2018-2019学年最新沪科版九年级数学上学期第一次六校联考检测试题及答案解析-精编试题
- 格式:docx
- 大小:197.12 KB
- 文档页数:12
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=︒,在C 点测得60BCD ∠=︒,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25B .253C .1003D .25253+ 【答案】B【解析】解:过点B 作BE ⊥AD 于E .设BE=x .∵∠BCD=60°,tan ∠BCE BE CE =,3CE x ∴=,在直角△ABE 中,3x ,AC=50米, 33503x x -=,解得253x =即小岛B 到公路l 的距离为253故选B.2.函数1y x =-x 的取值范围是( )A .1x >B .1x <C .1x ≤D .1x ≥【答案】D【解析】根据二次根式的意义,被开方数是非负数.【详解】根据题意得10x -≥,解得1x ≥.故选D .本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.3.下列各图中,∠1与∠2互为邻补角的是( )A.B.C.D.【答案】D【解析】根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.故选D.4.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.2DE=EB C.3DE=DO D.DE=OB【答案】D【解析】解:连接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,5.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.23 32π-B.233π-C.32π-D.3π-【答案】B【解析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,2{34AAB BD∠=∠=∠=∠,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯⨯ =233π-. 故选B .6.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是( )A .正方体B .球C .圆锥D .圆柱体【答案】D 【解析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.【详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D .【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.7.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A .12B .14C .16D .112【答案】C【解析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21126=. 故答案为C .【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.8.把不等式组2010xx-⎧⎨+<⎩的解集表示在数轴上,正确的是()A .B .C .D .【答案】B【解析】首先解出各个不等式的解集,然后求出这些解集的公共部分即可.【详解】解:由x﹣2≥0,得x≥2,由x+1<0,得x<﹣1,所以不等式组无解,故选B.【点睛】解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.9.已知方程组2728x yx y+=⎧⎨+=⎩,那么x+y的值()A.-1 B.1 C.0 D.5 【答案】D【解析】解:2728x yx y+=⎧⎨+=⎩①②,①+②得:3(x+y)=15,则x+y=5,故选D10.下列图形中,周长不是32 m的图形是( )A .B .C .D .【答案】B【解析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.二、填空题(本题包括8个小题)11.如图,AB为⊙O的弦,C为弦AB上一点,设AC=m,BC=n(m>n),将弦AB绕圆心O旋转一周,若线段BC扫过的面积为(m2﹣n2)π,则mn=______【答案】15 +【解析】先确定线段BC过的面积:圆环的面积,作辅助圆和弦心距OD,根据已知面积列等式可得:S=πOB2-πOC2=(m2-n2)π,则OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得结论.【详解】如图,连接OB、OC,以O为圆心,OC为半径画圆,则将弦AB绕圆心O旋转一周,线段BC扫过的面积为圆环的面积,即S=πOB2-πOC2=(m2-n2)π,OB2-OC2=m2-n2,∵AC=m,BC=n(m>n),∴AM=m+n,过O作OD⊥AB于D,∴BD=AD=12AB=2m n+,CD=AC-AD=m-2m n+=2m n-,由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,∴m2-n2=mn,m2-mn-n2=0,m=5n n ±, ∵m >0,n >0,∴m=5n n +, ∴15 m n +=, 故答案为15+. 【点睛】此题主要考查了勾股定理,垂径定理,一元二次方程等知识,根据旋转的性质确定线段BC 扫过的面积是解题的关键,是一道中等难度的题目.12.27的立方根为 .【答案】1【解析】找到立方等于27的数即可.解:∵11=27,∴27的立方根是1,故答案为1.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算13.如图,在△ABC 中,DE ∥BC ,1=2AD DB ,则ADE BCED 的面积四边形的面积=_____.【答案】18【解析】先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题. 【详解】解:∵DE ∥BC ,AD 1=DB 2, ∴AD 1=AB 3, 由平行条件易证△ADE ~△ABC,∴S △ADE :S △ABC =1:9,∴ADE S ADE BCED S ABC S ADE 的面积四边形的面积=-=18. 【点睛】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键. 14.某市对九年级学生进行“综合素质”评价,评价结果分为A ,B ,C ,D ,E 五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为_____人.【答案】16000【解析】用毕业生总人数乘以“综合素质”等级为A 的学生所占的比即可求得结果.【详解】∵A ,B ,C ,D ,E 五个等级在统计图中的高之比为2:3:3:1:1,∴该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为80000×223311++++=16000, 故答案为16000.【点睛】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.15.观察以下一列数:3,54,79,916,1125,…则第20个数是_____. 【答案】41400【解析】观察已知数列得到一般性规律,写出第20个数即可. 【详解】解:观察数列得:第n 个数为221n n +,则第20个数是41400. 故答案为41400. 【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.16.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________.【答案】50(1﹣x )2=1.【解析】由题意可得,50(1−x)²=1,故答案为50(1−x)²=1.17.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.【答案】127或2 【解析】由折叠性质可知B’F=BF ,△B’FC 与△ABC 相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x ,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF ,设B’F=BF=x ,故CF=4-x当△B’FC ∽△ABC ,有'B F CF AB BC =,得到方程434x x -=,解得x=127,故BF=127; 当△FB’C ∽△ABC ,有'B F FC AB AC =,得到方程433x x -=,解得x=2,故BF=2; 综上BF 的长度可以为127或2. 