购买7个足球和5个篮球的费用相同;购买40个足球和20个篮球共需3400元.(1)求每个足球和篮球各多少元?(2)如果学校计划购买足球和篮球共80个,总费用不超过4800元,那么最多能买多少个篮球?【分析】(1)设每个足球为x元,每个篮球为y元,根据题意得出方程组,解方程组即可;(2)设买篮球m个,则买足球(80﹣m)个,根据购买足球和篮球的总费用不超过4800元建立不等式求出其解即可.【解答】解:(1)设每个足球为x元,每个篮球为y元,根据题意得:,解得:.答:每个足球为50元,每个篮球为70元;(2)设买篮球m个,则买足球(80﹣m)个,根据题意得:70m+50(80﹣m)≤4800,解得:m≤40.∵m为整数,∴m最大取40,答:最多能买40个篮球.11.(2019•宁夏)学校在“我和我的祖国”快闪拍摄活动中,为学生化妆.其中5名男生和3名女生共需化妆费190元;3名男生的化妆费用与2名女生的化妆费用相同.(1)求每位男生和女生的化妆费分别为多少元;(2)如果学校提供的化妆总费用为2000元,根据活动需要至少应有42名女生化妆,那么男生最多有多少人化妆.【分析】(1)设每位男生的化妆费是x元,每位女生的化妆费是y元.关键描述语:5名男生和3名女生共需化妆费190元;3名男生的化妆费用与2名女生的化妆费用相同.(2)设男生有a人化妆,根据女生人数=≥42列出不等式并解答.【解答】解:(1)设每位男生的化妆费是x元,每位女生的化妆费是y元,依题意得:.解得:.答:每位男生的化妆费是20元,每位女生的化妆费是30元;(2)设男生有a人化妆,依题意得:≥42.解得a≤37.即a的最大值是37.答:男生最多有37人化妆.12.(2019•福建)某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.(1)求该车间的日废水处理量m;(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围.【分析】(1)求出该车间处理35吨废水所需费用,将其与370比较后可得出m<35,根据废水处理费用=该车间处理m吨废水的费用+第三方处理超出部分废水的费用,即可得出关于m的一元一次方程,解之即可得出结论;(2)设一天产生工业废水x吨,分0<x≤20及x>20两种情况考虑,利用每天废水处理的平均费用不超过10元/吨,可得出关于x的一元一次不等式,解之即可得出结论.【解答】解:(1)∵35×8+30=310(元),310<370,∴m<35.依题意,得:30+8m+12(35﹣m)=370,解得:m=20.答:该车间的日废水处理量为20吨.(2)设一天产生工业废水x吨,当0<x≤20时,8x+30≤10x,解得:15≤x≤20;当x>20时,12(x﹣20)+8×20+30≤10x,解得:20<x≤25.综上所述,该厂一天产生的工业废水量的范围为15≤x≤25.13.(2019•赤峰)某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元.其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?【分析】(1)设小明原计划购买文具袋x个,则实际购买了(x+1)个,根据对话内容列出方程并解答;(2)设小明可购买钢笔y支,根据两种物品的购买总费用不超过400元列出不等式并解答.【解答】解:(1)设小明原计划购买文具袋x个,则实际购买了(x+1)个,依题意得:10(x+1)×0.85=10x﹣17.解得x=17.答:小明原计划购买文具袋17个.(2)设小明可购买钢笔y支,则购买签字笔(50﹣y)支,依题意得:[8y+6(50﹣y)]×80%≤400﹣10×17+17.解得y≤4.375.即y最大值=4.答:小明最多可购买钢笔4支.14.(2019•贵阳)某文具店最近有A,B两款毕业纪念册比较畅销,近两周的销售情况是:第一周A款销售数量是15本,B款销售数量是10本,销售总价是230元;第二周A款销售数量是20本,B款销售数量是10本,销售总价是280元.(1)求A,B两款毕业纪念册的销售单价;(2)若某班准备用不超过529元购买这两种款式的毕业纪念册共60本,求最多能够买多少本A款毕业纪念册.【分析】(1)直接利用第一周A款销售数量是15本,B款销售数量是10本,销售总价是230元;第二周A 款销售数量是20本,B款销售数量是10本,销售总价是280元,分别得出方程求出答案;(2)利用不超过529元购买这两种款式的毕业纪念册共60本,得出不等式求出答案.【解答】解:(1)设A款毕业纪念册的销售为x元,B款毕业纪念册的销售为y元,根据题意可得:,解得:,答:A款毕业纪念册的销售为10元,B款毕业纪念册的销售为8元;(2)设能够买a本A款毕业纪念册,则购买B款毕业纪念册(60﹣a)本,根据题意可得:10a+8(60﹣a)≤529,解得:a≤24.5,则最多能够买24本A款毕业纪念册.15.(2019•桂林)为响应国家“足球进校园”的号召,某校购买了50个A类足球和25个B类足球共花费7500元,已知购买一个B类足球比购买一个A类足球多花30元.(1)求购买一个A类足球和一个B类足球各需多少元?(2)通过全校师生的共同努力,今年该校被评为“足球特色学校”,学校计划用不超过4800元的经费再次购买A类足球和B类足球共50个,若单价不变,则本次至少可以购买多少个A类足球?【分析】(1)设购买一个A类足球需要x元,购买一个B类足球需要y元,根据“购买50个A类足球和25个B类足球共花费7500元,购买一个B类足球比购买一个A类足球多花30元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m个A类足球,则购买(50﹣m)个B类足球,根据总价=单价×数量结合总费用不超过4800元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设购买一个A类足球需要x元,购买一个B类足球需要y元,依题意,得:,解得:.答:购买一个A类足球需要90元,购买一个B类足球需要120元.(2)设购买m个A类足球,则购买(50﹣m)个B类足球,依题意,得:90m+120(50﹣m)≤4800,解得:m≥40.答:本次至少可以购买40个A类足球.16.(2019•哈尔滨)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?【分析】(1)设每副围棋x元,每副中国象棋y元,根据题意得:,求解即可;(2)设购买围棋z副,则购买象棋(40﹣z)副,根据题意得:16z+10(40﹣z)≤550,即可求解;【解答】解:(1)设每副围棋x元,每副中国象棋y元,根据题意得:,∴,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z副,则购买象棋(40﹣z)副,根据题意得:16z+10(40﹣z)≤550,∴z≤25,∴最多可以购买25副围棋;。