【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.18.如图,正方形ABCD 和正方形OEFG 中, 点A 和点F 的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.【答案】(1,0);(﹣5,﹣2).【解析】本题主要考查位似变换中对应点的坐标的变化规律.因而本题应分两种情况讨论,一种是当E 和C 是对应顶点,G 和A 是对应顶点;另一种是A 和E 是对应顶点,C 和G 是对应顶点.【详解】∵正方形ABCD 和正方形OEFG 中A 和点F 的坐标分别为(3,2),(-1,-1),∴E (-1,0)、G (0,-1)、D (5,2)、B (3,0)、C (5,0),(1)当E 和C 是对应顶点,G 和A 是对应顶点时,位似中心就是EC 与AG 的交点,设AG 所在直线的解析式为y=kx+b (k≠0),∴231k b b =+⎧⎨-=⎩,解得11b k =-⎧⎨=⎩. ∴此函数的解析式为y=x-1,与EC 的交点坐标是(1,0);(2)当A 和E 是对应顶点,C 和G 是对应顶点时,位似中心就是AE 与CG 的交点,设AE 所在直线的解析式为y=kx+b (k≠0),320k b k b +=⎧⎨-+=⎩,解得1212k b ⎧=⎪⎪⎨⎪=⎪⎩, 故此一次函数的解析式为1122y x =+…①, 同理,设CG 所在直线的解析式为y=kx+b (k≠0),501k b b +=⎧⎨=-⎩,解得151k b ⎧=⎪⎨⎪=-⎩, 故此直线的解析式为115y x =-…② 联立①②得1122115y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩解得52x y =-⎧⎨=-⎩,故AE 与CG 的交点坐标是(-5,-2). 故答案为:(1,0)、(-5,-2).三、解答题(本题包括8个小题)19.在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)于销售单价x(元 /个)之间的对应关系如图所示.试判断y 与x 之间的函数关系,并求出函数关系式;若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的函数关系式;若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出最大利润.【答案】(1)y 是x 的一次函数,y=-30x+1(2)w=-30x 2+780x -31(3)以3元/个的价格销售这批许愿瓶可获得最大利润4元【解析】(1)观察可得该函数图象是一次函数,设出一次函数解析式,把其中两点代入即可求得该函数解析式,进而把其余两点的横坐标代入看纵坐标是否与点的纵坐标相同.(2)销售利润=每个许愿瓶的利润×销售量.(3)根据进货成本可得自变量的取值,结合二次函数的关系式即可求得相应的最大利润.【详解】解:(1)y 是x 的一次函数,设y=kx+b ,∵图象过点(10,300),(12,240),∴10k b 30012k b 240+=⎧⎨+=⎩,解得k 30b 600=-⎧⎨=⎩.∴y=-30x +1. 当x=14时,y=180;当x=16时,y=120,∴点(14,180),(16,120)均在函数y=-30x+1图象上.∴y 与x 之间的函数关系式为y=-30x+1.(2)∵w=(x -6)(-30x +1)=-30x 2+780x -31,∴w 与x 之间的函数关系式为w=-30x 2+780x -31.(3)由题意得:6(-30x+1)≤900,解得x≥3.w=-30x 2+780x -31图象对称轴为:()780x 13230=-=⨯-. ∵a=-30<0,∴抛物线开口向下,当x≥3时,w 随x 增大而减小.∴当x=3时,w 最大=4.∴以3元/个的价格销售这批许愿瓶可获得最大利润4元.20.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分 组频数 频率 第一组(0≤x <15)3 0.15 第二组(15≤x <30)6 a 第三组(30≤x <45)7 0.35 第四组(45≤x <60) b 0.20 (1)频数分布表中a=_____,b=_____,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?【答案】0.3 4【解析】(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.【详解】(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:312=14.【点睛】本题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.如图(2),将∠MDN 绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的14时,求线段EF的长.【答案】(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)4.【解析】(1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出BD DF=CE ED,从而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面积等于△ABC的面积的14,求出DH的长,从而利用S△DEF的值求出EF即可【详解】解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,证明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴BD DF=CE ED.∵BD=CD,∴CD DF=CE ED ,即CD CE=DF ED.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.∵AB=AC ,D 是BC 的中点,∴AD ⊥BC ,BD=12BC=1. 在Rt △ABD 中,AD 2=AB 2﹣BD 2,即AD 2=102﹣3,∴AD=2.∴S △ABC =12•BC•AD=12×3×2=42, S △DEF =14S △ABC =14×42=3. 又∵12•AD•BD=12•AB•DH , ∴AD BD 8624DH AB 105⋅⨯===. ∵△BDF ∽△DEF ,∴∠DFB=∠EFD .∵DH ⊥BF ,DG ⊥EF ,∴∠DHF=∠DGF .又∵DF=DF ,∴△DHF ≌△DGF (AAS ).∴DH=DG=245. ∵S △DEF =12·EF·DG=12·EF·245=3, ∴EF=4.【点睛】本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用.22.如图,甲、乙两座建筑物的水平距离BC 为78m ,从甲的顶部A 处测得乙的顶部D 处的俯角为48︒,测得底部C 处的俯角为58︒,求甲、乙建筑物的高度AB 和DC (结果取整数).参考数据:tan48 1.11︒≈,tan58 1.60︒≈.【答案】甲建筑物的高度AB 约为125m ,乙建筑物的高度DC 约为38m .【解析】分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.详解:如图,过点D 作DE AB ⊥,垂足为E .则90AED BED ∠=∠=︒.由题意可知,78BC =,48ADE ∠=︒,58ACB ∠=︒,90ABC ∠=︒,90DCB ∠=︒.可得四边形BCDE 为矩形.∴78ED BC ==,DC EB =.在Rt ABC 中,tan AB ACB BC∠=, ∴tan58781.60125AB BC =⋅︒≈⨯≈. 在Rt AED 中,tan AE ADE ED ∠=, ∴tan48AE ED =⋅︒.∴tan58EB AB AE BC =-=⋅︒ 781.60781.1138≈⨯-⨯≈.∴38DC EB =≈.答:甲建筑物的高度AB 约为125m ,乙建筑物的高度DC 约为38m .点睛:本题考查解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.23.东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.求第一批悠悠球每套的进价是多少元;如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?【答案】(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是1元.【解析】分析:(1)设第一批悠悠球每套的进价是x 元,则第二批悠悠球每套的进价是(x+5)元,根据数量=总价÷单价结合第二批购进数量是第一批数量的1.5倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设每套悠悠球的售价为y 元,根据销售收入-成本=利润结合全部售完后总利润不低于25%,即可得出关于y 的一元一次不等式,解之取其中的最小值即可得出结论.详解:(1)设第一批悠悠球每套的进价是x 元,则第二批悠悠球每套的进价是(x+5)元,根据题意得: 9005001.55x x=⨯+, 解得:x=25,经检验,x=25是原分式方程的解.答:第一批悠悠球每套的进价是25元.(2)设每套悠悠球的售价为y 元,根据题意得:500÷25×(1+1.5)y-500-900≥(500+900)×25%,解得:y≥1.答:每套悠悠球的售价至少是1元.点睛:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程是解题的关键;(2)根据各数量之间的关系,正确列出一元一次不等式.24.剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A 1、A 2,图案为“蝴蝶”的卡片记为B )【答案】49【解析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】列表如下:A 1 A 2 BA 1(A 1,A 1) (A 2,A 1) (B ,A 1) A 2(A 1,A 2) (A 2,A 2) (B ,A 2) B (A 1,B ) (A 2,B ) (B ,B )由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为49. 【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比. 25.如图,AD 、BC 相交于点O ,AD =BC ,∠C =∠D =90°.求证:△ACB ≌△BDA ;若∠ABC =36°,求∠CAO 度数.【答案】(1)证明见解析(2)18°【解析】(1)根据HL 证明Rt △ABC ≌Rt △BAD 即可;(2)利用全等三角形的性质及直角三角形两锐角互余的性质求解即可.【详解】(1)证明:∵∠D =∠C =90°,∴△ABC 和△BAD 都是Rt △,在Rt △ABC 和Rt △BAD 中,AD BC AB BA =⎧⎨=⎩, ∴Rt △ABC ≌Rt △BAD (HL );(2)∵Rt △ABC ≌Rt △BAD ,∴∠ABC =∠BAD =36°,∵∠C =90°,∴∠BAC =54°,∴∠CAO =∠CAB ﹣∠BAD =18°.【点睛】本题考查了全等三角形的判定与性质,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”. 26.已知:如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,过点D 作AE 的垂线交AE 于点G ,交AB 延长线于点F ,连接EF ,ED .求证:EF ED =; 若60ABC ∠=︒,6AD =, 2CE =,求EF 的长.【答案】(1)详见解析;(2)27EF =【解析】(1)根据题意AB 平分BAD ∠可得90AGF AGD ∠=∠=︒,从而证明()FAG DAG ASA ∆≅∆即可解答(2)由(1)可知6AF AD ==,再根据四边形ABCD 是平行四边形可得642BF AF AB =-=-=,过点F 作FH EB ⊥延长线于点H ,再根据勾股定理即可解答【详解】(1)证明:AB 平分BAD ∠FAG DAG ∴∠=∠DG AE ⊥90AGF AGD ∴∠=∠=︒又AG AG =()FAG DAG ASA ∴∆≅∆GF GD ∴=又DF AE ⊥EF ED ∴=(2)FAG DAG ∆≅∆6AF AD ∴==四边形ABCD 是平行四边形//AD BC ∴,6BC AD ==180********BAD ABC ∴∠=︒-∠=︒-︒=︒1602FAE BAD ∴∠=∠=︒ 60FAE B ∴∠=∠=︒ ABE ∴∆为等边三角形624AB AE BE BC CE ∴===-=-=642BF AF AB =-=-=过点F 作FH EB ⊥延长线于点H .在Rt BFH ∆中,60HBF ABC ∠=∠=︒30HFB ∴∠=︒112BH BF ∴== 2222213HF BF BH =--=415EH BE BH =+=+= ()22223527EF FH EH =+=+=【点睛】此题考查三角形全等的判定与性质,勾股定理,平行四边形的性质,解题关键在于作好辅助线中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图是二次函数y =ax 2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b 2–4ac<0,其中正确的有( )A .1个B .2个C .3个D .4【答案】B 【解析】由抛物线的开口方向判断a 与1的关系,由抛物线与y 轴的交点判断c 与1的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①抛物线与y 轴交于负半轴,则c <1,故①正确;②对称轴x 2b a=-=1,则2a+b=1.故②正确; ③由图可知:当x=1时,y=a+b+c <1.故③错误;④由图可知:抛物线与x 轴有两个不同的交点,则b 2﹣4ac >1.故④错误.综上所述:正确的结论有2个.故选B .【点睛】本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.2.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ).A .3229x x -=+B .3(2)29x x -=+C .2932x x +=- D .3(2)2(9)x x -=+ 【答案】B【解析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可. 3.如图,函数y =kx +b(k≠0)与y =m x (m≠0)的图象交于点A(2,3),B(-6,-1),则不等式kx +b >m x的解集为( )A .602x x <-<<或B .602x x -<或C .2x >D .6x <-【答案】B 【解析】根据函数的图象和交点坐标即可求得结果.【详解】解:不等式kx+b >m x 的解集为:-6<x <0或x >2, 故选B .【点睛】此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用.4.二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象可能是( )A .B .C .D .【答案】C【解析】试题分析:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2b x a=->0,∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y ax b =+的图象经过第一、二、四象限,反比例函数c y x=图象在第一三象限,只有C选项图象符合.故选C.考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.5.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30°B.50°C.40°D.70°【答案】A【解析】利用三角形内角和求∠B,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:∠B=30°,根据相似三角形的性质可得:∠B′=∠B=30°.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键. 6.3的倒数是()A.3B.3-C.13D.13-【答案】C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.7.