中考总复习:一元一次不等式(组)—知识讲解责编:常春芳【考纲要求】1.会解一元一次不等式(组),理解一元一次不等式(组)的解集的含义,进一步体会数形结合的思想;2.会用不等式(组)进行解题,能利用不等式(组)解决生产、生活中的实际问题.【知识网络】【考点梳理】考点一、不等式的相关概念 1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.概念基本性质 不等式的定义不等式的解法一元一次不等式的解法一元一次不等式组的解法不等式实际应用不等式的解集不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点:解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左. 3.解不等式求不等式的解集的过程或证明不等式无解的过程,叫做解不等式. 要点诠释:不等式的解与一元一次方程的解是有区别的:不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.考点二、不等式的性质 性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,即如a >b ,那么a ±c >b ±c . 性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,即如果a >b ,c >0,那么ac >bc (或a c >b c). 性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,即如果a >b ,c <0,那么ac <bc (或a c <b c). 要点诠释:(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号.(2)任意两个实数a 、b 的大小关系:①a-b >O ⇔a >b ;②a-b=O ⇔a=b ;③a-b <O ⇔a <b . 不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c .考点三、一元一次不等式(组) 1.一元一次不等式的概念只含有一个未知数,且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式.其标准形式:ax+b >0(a ≠0)或ax+b ≥0(a ≠0) ,ax+b <0(a ≠0)或ax+b ≤0(a ≠0). 2.一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似,•但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向.解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1. 要点诠释:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方. 3.一元一次不等式组及其解集含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组. 一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定. 要点诠释:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多. 4.一元一次不等式组的解法由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示. 要点诠释:解不等式组时,一般先分别求出不等式组中各个不等式的解集并表示在数轴上,再求出它们的公不等式组 (其中a >b )图示解集口诀x ax b >⎧⎨>⎩ bax a >(同大取大) x ax b <⎧⎨<⎩ b ax b <(同小取小) x ax b <⎧⎨>⎩ bab x a <<(大小取中间)x ax b >⎧⎨<⎩ba无解(空集)(大大、小小 找不到)共部分,就得到不等式组的解集. 5.一元一次不等式(组)的应用列一元一次不等式(组)解实际应用问题,可类比列一元一次方程解应用问题的方法和技巧,不同的是,列不等式(组)解应用题,寻求的是不等关系,因此,根据问题情境,抓住应用问题中“不等”关系的关键词语,或从题意中体会、感悟出不等关系显得十分重要. 要点诠释:列一元一次不等式组解决实际问题是中考考查的一个重要内容,在列不等式解决实际问题时,应掌握以下三个步骤:(1)•找出实际问题中的所有不等关系或相等关系(有时要通过不等式与方程综合来解决),设出未知数,列出不等式组(•或不等式与方程的混合组);(2)解不等式组;(3)从不等式组(或不等式与方程的混合组)•的解集中求出符合题意的答案. 6.一元一次不等式、一元一次方程和一次函数的关系一次函数(0)y kx b k =+≠,当函数值0y =时,一次函数转化为一元一次方程;当函数值0y >或0y <时,一次函数转化为一元一次不等式,利用函数图象可以确定x 的取值范围.【典型例题】类型一、解不等式(组)1.(2014春•巴中期中)解不等式(组),并把它们的解集在数轴上表示出来 (1)2x ﹣1<3x+2; (2).【思路点拨】(1)先移项,再合并同类项、系数化为1即可; (2)先求两个不等式的解集,再求公共部分即可. 【答案与解析】解:(1)移项得,2x ﹣3x <2+1, 合并同类项得,﹣x <3,系数化为1得,x >﹣3在数轴上表示出来:.(2),解①得,x <1, 解②得,x ≥﹣4.5在数轴上表示出来:不等式组的解集为﹣4.5≤x <1.【总结升华】解不等式(组)是中考中易考查的考点,必须熟练掌握. 举一反三: 【变式】131321≤---x x 解不等式:. 【答案】解:去分母,得 6)13(2)13≤---x x ( (不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!) 移 项,得 23663-+≤-x x (移项要变号) 合并同类项,得 73≤-x (计算要正确) 系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了)2.解不等式组352,1212x x x x -<⎧⎪⎨-≤+⎪⎩并将其解集在数轴上表示出来.【思路点拨】分别解出两个不等式的解集,再求出公共的解集即可. 【答案与解析】解:由(1)式得x <5, 由(2)式得x ≥-1, ∴ -1≤x <5数轴上表示如图:【总结升华】注意解不等式组的解题步骤. 举一反三:【变式1】解不等式组312(1)2(1)4x x x x+≥-⎧⎨+>⎩,并把它的解集在数轴上表示出来.【答案】不等式组的解集为-3≤x <1,数轴上表示如图:【高清课程名称:不等式(组)及应用 高清ID 号: 370028 关联的位置名称(播放点名称):经典例题2】【变式2】解不等式组24x ≤⎧⎪⎨+⎪⎩(x-1)+33x x-2>3,并写出不等式组的整数解;【答案】不等式组的解集为1≤x <5,故其整数解为:1,2,3,4. 类型二、一元一次不等式(组)的特解问题3.(2014•青羊区校级自主招生)若不等式组的正整数解有3个,那么a 必须满足( )A .5<a <6B .5≤a <6C .5<a ≤6D .5≤a ≤6【思路点拨】首先解得不等式组的解集,然后根据不等式组只有三个正整数解即可确定a 的范围. 【答案】C ;【解析】解不等式5≤2x ﹣1≤11得:3≤x ≤6.若不等式组有3个正整数解则不等式组的解集是:3≤x <a . 则正整数解是:3,4,5. ∴5<a ≤6.故选C .【总结升华】本题主要考查学生是否会利用逆向思维法解决含有待定字母的一元一次不等式组的特解问题.举一反三:【高清课程名称:不等式(组)及应用高清ID 号:370028 关联的位置名称(播放点名称):经典例题3-4】 【变式1】关于x 的方程,如果3(x +4)-4=2a +1的解大于3)43(414-=+x a x a 的解,求a 的取值范围. 【答案】718a >. 【变式2】若不等式-3x+n >0的解集是x <2,则不等式-3x+n <0的解集是_______. 【答案】∵-3x+n >0,∴x <3n ,∴3n =2 即n=6代入-3x+n <0得:-3x+6<0,∴x>2.类型三、一元一次不等式(组)的应用4.仔细观察下图,认真阅读对话:根据对话内容,试求出一盒饼干和一袋牛奶的标价各是多少元.【思路点拨】根据对话找到下列关系:①饼干的标价+牛奶的标价>10元;②饼干的标价<10;③饼干标价的90%+牛奶的标价=10元-0.8元,然后设未知数列不等式组.