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A.3.5 B.3 C.4 D.4.5【答案】B【解析】解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=12∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP =12BD =1. 故选B .8.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个.A .4B .3C .2D .1【答案】C【解析】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确; 其中正确的有2个,故选C .考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.9.抛物线223y x =(﹣)的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3) 【答案】A【解析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选A .【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .10.如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A .CB =CD B .∠BCA =∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°【答案】B【解析】由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可. 【详解】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;故选:B.【点睛】本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键.二、填空题(本题包括8个小题)11.计算:|﹣3|+(﹣1)2= .【答案】4.【解析】|﹣3|+(﹣1)2=4,故答案为4.12.若点(a,1)与(﹣2,b)关于原点对称,则b a=_______.【答案】12.【解析】∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴b a=12 =12.故答案为12.考点:关于原点对称的点的坐标.13.如图所示,三角形ABC的面积为1cm1.AP垂直∠B的平分线BP于P.则与三角形PBC的面积相等的长方形是()A.B.C.D .【答案】B 【解析】过P 点作PE ⊥BP ,垂足为P ,交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积.【详解】解:过P 点作PE ⊥BP ,垂足为P ,交BC 于E ,∵AP 垂直∠B 的平分线BP 于P ,∠ABP=∠EBP ,又知BP=BP ,∠APB=∠BPE=90°,∴△ABP ≌△BEP ,∴AP=PE ,∵△APC 和△CPE 等底同高,∴S △APC =S △PCE ,∴三角形PBC 的面积=12三角形ABC 的面积=12cm 1, 选项中只有B 的长方形面积为12cm 1, 故选B .14.如图,在ABC ∆中,5BC AC ==,8AB =,CD 为AB 边的高,点A 在x 轴上,点B 在y 轴上,点C 在第一象限,若A 从原点出发,沿x 轴向右以每秒1个单位长的速度运动,则点B 随之沿y 轴下滑,并带动ABC ∆在平面内滑动,设运动时间为t 秒,当B 到达原点时停止运动连接OC ,线段OC 的长随t 的变化而变化,当OC 最大时,t =______.当ABC ∆的边与坐标轴平行时,t =______.【答案】2 243255和 【解析】(1)由等腰三角形的性质可得AD=BD ,从而可求出OD=4,然后根据当O ,D ,C 共线时,OC 取最大值求解即可;(2)根据等腰三角形的性质求出CD ,分AC ∥y 轴、BC ∥x 轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可.【详解】(1)15,,42BC AC CD AB AD BD AB ∴==⊥∴===, 190,,42AOB AD BD OD AB ︒∠==∴==, 当O ,D ,C 共线时,OC 取最大值,此时OD ⊥AB.∵,4OD AB OD AD BD ⊥===,∴△AOB 为等腰直角三角形,∴242OA t AD === ;(2)∵BC=AC ,CD 为AB 边的高,∴∠ADC=90°,BD=DA=12AB=4, ∴CD=22AC AD -=3,当AC ∥y 轴时,∠ABO=∠CAB ,∴Rt △ABO ∽Rt △CAD ,∴AO AB CD AC =,即835t =, 解得,t=245, 当BC ∥x 轴时,∠BAO=∠CBD ,∴Rt △ABO ∽Rt △BCD ,∴AO AB BD BC =,即845t =, 解得,t=325, 则当t=245或325时,△ABC 的边与坐标轴平行. 故答案为t=245或325. 【点睛】本题考查的是直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.15.如图,四边形OABC 中,AB ∥OC ,边OA 在x 轴的正半轴上,OC 在y 轴的正半轴上,点B 在第一象限内,点D 为AB 的中点,CD 与OB 相交于点E ,若△BDE 、△OCE 的面积分别为1和9,反比例函数y=k x的图象经过点B ,则k=_______.。
2018-2019学年度第一学期九年级第一次月考试卷数学(沪科版)1.抛物线y =(x -1)2+1的顶点坐标是( )A.(1,1)B.(-1,1)C.(-1,-1)D.(1,-1) 2.关于反比例函数y = -2x,下列说法正确的是( )A.图象过(1,2)点B.图象在第一、三象限C.当x >0时,y 随x 的增大而减小D.当x <0时,y 随x 的增大而增大 3.抛物线y =-x 2不具有的性质是( )A.开口向下B.对称轴是y 轴C.与y 轴不相交D.最高点是原点 4.已知二次函数y =m x 2+x +m (m -1)的图象经过原点,则m 的值为( ) A.0或1 B.0 C.1 D.无法确定 5.抛物线y =(x -2)2-3可以由抛物线y =x 2平移而得到,下列平移正确的是( ) A.先向左平移2个单位长度,然后向上平移3个单位长度 B.先向左平移2个单位长度,然后向下平移3个单位长度 C.先向右平移2个单位长度,然后向上平移3个单位长度 D.先向右平移2个单位长度,然后向下平移3个单位长度 6.已知一块蓄电池的电压为定值,以此蓄电池为电源时,电流Ⅰ(A )与电阻R (Ω)之间的函数关系如图,则电流Ⅰ关于电阻R 的函数解析式为( )A .Ⅰ= 4R B.Ⅰ=8R C.Ⅰ=32R D. Ⅰ=-32R7.已知一次函数y =ba x +c 的图象如图,则二次函数y =a x 2+b x +c 在平面直角坐标系中的图象可能是( )8.已知三点P1(x 1,y 1),P2(x 2,y 2),P3(x 3,y 3)都在反比例函数y =﹣3x 的图象上,若x 1<0<x 2<x 3,则下列式子正确的是( )A.y 1<y 2<y 3B.y 3<y 2<y 1C.y 2>y 3>y 1D.y 1>y 3>y 29.如图,若二次函数y =a x 2+b x +c (a ≠0)图象的对称轴为x =1,与y 轴交于点C ,与x 轴 交于点A 、点B (-1,0),则①二次函数的最大值为a+b+c ; ②a-b+c<0;③b 2-4ac<0;④当y >0时,-1<x <3, 其中正确的结论是( )A.①②B.①④C.②③④D.②④ 个,x=110.如图,A ,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( ) A.4 B. 3 C. 2 D.1二、填空题(本大题共4小题,每小题5分,满分20分)11.普通投影仪灯泡的使用寿命约为1500小时,它的可使用天数y 与平均每天使用的小 时数x 之间的函数关系式为 。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm2【答案】C【解析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC 和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE S△ABC=4cm1.故选C.【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE S△ABC.2.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A .B .C .D .【答案】C【解析】首先看图可知,蓄水池的下部分比上部分的体积小,故h 与t 的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,先快后慢。