【答案与解析】解:设饼干的标价为每盒x元,牛奶的标价为每袋y元.则10(1) 0.9100.8(2)10(3) x yx yx+>⎧⎪+=-⎨⎪<⎩由(2)得 y=9.2-0.9x (4)把(4)代入(1)得:9.2-0.9x+x>10,解得x>8.由(3)综合得 8<x<10.又∵x是整数,∴x=9.把x=9代入(4)得:y=9.2-0.9×9=1.1(元)答:一盒饼干标价9元,一袋牛奶标价1.1元.【总结升华】不等式、方程与实际生活相联系的问题,主要是审好题,计算准确. 举一反三:【变式】某牛奶乳业有限公司经过市场调研,决定从明年起对甲、乙两种产品实行“限产压库”,要求这两种产品全年共新增产量20件,这20件的总产值p(万元)满足:110<p<120.已知有关数据如表所示,•那么该公司明年应怎样安排新增产品的产量?产品每件产品的产值甲 4.5万元乙7.5万元【答案】解:设该公司安排生产新增甲产品x件,那么生产新增乙产品(20-x)件,由题意得:110<4.5x+7.5(20-x)<120∴10<x<403,依题意,得x=11,12,13当x=11时,20-11=9;当x=12时,20-12=8;当x=13时,20-13=7.所以该公司明年可安排生产新增甲产品11件,乙产品9件;或生产新增甲产品12件,乙产品8件;或生产新增甲产品13件,乙产品7件.类型四、一元一次不等式(组)与方程的综合应用5.某钱币收藏爱好者,想把3.50元纸币兑换成的1分,2•分,5分的硬币;他要求硬币总数为150枚,2分硬币的枚数不少于20枚且是4的倍数,5•分的硬币要多于2分的硬币;请你根据此要求,设计所有的兑换方案.【思路点拨】题目中包含的相等关系有:①所有硬币的总价值是3.50元;②共有硬币150枚.•不等关系有:①2分的硬币的枚数不少于20枚;②5分的硬币要多于2分的硬币.且硬币的枚数为整数,2分的硬币的数量是4的倍数.【答案与解析】解:(法一)设兑换成1分,2分,5分硬币分别为x枚,y枚,z枚,依据题意,得150,(1)25350,(2),(3)20,(4)x y zx y zz yy++=⎧⎪++=⎪⎨>⎪⎪≥⎩由(1),(2)得将y代入(3),(4)得2004,200420,z zz>-⎧⎨-≥⎩解得40<z ≤45,∵z 为正整数,∴z 只能取41,42,43,44,45,由此得出x ,y 的对应值, 共有5种兑换方案.73,76,79,82,85,36,32,28,24,20,41.42.43,44.45.x x x x x y y y y y z z z z z =====⎧⎧⎧⎧⎧⎪⎪⎪⎪⎪=====⎨⎨⎨⎨⎨⎪⎪⎪⎪⎪=====⎩⎩⎩⎩⎩(法二):设兑换成的1分,2分,5分硬币分别为x 枚,y 枚,z 枚,依据题意可得150,(1)25350,(2)(3)x y z x y z z y ++=⎧⎪++=⎨⎪>⎩∵y 是4的倍数,可设y=4k (k 为自然数), ∵y ≥20,∴4k ≥20,即k ≥5. 将y=4k 代入(1),(2)可解得z=50-k , ∵z >y ,∴50-k >4k ,即k <10.∴5≤k <10,又k 为自然数,∴k 取5,6,7,8,9.由此得出x ,y 的对应值,共有5种兑换方案:73,76,79,82,85,36,32,28,24,20,41.42.43,44.45.x x x x x y y y y y z z z z z =====⎧⎧⎧⎧⎧⎪⎪⎪⎪⎪=====⎨⎨⎨⎨⎨⎪⎪⎪⎪⎪=====⎩⎩⎩⎩⎩【总结升华】这是一道方案设计题,•是涉及到方程和不等式的综合应用题.6.某校组织学生到外地进行综合实践活动,共有680名学生参加,并携带300件行李.学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.⑴ 如何安排甲、乙两种汽车可一次性地将学生和行李全部运走?有哪几种方案?⑵ 如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案【思路点拨】根据题意列出不等式组,解出未知数的取值范围,分类讨论各种方案. 【答案与解析】解:(1)设安排x 辆甲型汽车,安排(20-x )辆乙型汽车.由题意得:⎩⎨⎧≥-+≥-+300)20(2010680)20(3040x x x x 解得108≤≤x ,∴整数x 可取8、9、10. ∴共有三种方案:①租用甲型汽车8辆、乙型汽车12辆; ②租用甲型汽车9辆、乙型汽车11辆; ③租用甲型汽车10辆、乙型汽车10辆.(2)设租车总费用为w 元,则)20(18002000x x w -+=36000200+=x w 随x 的增大而增大,∴当8=x 时,37600360008200=+⨯=最小w ,∴最省钱的租车方案是:租用甲型汽车8辆、乙型汽车12辆. 【总结升华】考查不等式与方程综合应用问题,体现了分类讨论的思想.。
专题11 用一元一次不等式(组)解决生活中的实际问题【专题综述】一元一次不等式组是在学习了一元一次不等式组的概念和解法之后,进一步探索现实世界数量关系的重要内容,是继学习了一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后续学习二元一次方程等内容的重要基础,有着承前启后的作用。
用一元一次不等式(组)解决生活中的实际问题,其主要步骤为:1、审题,设未知数;2、抓关键词,找不等关系;3、构建不等式(组)4 、解不等式(组);5、根据题意,写出合理答案。
【方法解读】一、打折问题:例1,一双运动鞋的进价是200元,标价400元,商场要获得不低于120元的利润,问:最低可以打几折?【举一反三】(湖南省娄底市)某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打().A、6折B、7折C、8折D、9折二、赛球问题:例2,甲、乙两队进行足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了12场,甲队保持不败,总得分超过26分,问:甲队至少胜了多少场?【举一反三】(江西省崇仁一中)在崇仁一中中学生篮球赛中,小方共打了10场球.他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y比前5场比赛的平均得分x要高.如果他所参加的10场比赛的平均得分超过18分(1)用含x的代数式表示y;(2)小方在前5场比赛中,总分可达到的最大值是多少?(3)小方在第10场比赛中,得分可达到的最小值是多少?三、购买问题:例3,某种肥皂零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法。
第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售。
在购买的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买几块肥皂?【举一反三】某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品一律按商品价格的9.5折优惠.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,她购买商品的价格为多少元时,两个方案所付金额相同?(3)购买商品的价格______元时,采用方案一更合算.四、分苹果问题:例4,把44个苹果分给若干名学生,若每人分苹果7个,则最后1名学生分得的苹果不足3个,求学生人数。
2019年中考数学知识点:一元一次不等式
新一轮复习备考周期正式开始,为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《数学知识点:一元一次不等式与一元一次方程、一次函数的关系》,仅供参考!
一元一次不等式与一元一次方程、一次函数的关系:
1.一元一次不等式ax+b>0(a=?0)是一次函数y=ax+b(a=?0)的函数值>0的情形;
一元一次不等式ax+b2.直线y=ax+b上使函数值y>0(x轴上方的图像)的x的取值范围是ax+b>0的解集;
使函数值y3.一元一次方程ax+b=0(a=?0)是一次函数y=ax+b(a=?0)的函数值=0的情形;
反之,使函数值y=0的x的取值就是方程ax+b=0(a=?0)的解。
中考数学试题分类分析汇编(12专题) 专题3:方程(组)和不定式(组)一.选择题1. (2001年福建福州4分)随着计算机技术的迅猛发展,电脑价格不断降低。
某品牌电脑按原售价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原售价为【 】 A. 4(n m )5+元B. 5(n m )4+元 C. (5m n)+元D. (5n m)+元【答案】B 。
【考点】一元一次方程的应用。
【分析】设电脑的原售价为x 元,则()()x m 120%n --=,∴x=5n m 4+。
故选B 。
2. (2003年福建福州4分)不等式组2x 4x 30≥⎧⎨+>⎩的解集是【 】(A ) x>-3 (B )x≥2 (C )-3<x≤2 (D ) x<-3 【答案】B 。
【考点】解一元一次不等式组。
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
因此,2x 4x 2x 2x 30x 2≥≥⎧⎧⇒⇒≥⎨⎨+>>-⎩⎩。
故选B 。
3.(2003年福建福州4分)已知α、β满足α+β=5,且αβ=6,则以α、β为两根的一元二次方程是【 】(A )2x 5x 60++= (B )2x 5x 60-+= (C )2x 5x 60--= (D )2x 5x 60+-=【答案】B 。
【考点】一元二次方程根与系数的关系。
【分析】∵所求一元二次方程的两根是α、β,且α、β满足α+β=5、αβ=6,∴这个方程的系数应满足两根之和是b 5a-=,两根之积是c 6a =。
当二次项系数a=1时,一次项系数b=-5,常数项c=6。
故选B 。
4. (2005年福建福州大纲卷3分)如图,射线OC 的端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为【 】A 、x+y=180x=y+10⎧⎨⎩错误!未找到引用源。
2019中考数学知识点:一元一次不等式各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢1、不等式用不等号表示不等关系的式子,叫做不等式。
a>b、a<b、a≥b、a≤b、a≠b。
2、不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
求不等式的解集的过程,叫做解不等式。
3、用数轴表示不等式的方法4、不等式基本性质⑴、不等式两边都加上同一个数或同一个整式,不等号的方向不变。
⑵、不等式两边都乘以同一个正数,不等号的方向不变。
⑶、不等式两边都乘以同一个负数,不等号的方向改变。
不等式的性质:⑴a>b←→a+c>b+c⑵a>b←→ac>bc⑶a>b←→acb,b>c→a>c⑸a>b,c>d→a+c>b+d.5、一元一次不等式⑴、一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
ax>b、ax<b、ax≥b、ax≤b、ax≠b。
⑵、一元一次不等式的解法解一元一次不等式的一般步骤:去分母去括号移项合并同类项将x 项的系数化为1即通过去分母、去括号、移项合并同类项,把不等式化为的形式,再把系数化为1得出不等式的解集.说明:在去分母和化系数为l时,需特别注意不等式两边同时乘以一个负数,要将不等号改变方向,其解集情况如下:①当时,.②当时,.③当时,若,不等式无解.④当时,若,不等式的解为一切实数.6、一元一次不等式组⑴、一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
求不等式组的解集的过程,叫做解不等式组。
当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
一、选择题1. (2019湖南怀化,10,4分)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则可有一户可分得母羊但不足3只.这批种羊共( )只.A.55B.72C.83D.89【答案】C.【思路分析】设该村有x 户,根据每户发放母羊5只,则多出17只母羊得出母羊的数量为(5x +17)只,根据题意列出不等式组,进而得出该村的户数,进而得出答案.【解答过程】解:设该村有x 户,则这批种羊中母羊有(5x +17)只,根据题意可得()()517710517713x x x x +--⎧⎪⎨+--⎪⎩><, 解得10.5<x <12.∵x 为正整数,∴x =11,∴这批种羊共有11+5×11+17=83只.故选C.【知识点】一元一次不等式组的应用2. (2019江苏省无锡市,10,3)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为 ( )A. 10B. 9C. 8D. 7【答案】B【思路分析】设原计划 m 天完成,开工 n 天后有人外出,列方程与不等式,最后整体代入解不等式.【解题过程】设原计划 m 天完成,开工 n 天后有人外出,则 15am =2160,am =144,15an +12(a +2)(m -n )<2160,化简可得:an +4am +8m -8n <720,将am =144 代入得 an +8m -8n <144,an +8m -8n <am ,a (n-m )<8(n -m ),其中 n -m <0,a >8, 至少为 9 ,故选 B.【知识点】方程;不等式;整体思想3. (2019四川绵阳,9,3分)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有( )A .3种B .4种C .5种D .6种【答案】C【解析】解:设该店购进甲种商品x 件,则购进乙种商品(50﹣x )件,根据题意,得:{60x +100(50−x)≤420010x +20(50−x)>750, 解得:20≤x <25,∵x 为整数,∴x =20、21、22、23、24,∴该店进货方案有5种,【知识点】一元一次不等式组的应用4. (2019台湾省,12,3分)阿慧在店内购买两种蛋糕当伴手礼,如图为蛋糕的价目表.已知阿慧购买10盒蛋糕,花费的金额不超过2500元.若他将蛋糕分给75位同事,每人至少能拿到一个蛋糕,则阿慧花多少元购买蛋糕?( )A .2150B .2250C .2300D .2450【答案】D【解析】解:设阿慧购买x 盒桂圆蛋糕,则购买(10)x -盒金爽蛋糕,依题意有350200(10)2500126(10)75x x x x +-⎧⎨+-⎩„…, 解得112323x 剟, x Q 是整数,3x ∴=,3503200(103)⨯+⨯-10501400=+2450=(元).答:阿慧花2450元购买蛋糕.故选:D .【知识点】一元一次不等式组的应用5.6.7.8.9.10.11.12.13.14.15.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.二、填空题1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.27.28.29.30.31.32.33.34.35.36.37.38.39.三、解答题1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.33.34.35.36.37.38.39.。