故选:C.【点睛】此题考查函数的图象,解题关键在于观察图形3.已知一组数据1、2、3、x 、5,它们的平均数是3,则这一组数据的方差为( )A .1B .2C .3D .4 【答案】B【解析】先由平均数是3可得x 的值,再结合方差公式计算.【详解】∵数据1、2、3、x 、5的平均数是3, ∴12355x ++++=3, 解得:x=4,则数据为1、2、3、4、5,∴方差为15×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2, 故选B .【点睛】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.4.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .24【答案】B 【解析】∵四边形ABCD 是平行四边形,∴DC=AB ,AD=BC ,∵AC 的垂直平分线交AD 于点E ,∴AE=CE ,∴△CDE 的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD 的周长=2×6=12,故选B .5.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1【答案】B 【解析】∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,,…,, 下边三角形的数字规律为:1+2,,…,, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.6.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =【答案】D【解析】先将方程左边提公因式x ,解方程即可得答案.【详解】x 2﹣3x =0,x (x ﹣3)=0,x 1=0,x 2=3,故选:D .【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.7.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( )A .3cmB 6 cmC .2.5cmD 5cm【答案】D【解析】分析:根据垂径定理得出OE 的长,进而利用勾股定理得出BC 的长,再利用相似三角形的判定和性质解答即可.详解:连接OB ,∵AC 是⊙O 的直径,弦BD ⊥AO 于E ,BD=1cm ,AE=2cm .在Rt △OEB 中,OE 2+BE 2=OB 2,即OE 2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt △EBC 中,BC=22224845BE EC +=+=.∵OF ⊥BC ,∴∠OFC=∠CEB=90°.∵∠C=∠C ,∴△OFC ∽△BEC ,∴OF OC BE BC=,即445OF =, 解得:OF=5.故选D .点睛:本题考查了垂径定理,关键是根据垂径定理得出OE 的长.8.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .3【答案】D【解析】设点C 所对应的实数是x .根据中心对称的性质,对称点到对称中心的距离相等,则有 ()x 3=31-,解得x=23+1.故选D.9.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【答案】D【解析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.10.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )A.8 B.10 C.13 D.14【答案】C【解析】根据三角形的面积公式以及切线长定理即可求出答案.【详解】连接PE、PF、PG,AP,由题意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=12BC•PE=12×4×2=4,∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切线长定理可知:S△APG=12S四边形AFPG=132,∴132=12×AG•PG,∴AG=132,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故选C.【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.二、填空题(本题包括8个小题)11.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.【答案】4π【解析】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD=2901360π⨯=4π.故答案为4π.12.比较大小:4 17(填入“>”或“<”号)【答案】>【解析】试题解析:∵16<17∴4<17.考点:实数的大小比较.【详解】请在此输入详解!13.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_____ °.【答案】1【解析】根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=30°,再根据∠ACB=80°即可解答.【详解】∵DE 垂直平分AC ,∠A=30°,∴AE=CE ,∠ACE=∠A=30°,∵∠ACB=80°,∴∠BCE=80°-30°=1°.故答案为:1.14.如图,已知CD 是ABC △的高线,且CD 2cm =,30B ∠=︒,则BC =_________.【答案】4cm【解析】根据三角形的高线的定义得到90BDC ∠=︒,根据直角三角形的性质即可得到结论.【详解】解:∵CD 是ABC ∆的高线,∴90BDC ∠=︒,∵30B ∠=︒,2CD =,∴24BC CD cm ==.故答案为:4cm.【点睛】本题考查了三角形的角平分线、中线、高线,含30°角的直角三角形,熟练掌握直角三角形的性质是解题的关键.15.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.【答案】115°【解析】根据过C 点的切线与AB 的延长线交于P 点,∠P=40°,可以求得∠OCP 和∠OBC 的度数,又根据圆内接四边形对角互补,可以求得∠D 的度数,本题得以解决. 【详解】解:连接OC ,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.16.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是_____.【答案】8﹣π【解析】分析:如下图,过点D作DH⊥AE于点H,由此可得∠DHE=∠AOB=90°,由旋转的性质易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,结合∠ABO+∠BAO=90°可得∠BAO=∠DEH,从而可证得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的长,即可由S阴影=S扇形AOF+S△OEF+S△ADE-S即可求得阴影部分的面积.扇形DEF详解:如下图,过点D作DH⊥AE于点H,∴∠DHE=∠AOB=90°,∵OA=3,OB=2,∴22+3213由旋转的性质结合已知条件易得:13,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,又∵∠ABO+∠BAO=90°,∴∠BAO=∠DEH,∴△DEH≌△BAO,∴DH=BO=2,∴S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF=22 9031190(13)325236022ππ⨯⨯+⨯⨯+⨯⨯-=8π-.故答案为:8π-.点睛:作出如图所示的辅助线,利用旋转的性质证得△DEH≌△BAO,由此得到DH=BO=2,从而将阴影部分的面积转化为:S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF来计算是解答本题的关键.17.分解因式:a3b+2a2b2+ab3=_____.【答案】ab(a+b)1.【解析】a3b+1a1b1+ab3=ab(a1+1ab+b1)=ab(a+b)1.故答案为ab(a+b)1.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.18163,117350中的无理数是_____.35【解析】无理数包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.164,是有理数,﹣3、117、0都是有理数,3535.【点睛】本题考查了对无理数的定义的理解和运用,注意:无理数是指无限不循环小数,包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数.三、解答题(本题包括8个小题)19.元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.求小明选择去白鹿原游玩的概率;用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.【答案】(1)14;(2)116【解析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.【详解】(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,∴小明选择去白鹿原游玩的概率=14;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率=1 16.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.20.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.【答案】证明见解析.【解析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【详解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.∵CF 平分∠DCE ,∴CF ⊥DE (三线合一).【点睛】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE ,主要考查了学生运用定理进行推理的能力.21.在连接A 、B 两市的公路之间有一个机场C ,机场大巴由A 市驶向机场C ,货车由B 市驶向A 市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C 的路程y (km )与出发时间x (h )之间的函数关系图象.直接写出连接A 、B 两市公路的路程以及货车由B 市到达A 市所需时间.求机场大巴到机场C 的路程y (km )与出发时间x (h )之间的函数关系式.求机场大巴与货车相遇地到机场C 的路程.【答案】(1)连接A 、B 两市公路的路程为80km ,货车由B 市到达A 市所需时间为43h ;(2)y=﹣80x+60(0≤x≤34);(3)机场大巴与货车相遇地到机场C 的路程为1007km . 【解析】(1)根据AB AC BC =+可求出连接A 、B 两市公路的路程,再根据货车13h 行驶20km 可求出货车行驶60km 所需时间;(2)根据函数图象上点的坐标,利用待定系数法即可求出机场大巴到机场C 的路程y (km )与出发时间x (h )之间的函数关系式;(3)利用待定系数法求出线段ED 对应的函数表达式,联立两函数表达式成方程组,通过解方程组可求出机场大巴与货车相遇地到机场C 的路程.【详解】解:(1)60+20=80(km),14802033÷⨯=(h) ∴连接A. B 两市公路的路程为80km ,货车由B 市到达A 市所需时间为43h . (2)设所求函数表达式为y=kx+b(k≠0),将点(0,60)、3(,0)4代入y=kx+b , 得:6030,4b k b =⎧⎪⎨+=⎪⎩ 解得:8060k b =-⎧⎨=⎩, ∴机场大巴到机场C 的路程y(km)与出发时间x(h)之间的函数关系式为38060(0).4y x x =-+≤≤(3)设线段ED对应的函数表达式为y=mx+n(m≠0)将点14 (,0)(,60) 33、代入y=mx+n,得:13460,3m nm n⎧+=⎪⎪⎨⎪+=⎪⎩解得:6020mn=⎧⎨=-⎩,∴线段ED对应的函数表达式为146020().33y x x=-≤≤解方程组80606020,y xy x=-+⎧⎨=-⎩得471007xy⎧=⎪⎪⎨⎪=⎪⎩,∴机场大巴与货车相遇地到机场C的路程为1007km.【点睛】本题考查一次函数的应用,掌握待定系数法求函数关系式是解题的关键,本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心.22.解不等式组:426113x xxx>-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解.【答案】﹣2,﹣1,0,1,2;【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可.【详解】解:解不等式(1),得x3>-解不等式(2),得x≤2所以不等式组的解集:-3<x≤2它的整数解为:-2,-1,0,1,223.如图,已知O是ABC∆的外接圆,圆心O在ABC∆的外部,4AB AC==,43BC=O 的半径.【答案】4【解析】已知△ABC 是等腰三角形,根据等腰三角形的性质,作AH BC ⊥于点H ,则直线AH 为BC 的中垂线,直线AH 过O 点,在Rt △OBH 中,用半径表示出OH 的长,即可用勾股定理求得半径的长. 【详解】作AH BC ⊥于点H ,则直线AH 为BC 的中垂线,直线AH 过O 点,2OH OA AH r =-=-,23BH =,222OH BH OB +=,即()()222223r r -+=,4r =.【点睛】考查垂径定理以及勾股定理,掌握垂径定理是解题的关键.24.如图,在大楼AB 的正前方有一斜坡CD ,CD=13米,坡比DE:EC=1:125,高为DE ,在斜坡下的点C 处测得楼顶B 的仰角为64°,在斜坡上的点D 处测得楼顶B 的仰角为45°,其中A 、C 、E 在同一直线上.求斜坡CD 的高度DE ;求大楼AB 的高度;(参考数据:sin64°≈0.9,tan64°≈2).【答案】(1)斜坡CD 的高度DE 是5米;(2)大楼AB 的高度是34米.【解析】试题分析:(1)根据在大楼AB 的正前方有一斜坡CD ,CD=13米,坡度为1:125,高为DE ,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度.试题解析:(1)∵在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:125,∴1512125DEEC==,设DE=5x米,则EC=12x米,∴(5x)2+(12x)2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)过点D作AB的垂线,垂足为H,设DH的长为x,由题意可知∠BDH=45°,∴BH=DH=x,DE=5,在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=ABAC,∴2=ABAC,解得,x=29,AB=x+5=34,即大楼AB的高度是34米.25.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?【答案】(1)作图见解析;(2)1.【解析】试题分析:(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;试题解析:解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=1人.答:该校九年级大约有1名志愿者.26.某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:本次抽查的样本容量是;在扇形统计图中,“主动质疑”对应的圆心角为度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?