一元一次不等式与一元一次不等式组一、不等式考点一、不等式的概念题型一 会判断不等式下列代数式属于不等式的有 .① —x ≥5 ② 2x-y <0 ③ ④ -3<0 ⑤ x=3 ⑥ ⑦ x ≠5⑧02x 3-x 2>+ ⑨ 题型二 会列不等式根据下列要求列出不等式①.a 是非负数可表示为 。
②。
m 的5倍不大于3可表示为 .③.x 与17的和比它的2倍小可表示为 .④.x 和y 的差是正数可表示为 。
⑤.x 的 与12的差最少是6可表示为__________________.考点二、不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向不变,则这个数是正数。
基本训练:若a >b ,ac >bc,则c 0。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变.逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向改变,则这个数是负数.基本训练:若a >b ,ac <bc ,则c 0. 4、如果不等式两边同乘以0,那么不等号变成等号,不等式变成等式。
练习:1、指出下列各题中不等式的变形依据352≥+x533222y x y x ++0y x ≥+①.由3a>2得a> 理由: 。
②。
由a+7>0得a 〉—7 理由: 。
③.由—5a<1得a 〉 理由: .④.由4a>3a+1得a>1 理由: 。
2、若x >y,则下列式子错误的是( )A.x-3>y —3B. > C 。
x+3>y+3 D.-3x >—3y 3、判断正误①。
若a >b,b <c 则a >c 。
( ) ②.若a >b ,则ac >bc 。
( )③。
若 ,则a >b 。
( )④. 若a >b ,则 。
( )⑤。
若a >b ,则 ( )⑥。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】一、选择题6.(2019·德州)不等式组523(1)131722x xx x+>-⎧⎪⎨--⎪⎩≤的所有非负整数解的和是()A.10 B.7 C.6 D.0【答案】A【解析】本题考查了一元一次不等式不等式组的非负整数解,先求出不等式组的解集,再确定非负整数解,最后求和.解答过程如下:解不等式①,得x>-52;解不等式②,得x≤4;∴不等式组的解集为-52<x≤4.∴不等式组的非负整数解为0,1,2,3,4,这些非负整数解的和为10.故选A.7.(2019·广元)不等式组3117212x xxx的非负整数解的个数是( )A.3B.4C.5D.6 【答案】B【解析】3117212x xxx解①得,x>-2,解②得,x≤3,∴原不等式组的解集为-2<x≤3,故符合条件的非负整数解有0,1,2,3,一共有四个,故选B.9.(2019·滨州)已知点P(a-3,2-a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.【答案】C【解析】∵点P(a-3,2-a)关于原点对称的点在第四象限,∴点P(a-3,2-a)在第二象限,∴320 aa-<0,->解得32aa<,<,∴不等式组的解集是a<0,在数轴上表示如选项C所示.故选C.9.(2019·威海)解不等式组34221xx x-≥+-⎧⎪⎨⎪⎩①②时,不等式①②的解集在同一条数轴上表示正确的是()【答案】D 【解析】分别求出各不等式的解集,得x <5.将两个不等式的解集表示在数轴上如下:6.(2019·山西)不等式组13224x x ->⎧⎨-<⎩的解集是( )A.x>4B.x>-1C.-1<x<4D.x<-1【答案】A【解析】解不等式①得x>4,解不等式②得x>-1,∴原不等式组的解集是x>4,故选A.9.(2019·衡阳)不等式组23,42x x x >⎧⎨+>⎩的整数解是( )A. 0B. -1C. -2D.1 【答案】B . 【解析】23,42x x x >⎧⎨+>⎩①②解不等式①,得x <0. 解不等式②,得x >-2.∴不等式组的解集是-2<x <0.∴不等式组23,42x x x >⎧⎨+>⎩的整数解是x =-1,故选B .6.(2019·常德)小明网购了一本《好玩的数学》 ,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说“至多12元.”丙说“至多10元.”小明说:“你们三个人都说错了.”则这本书的价格x (元)所在的范围为( )A .10<x <12B .12<x <15C .10<x <15D .11<x <14 【答案】B【解析】根据甲 “至少15元.”错误,可知x <15,乙 “至多12元.” 错误,可知x >12,丙 “至多10元.”错误,可知x >10,所以x 的取值范围为12<x <15,故选项B 正确.A.B.C.D.7.(2019·陇南)不等式2x +9≥3(x +2)的解集是( )A .x ≤3B .x ≤﹣3C .x ≥3D .x ≥﹣3 【答案】A【解析】∵2x+9≥3(x+2),∴2x+9≥3x+6,∴3≥x ,∴x ≤3,故选:A . 9.(2019·安徽) 已知三个实数a ,b ,c 满足a ﹣2b+c=0,a+2b+c ﹤0,则 A. b ﹥0,b 2﹣ac≤0 B. b ﹤0,b 2﹣ac≤0 C. b ﹥0,b 2﹣ac ≥0 D. b ﹤0,b 2﹣ac ≥0 【答案】D【解析】由a -2b +c =0,得:a +c =2b ,∴a +2b +c =2b +2b =4b <0,故b <0;b 2-ac =(2ca +)2-ac =44222ac c ac a -++=(2c a -)2≥0. 即b <0,b 2﹣ac ≥0,故选D .1. (2019·聊城) 若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为 ( )A.m ≤2B.m<2C.m ≥2D.m>2 【答案】A【解析】解不等式①,得x>8,,由不等式②,知x<4m,当4m ≤8时,原不等式无解,∴m ≤2,故选A.2. (2019·泰安) 不等式组542(1)2532132x x x x +≥-⎧⎪+-⎨->⎪⎩的解集是 ( )A.x ≤2B.x ≥-2C.-2<x ≤2D.