【答案】(1)560;(2)54;(3)补图见解析;(4)18000人【解析】(1)本次调查的样本容量为224÷40%=560(人);(2)“主动质疑”所在的扇形的圆心角的度数是:360∘×84560=54º;(3)“讲解题目”的人数是:560−84−168−224=84(人).(4)60000×168560=18000(人),答:在课堂中能“独立思考”的学生约有18000人.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图所示的几何体的主视图正确的是()A.B.C.D.【答案】D【解析】主视图是从前向后看,即可得图像.【详解】主视图是一个矩形和一个三角形构成.故选D.2.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°【答案】B【解析】试题分析:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°故选B.考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定3.解分式方程12x-﹣3=42x-时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4 C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=4【答案】B【解析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x ﹣2)=﹣4,故选B .【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键. 4.已知抛物线y=ax 2+bx+c 的图象如图所示,顶点为(4,6),则下列说法错误的是( )A .b 2>4acB .ax 2+bx+c≤6C .若点(2,m )(5,n )在抛物线上,则m >nD .8a+b=0【答案】C【解析】观察可得,抛物线与x 轴有两个交点,可得240b ac - ,即24b ac > ,选项A 正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即26ax bx c ++≤,选项B 正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m<n ,选项C 错误; 因对称轴42b x a=-= ,即可得8a+b=0,选项D 正确,故选C.点睛:本题主要考查了二次函数y=ax 2+bx+c 图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中.5.下列图案是轴对称图形的是( ) A . B . C . D .【答案】C【解析】解:A .此图形不是轴对称图形,不合题意;B .此图形不是轴对称图形,不合题意;C .此图形是轴对称图形,符合题意;D .此图形不是轴对称图形,不合题意.故选C .6.若数a ,b 在数轴上的位置如图示,则( )A .a+b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >0【答案】D【解析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.【详解】由数轴可知:a <0<b ,a<-1,0<b<1,所以,A.a+b<0,故原选项错误;B. ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确.故选D .【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.7.一、单选题如图中的小正方形边长都相等,若△MNP ≌△MEQ ,则点Q 可能是图中的( )A .点AB .点BC .点CD .点D【答案】D 【解析】根据全等三角形的性质和已知图形得出即可.【详解】解:∵△MNP ≌△MEQ ,∴点Q 应是图中的D 点,如图,故选:D .【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.8.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°【答案】B【解析】试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.考点:旋转的性质.9.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A.141°B.144°C.147°D.150°【答案】B【解析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.【详解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故选B.【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).10.下列等式从左到右的变形,属于因式分解的是A .8a 2b=2a·4abB .-ab 3-2ab 2-ab=-ab(b 2+2b)C .4x 2+8x-4=4x 12-x x ⎛⎫+ ⎪⎝⎭ D .4my-2=2(2my-1)【答案】D【解析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、把一个多项式转化成几个整式积的形式,故D 符合题意;故选D .【点睛】 本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.二、填空题(本题包括8个小题)11.如图,在边长为3的菱形ABCD 中,点E 在边CD 上,点F 为BE 延长线与AD 延长线的交点.若DE=1,则DF 的长为________.【答案】1.1【解析】求出EC ,根据菱形的性质得出AD ∥BC ,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可.【详解】∵DE=1,DC=3,∴EC=3-1=2,∵四边形ABCD 是菱形,∴AD ∥BC ,∴△DEF ∽△CEB ,∴DF DE BC CE=, ∴132DF =, ∴DF=1.1,故答案为1.1.【点睛】此题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明△DEF ∽△CEB ,然后根据相似三角形的性质可求解.12.若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 .【答案】:k <1.【解析】∵一元二次方程220x x k -+=有两个不相等的实数根,∴△=24b ac -=4﹣4k >0,解得:k <1,则k 的取值范围是:k <1.故答案为k <1.13.计算tan 260°﹣2sin30°cos45°的结果为_____.【答案】1【解析】分别算三角函数,再化简即可.【详解】解:原式=2-2×122=1.【点睛】本题考查掌握简单三角函数值,较基础.14.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。
208-2019上学期六校九数联考一 第 1页(共 4页) 第 2页 (共4页) 2018-2019学年度上学期富顺县直属中学六校联考第一次段考九 年 级 数 学 科 试 卷说明:试卷来源于富顺县六所直属中学九年级数学联考一 重新制版:郑宗平一.选择题(共12个小题,每小题4分,共48分)1.如果()2m 1x2x 30++-=是一元二次方程,则( ) A.m 0≠ B.m 1≠- C.m 0= D.m 12≠ 2. 一元二次方程24x 90-=的解是 ( )A.3x 2=B.3x 2=-C.3x 2=或3x 2=- D.x 3=或x 3=- 3.已知2是关于x 的一元二次方程2x x a 0+-=的一个根,则另一个根的值是 ( ) A.0 B.3- C.2- D.34.下列方程有两个相等的实数根的是( )A.2x 12x 360++= B.2x x 20+-= C.2x x 10++= D.24x 2x 10++= 5.解方程2x 2x 14++=较适宜的方法是 ( ) A .直接开平方法 B .公式法 C .因式分解法 D .配方法 6.九⑴班同学毕业的时候,每人都必须与其他任何一位同学合照一张双人照,全班共照相片780张,则九⑴班的人数是 ( ) A.39 B.40 C.50 D.60 7.如果关于x 的一元二次方程()22k x 2k 1x 10-+-=有两个不相等的实数根,那么k 的取值范围是 ( )A.1k 4>-B.1k 4>-且k 0≠C.1k 4<-D.1k 4≥-且k 0≠ 8.