-2≤x<2 【答案】D【解析】解不等式①,得x ≥-2,解不等式①,得x<2,∴原不等式的解集为:-2≤x<2,故选D.3. (2019·乐山) 不等式组⎪⎩⎪⎨⎧≥--+<-04152362x x x x 的解集在数轴上表示正确的是( )A .B .C .D .【答案】B【解析】本题考查了一元一次不等式组的解法与解集的表示,由第1个不等式解得x>-6,由第2个不等式解得x ≤13,故选B4. (2019·凉山) 不等式1–x ≥x -1的解集是( ) A.x ≥1 B.x ≥-1 C .x ≤1 D .x ≤-1【答案】C5. (2019·宁波)不等式32xx ->的解为( ) A.x<1 B.x<-1C.x>1D.x>-1 【答案】A【解析】不等式两边同乘2,得3-x>2x,移项,合并,得3>3x,∴x<1,故选A.6.(2019·重庆B 卷)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分超过120分,他至少要答对的题的个数为( )A.13B.14C.15D.16 【答案】C【解析】设小华答对的题的个数为x 题,则答错或不答的习题为(20-x )题,可列不等式10x -5(20-5x )≥120,解得x≥3214,即他至少要答对的题的个数为15题. 故选C.7. (2019·重庆B 卷)若数a 使关于x 的不等式组()()⎪⎩⎪⎨⎧->≤x 15a 2-x 67-x 412-3x有且仅有三个整数解,且使关于y 的分式方程31121-=----yay y 的解为正数,则所有满足条件的整数a 的值之和是 A .-3 B .-2 C .-1 D .1 【答案】A【解析】根据解一元一次不等式组的基本步骤解()()⎪⎩⎪⎨⎧->≤②15a 2-x 6①7-x 412-3xx 可得. 解不等式①,得:x ≤3, 解不等式②,得:x >11a25+,因为有且仅有3个整数解,所以三个整数解分别为:3,2,1.所以11a 25+的大致范围为111a250<+<; 特别的,当11a 25+=0的时候,不等式组的整数解仍是3,2,1,所以11a25+=0也成立,所以111a250<+≤.,化简为35.2<≤-a , 求分式方程321-=--ay 的解,得 a y -=2.根据分式方程的解为正数和分式方程的分母不能为零,得⎩⎨⎧≠>10y y ,即:⎩⎨⎧≠->-1202a a .解得:a <2且a ≠1.∴25.2<≤-a 且a ≠1,所以满足条件的整数a 为-2,-1,0. 它们的和为:-2-1+0=-3.故选A .二、填空题12.(2019·温州)不等式组23142x x +>⎧⎪⎨-≤⎪⎩的解为 .【答案】1<x ≤9【解析】先确定不等式组中每个不等式的解集,然后利用口诀寻找两个不等式解集的公共部分. 解不等式x+2>3,得x >1;解不等式12x -≤4,得x ≤9.根据“大小小大中间找”确定不等式组的解集是1<x ≤9,故填:1<x ≤9.12.(2019·绍兴 )不等式423≥-x 的解为 . 【答案】x≥2【解析】移项得3x≥6,解得x≥2.16.(2019·烟台)如图,直线2y x =+与直线y ax c =+相交于点(,3)P m ,则关于x 的不等式2x +≤ax c+的解为 .【答案】1x ≤-【解析】因为直线2y x =+与直线y ax c =+相交于点(,3)P m ,所以32m =+,解得1m =,由图象可以直接得出关于x 的不等式2x +≤ax c +的解为1x ≤-. 10.(2019·泰州)不等式组13x x <⎧⎨<-⎩的解集为______.【答案】x<-3【解析】根据"同大取大,同小取小"的原则,可以得到,原不等式的解集为x<-3.13.(2019·益阳)不等式组⎩⎨⎧--301><x x 的解集为 .【答案】x <-3 【解析⎩⎨⎧--②>①<301x x ,解①得x <1;解②得x <-3.∴原不等式组的解集为x <-3. 10.(2019·常德)不等式3x +1>2(x +4)的解为 . 【答案】x >7【解析】去括号3x +1>2x +8,移项得3x -2x >8-1,整理得x >7. 15.(2019·长沙)不等式组10360x x +≥⎧⎨-<⎩的解集是 .【答案】-1≤x <2【解析】先确定不等式组中每个不等式的解集,然后利用口诀寻找两个不等式解集的公共部分. 解不等式x+1≥0,得x ≥-1;解不等式3x-6<0,得x <2.根据“大小小大中间找”确定不等式组的解集是-1≤x <2,故填:-1≤x <2. 14.(2019·株洲)若a 为有理数,且2﹣a 的值大于1,则a 的取值范围为 . 【答案】a<1【解析】根据不等式的性质,将2-a>1,变形为-a>-1,不等式两边都除以-1,得a<1。
知识点11 一元一次不等式(组)的应用1. (2018四川内江,21,10)某商场计划购进A、B两种型号的手机,已知每部A型号手机的进价比每部B型号手机的进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是2100元.(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?【思路分析】(1)先找到题中的等量关系:50000元共购进A型号手机10部,B型号手机20部,以及A、B两种型号的手机的进价关系,设未知数列方程即可;(2)①由已知提供的信息:用不超过7.5万元采购A、B两种型号的手机共40部;且A型号手机的数量不少于B型号手机数量的2倍,可以列出两个不等式,解这个不等式组(解为正整数)就可以确定进货方式.②设总利润为W,A种型号的手机m部,由利润等于售价减去进价再乘以部数,就可以得到一个关于W和m的一次函数,根据一次函数的性质可以得出怎样进货利润最大.【解题过程】解:(1)设B种型号的手机每部进价为x元,则A种型号的手机每部进价为(x+500)元,根据题意可得10(x+500)+20 x=50000,解得:x=1500,x+500=2000.答:A种型号的手机每部进价为2000元,B种型号的手机每部进价为1500元.(2)①设商场购进A种型号的手机m部,B种型号的手机为(40-m)部,由题意得:20001500(40)750002(40)m m m m +-⎧⎨-⎩≤≥,解得803≤m ≤30,∵m 为整数,∴m =27,28,29,30,所以共有四种进货方案, 分别是:A 种27部,B 种13部;A 种28部,B 种12部;A 种29部,B 种11部;A 种30部,B 种10部.②设获得的利润为W ,则W =(2500-2000)m +(2100-1500)(40-m )=-100m +24000,∵-100<0,∴W随m 的增大而减小,所以当m =27时,W 最大,即选择购进A 种27部,B 种13部获得的利润最大.【知识点】一元一次方程;一元一次不等式组;一次函数的性质;1. (2018四川绵阳,21,11分) 有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨:(2)目前有33吨货物需要运输,货运公司拟安排大小货车共10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货物公司应如何安排车辆最节省费用?【思路分析】(1)设1辆大货车与1辆小货车一次分别可以运x 吨、y 吨.根据条件建立方程组求出其解即可;(2)首先设货物公司安排大货车m 辆,则小货车需要安排(10-m)辆,根据(1)的结论可得出不等式 4m+1.5(10-m)≥33,进而得出所有的情况,然后计算出每种情况的花费,进而得出答案.【解题过程】解:(1)设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨.根据题意可得: ⎩⎨⎧=+=+17621843y x y x , 解得:⎩⎨⎧==5.14y x .答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货1.5吨.(2)设货物公司安排大货车m 辆,则小货车需要安排(10-m )辆,根据题意可得4m +1.5(10-m )≥33,解得m ≥7.2.∵m 为正整数,∴m 可以取8,9,10,当m =8时,该货物公司需花费130×8+2×100=1240元;当m =9时,该货物公司需花费130×9+100=1270元;当m =10时,该货物公司需花费130×10=1300元.答:当该货物公司安排大货车8辆,小货车2辆时花费最少.【知识点】二元一次方程组的应用,一元一次不等式的应用2. (2018四川内江,21,10) 某商场计划购进A 、B 两种型号的手机,已知每部A 型号手机的进价比每部B型号手机的进价多500元,每部A 型号手机的售价是2500元,每部B 型号手机的售价是2100元.(1)若商场用50000元共购进A 型号手机10部,B 型号手机20部,求A 、B 两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A 、B 两种型号的手机共40部,且A 型号手机的数量不少于B 型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?【思路分析】(1)先找到题中的等量关系:50000元共购进A 型号手机10部,B 型号手机20部,以及A 、B 两种型号的手机的进价关系,设未知数列方程即可;(2)①由已知提供的信息:用不超过7.5万元采购A 、B 两种型号的手机共40部;且A 型号手机的数量不少于B 型号手机数量的2倍,可以列出两个不等式,解这个不等式组(解为正整数)就可以确定进货方式.②设总利润为W ,A 种型号的手机m 部,由利润等于售价减去进价再乘以部数,就可以得到一个关于W 和m 的一次函数,根据一次函数的性质可以得出怎样进货利润最大.【解题过程】解:(1)设B 种型号的手机每部进价为x 元,则A 种型号的手机每部进价为(x +500)元,根据 题意可得10(x +500)+20 x =50000,解得:x =1500,x +500=2000.答:A 种型号的手机每部进价为2000元,B 种型号的手机每部进价为1500元.(2)①设商场购进A 种型号的手机m 部,B 种型号的手机为(40-m )部,由题意得:20001500(40)750002(40)m m m m +-⎧⎨-⎩≤≥,解得803≤m ≤30,∵m 为整数,∴m =27,28,29,30,所以共有四种进货方案, 分别是:A 种27部,B 种13部;A 种28部,B 种12部;A 种29部,B 种11部;A 种30部,B 种10部.②设获得的利润为W ,则W =(2500-2000)m +(2100-1500)(40-m )=-100m +24000,∵-100<0,∴W随m 的增大而减小,所以当m =27时,W 最大,即选择购进A 种27部,B 种13部获得的利润最大.【知识点】一元一次方程;一元一次不等式组;一次函数的性质;3. (2018甘肃白银,21,8分) 《九章算术》是中国古代数学专著,在数学上其独到的成就。
不仅最早提到了分数问题,也首先记录了“盈不足”等问题。
如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六。
问人数、鸡价各几何?译文为:现有若干人合伙买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱。
问买鸡的人数、鸡的价格各是多少?请解答上述问题。
【思路分析】这是一道列方程解应用题,找出相等关系是关键。
题中“每人出9文钱,就会多11文钱”是一个相等关系,“每人出6文钱,又会缺16文钱”又是一个相等关系。
因此设出未知数将这两个相等关系用含未知数的等式表示出来就是方程组了。
【解题过程】解:设买鸡的人有x 个,鸡的价格为y 文钱,根据题意,得:911616x y x y -=⎧⎨+=⎩,解得:970x y =⎧⎨=⎩答:买鸡的人有9个,鸡的价格为70文钱。
【知识点】列方程解应用题,找相等关系,解方程组或解方程。
4. (2018江苏连云港,第24题,10分)某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖经过调查,获取信息如下如果购买红色地砖4 000块,蓝色地砖6 000块,需付款86 000元;如果购买红色地砖10 000块,蓝色地砖3500块,需付款99 000元.(1)红色地砖与蓝色地砖的单价各多少元?(2)经过测算,需要购置地砖12 000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6 000块,如何购买付款最少?请说明理由.【思路分析】(1)根据购买红色地砖4 000块的价格+购买红色地砖6 000块的价格=86 000,购买红色地砖10 000块的价格+购买红色地砖3 500块的价格=99 000,列二元一次方程组,解答即可.(2)根据蓝色地砖的数量不少于红色地砖的一半,并且不超过6 000,得出购买蓝色地砖的数量范围,再分情况讨论即可.【解题过程】(1)设红色地砖每块a 元,蓝色地砖每块b 元由题意得400060000.986000100000.8350099000.a b a b +⨯=⎧⎨⨯+=⎩,解得:810.a b =⎧⎨=⎩,答:红色地砖每块8元,蓝色地砖每块10元. --------------------------------- 5分(2)设购置蓝色地砖x 块,则购置红色地砖(12000-x )块,所需的总费用为y 元.由题意知x ≥12(12000-x ),得x ≥4000,又x ≤6000 所以蓝砖块数x 的取值范围4000≤x ≤6000当4000≤x <5000时,y =10x +8×0.8(12000-x),即y =76800+3.6x.所以x =4000时,y 有最小值91200当5000≤x ≤6000时,y =0.9×10x +8×0.8(12000-x )=2.6x +76800.所以x =5000时,y 有最小值89800.∵89800<91200,所以购买蓝色地砖5000块,红色地砖7000块,费用最少,最少费用为89800元. ---------------------------------------------------- 10分【知识点】二元一次方程组;一元一次不等式组5. (2018山东聊城,21,8分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,完了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【思路分析】(1)设甲、乙两队原计划平均每天的施工土方量分别为x 万立方,y 万立方,由题意列方程组150150120110150103.2x y x y +=⎧⎨+=⎩,解方程组可以得到答案; (2)设乙队平均每天的施工土方量至少要比原来提高m 万立方才能保证按时完成任务,由题意列不等式150m ≥120-103.2,解不等式可以得到答案.【解题过程】(1)设甲、乙两队原计划平均每天的施工土方量分别为x 万立方,y 万立方,由题意得 150150120110150103.2x y x y +=⎧⎨+=⎩,解得0.420.38x y =⎧⎨=⎩.答:甲、乙两队原计划平均每天的施工土方量分别为0.42万立方,0.38万立方.(1)设乙队平均每天的施工土方量至少要比原来提高m 万立方才能保证按时完成任务,由题意得150m ≥120-103.2,解得m ≥0.112.答:乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.【知识点】二元一次方程组的实际应用、一元一次不等式的实际应用6.(2018山东省济宁市,19,7)(7分)“绿水青山就是金山银山”,为保护生态环境,A ,B 两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【思路分析】问题(1)中隐含着两个相等关系式:村庄A 清理养鱼网箱的费用+捕鱼网箱的费用=57000元、村庄B 清理养鱼网箱的费用+捕鱼网箱的费用=68000元,则可分别以清理养鱼网箱、捕鱼网箱的人均支出费用为未知数,建立方程组解决问题;问题(2)中隐含着两个不等关系式:清理养鱼网箱的费用+捕鱼网箱的费用≤102000、清理养鱼网箱人数<清理捕鱼网箱人数,不妨以清理养鱼网箱人数为未知数,从而建立关于以清理养鱼网箱人数为未知数的不等式组解决问题.【解题过程】(1)设清理养鱼网箱的人均支出费用为x 元,清理养鱼网箱、捕鱼网箱的人均支出费用为y 元,根据题意,列方程组,得:15957000101668000x y x y +=⎧⎨+=⎩,解得20003000x y =⎧⎨=⎩, 答:清理养鱼网箱的人均支出费用为2000元,清理养鱼网箱、捕鱼网箱的人均支出费用为3000元;(2)设清理养鱼网箱人数为m ,则清理捕鱼网箱人数为(40-m),根据题意,得:20003000(40m)102000m m m +-⎧⎨⎩≤<40-,解得18≤m <20, ∵ m 是整数,∴ m=18或19,∴ 当m=18时,40-m=22,即清理养鱼网箱人数为18,清理捕鱼网箱人数为22;当m=19时,40-m=21,即清理养鱼网箱人数为19,则清理捕鱼网箱人数为21.因此,有2种分配清理人员方案,分别为清理养鱼网箱人数为18,清理捕鱼网箱人数为22或清理养鱼网箱人数为19,则清理捕鱼网箱人数为21.【知识点】二元一次方程组的应用 一元一次不等式组的应用1. (2018湖南郴州,20,8)郴州市正在创建“全国文明城市”,某校举办“创文知识”抢答赛,欲购买A 、B 两种奖品以奖励抢答者.如果购买A 种20件,B 种15件,共需380元;如果购买A 种15件,B 种10件,共需280元.(1)A 、B 两种奖品每件各是多少元?(2)现要购买A 、B 两种奖品共100件,总费用不超过900元,那么A 种奖品最多购买多少件?【思路分析】(1)设A 、B 两种奖品每件各是x 、y 元,根据“如果购买A 种20件,B 种15件,共需380元;如果购买A 种15件,B 种10件,共需280元” 列出方程组,解出方程组即可;(2)设A 种奖品最多购买a 件,根据“总费用不超过900元”可列出不等式,解出不等式即可.【解析】(1)设A 、B 两种奖品每件各是x 、y 元,依题意,得:20153801510280x y x y +=⎧⎨+=⎩,解得:164x y =⎧⎨=⎩. 答:A 、B 两种奖品每件各是16、4元.(2)设A 种奖品最多购买a 件,B 种奖品购买()100a -件,依题意,得:()164100900a a +-≤,解得:1253a ≤. 答:A 种奖品最多购买41件. 【知识点】二元一次方程组的实际应用,一元一次不等式的应用2. (2018湖南郴州,20,8)郴州市正在创建“全国文明城市”,某校举办“创文知识”抢答赛,欲购买A 、B 两种奖品以奖励抢答者.如果购买A 种20件,B 种15件,共需380元;如果购买A 种15件,B 种10件,共需280元.(1)A 、B 两种奖品每件各是多少元?(2)现要购买A 、B 两种奖品共100件,总费用不超过900元,那么A 种奖品最多购买多少件?【思路分析】(1)设A 、B 两种奖品每件各是x 、y 元,根据“如果购买A 种20件,B 种15件,共需380元;如果购买A 种15件,B 种10件,共需280元” 列出方程组,解出方程组即可;(2)设A 种奖品最多购买a 件,根据“总费用不超过900元”可列出不等式,解出不等式即可.【解析】(1)设A 、B 两种奖品每件各是x 、y 元,依题意,得:20153801510280x y x y +=⎧⎨+=⎩,解得:164x y =⎧⎨=⎩. 答:A 、B 两种奖品每件各是16、4元.(2)设A 种奖品最多购买a 件,B 种奖品购买()100a -件,依题意,得:()164100900a a +-≤,解得:1253a ≤. 答:A 种奖品最多购买41件. 【知识点】二元一次方程组的实际应用,一元一次不等式的应用3. (2018湖南省湘潭市,23,8分) 湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?【思路分析】(1)设温馨提示牌的单价为x 元,则垃圾箱的单价为3x 元,根据2个温馨提示牌+3个垃圾箱=550元列出方程求解;(2)设购买温馨提示牌为m 个,则购买垃圾箱为(100-m)个,根据总费用不超过10000元列出不等式求解.【解析】解:(1)设温馨提示牌的单价为x 元,则垃圾箱的单价为3x 元,列方程得:2x+3×3x=550,解得x=50,所以温馨提示牌的单价为50元,垃圾箱的单价为150元;(2)设购买温馨提示牌为m 个,则购买垃圾箱为(100-m)个,列不等式得:50m+150(100-m)≤10000,解得m ≥50,又∵100-m ≥48,∴m ≤52,∵m 的值整数,∴m 的取值为50,51,52,当m=50时,100-m=50,即购买50个和温馨提示牌和50个垃圾桶,其费用为:50×50+50×150=10000元;当m=51时,100-m=49,即购买51个和温馨提示牌和49个垃圾桶,其费用为:51×50+49×150=9900元;当m=52时,100-m=48,即购买52个和温馨提示牌和48个垃圾桶,其费用为:52×50+48×150=9800元,所以最小费用为9800元.【知识点】列一元一次方程解决实际问题;列一元一次不等式解决实际问题。