抛物线()2y 3x 2=--的对称轴是 ( )A .直线x 3=B .直线x 2=- C.y 轴 D.直线x 2<9. 函数2y x 2x 3=-+的图象的顶点坐标是( )A.()1,4-B.()1,2-C.()1,2D. ()0,310. 如图,二次函数2y ax bx c =++的图象过()1,1-和()3,0,则下列关于这个二次函数的描述,正确的是 ( )A.y 的最小值大于1-B. 当x 0=时,y 的值大于C. 当x 2=时,y 的值等于1-D. 当x >3时,y 的值大于11.已知x 是方程2x 2008x 10-+=的一个根,则代数式222008a 2007a a 1-++的值为 ( ) A.2006 B.2007 C.2008 D.无法确定 12.小明从如图所示的二次函数()2y axbx c a 0=++≠的图象中,观察得出了下面五条信息:①.ab 0>;②.a b c 0++< ;③.b 2c 0+>; ④.a 2b 4c 0-+>;⑤.3a b 2=. 你认为其中正确信息的个数有 ( )A. 2个B. 3个C. 4个D. 5个二.填空题(每题4分,共24分)13. 方程25x 23x +=的各项系数是a b c .===,,14.如果把抛物线2y x 1=-左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是 .15.关于x 的一元二次方程2x 2x m 0--=有两个相等的实数根,则m 的值是 . 16.方程()()x 2x 10+-=的解为 . 17.如图,两条抛物线221211y x 1,y x 122=-+=-- ,与分别经过点()()2,02,0-、且平行于y 轴的两条平行线围成的阴影部分的面积为 .18.对于实数p,q ,我们用符号{}min p,q 表示p,q 两数中较小的 数,如{}min 1,21=,{}min 2,33--=-,若(){}22minx 1,x 1+=,x .=三.解答题(每小题8分,共16分)17.用适当的方法解下列方程()()()221.3x 1x 1;-=+ ()22.x 4x 10.-+=x 21-21+208-2019上学期六校九数联考一 第 3页(共 4页) 第 4页 (共4页)四..解答题(每小题8分,共16分)18.已知关于x 的一元二次方程()2m 1xx 20---=.⑴.若x 1=-是方程的一个根,求m 的值和方程的另一根; ⑵.当m 为何实数时,方程有实数根.19.配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它.下面我们就求函数的极值,介绍一下配方法.例:已知代数式2a 6a 2++,当a = ________时,它有最小值,是 ________. 解:()()2222a 6a 2a 6a 992a 392a 37++=++-+=+-+=+-因为()2a 30+≥,所以()2a 377+-≥-. 所以当a 3=-时,它有最小值,是7-. 参考例题,试求:⑴.填空:当a = ________时,代数式()2a 35-+有最小值,是 ________ . ⑵.已知代数式2a 8a 2++,当a 为何值时,它有最小值,是多少?五.解答题(每小题10分,共20分)20.如图,在一块长为22米、宽为17米的矩形ABCD 地面上,要修建一条长方形道路LMPQ 及一条平行四边形道路RSTK 道路宽是一样的),剩余部分种上草坪,使草坪面积为300平方米.则道路宽是多少米?20. 已知二次函数2y x 2x 3=--+ (1)求它的顶点坐标和对称轴; (2)求它与x 轴的交点;(3)画出这个二次函数图象,并直接指出y 0<时x 的 取值范围.六.解答题(本小题12分)21.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.⑴.写出月销售利润y (单位:元)与售价x (单位:元/件)之间的函数解析式. ⑵.当销售价定为45元时,计算月销售量和销售利润.⑶.衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少?⑷.当销售价定为多少元时会获得最大利润?求出最大利润.七.解答题(本小题14分)23..已知直线y kx b =+经过x 轴上的点()A 2,0 ,且与抛物线2y ax =相交于B C 、两点,已知B 点坐标为()11, .⑴..求直线和抛物线所对应的函数解析式;⑵..如果D 为抛物线上一点,使得⊿AOD 与⊿BOC 的面积相等,求点D 坐标.xxL A B M2018-2019上学期九数六校联考 一 第 1页(共 2页) 第 2页 (共2页) 2018 – 2019上学期富顺县六校联考一九年级数学 参考答案一.选择题(本大题共12个小题,每小题4分,共48分)2a 12008a112007a a +-=-=二15分类讨论:①.当()22x 1x +=(不成立);②. 当()22x 1x +>时,2x 1= 解得:x 1=或x 1=-(代入检验不成立);③. 当()22x 1x +<时,()2x 11+= 解得:x 2=-或x 0=(代入检验不成立).故应为x 1=或x 2=-.三.解答题(每小题8分,共16分)四1819五.解答题(每小题10分,共20分) 20.略解:设路宽为x 米,根据题意,得:()()22x 17x 300--= 解得:1x 2=,2x 37=;答:略.21.略解:⑴.(),14- ,x 1=-;⑵.令y 0= 即2x 2x 30--+= 解得:1x 3=-,2x 1=所以与x 轴的交点坐标为(),30-和(),10; ⑶.列表略,示意图见右. x 3>-或x 1>时y 0<.六.解答题(本小题12分)22.略解:⑴.依题意有:()()2y x 3060010x 4010x 1300x 30000=---=-+-⎡⎤⎣⎦; ⑵.当x 45=时,()60010x 40550--= ,2y 1045130045300008250=-⨯+⨯-=(元);⑶. 当y 10000=时,210x 1300x 3000010000-+-= 解得:1x 50=,2x 80=; 当x 80=时,()600108040200300--=<. ∴售价为50元; ⑷.()2y 10x 6512250=--+ 当x 65=有最大利润12250元.七.解答题(本小题14分)23. 略解:⑴.直线的解析式为y x 2=-+,抛物线的解析式为2y x =;⑵.将⑴问解析式联立成方程组 2y x 2y x⎧=-+⎪⎨=⎪⎩ 解得x 2y 4=-⎧⎨=⎩或x 1y 1=⎧⎨=⎩ 故(),C 24-;点D 的坐标为)3或()3.以上答案,仅供参考!。
【市级联考】安徽省安庆市2018届九年级第一学期期末教学质量调研检测数学试题学校:___________姓名:___________班级:___________考号:___________1.如图,在Rt△ABC 中,∠C=90°,AC=4,AB=5,则cosA 的值是( )A .35B .45C .34D .432.抛物线22(2)3=--+y x 的顶点坐标是( ) A .(2,3)-B .(2,3)-C .(2,3)--D .(2,3)3.若:3:2a b =,且2b ac =,则:b c 等于( ) A .4:3B .3:2C .2:3D .3:44.若ABC 的每条边长增加各自的10%得'''A B C ,则B'∠的度数与其对应角B 的度数相比( ) A .增加了10%B .减少了10%C .增加了()1 10% +D .没有改变5.如图:四边形ABCD 内接于圆O, AB∥CD, AB 为直径,DO 平分∠ADC,则∠DAO 的度数是( )A .90°B .80°C .70°D .60°6.如图,二次函数243y x x =-+的图象交x 轴于A ,B 两点,交y 轴于C ,则ABC的面积为( )A.6B.4C.3D.17.如图,AB是⊙O的直径,且经过弦CD的中点H,已知HD=4,BD=5,则OA的长度为()A.276B.156C.256D.238.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线92t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m. 其中正确结论的个数是()A.1 B.2 C.3 D.49.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y cx=与反比例函数24b acyx-=在同一坐标系中的大致图象是()A.B.C.D.10.如图,DE∥BC,AD∶DB= 2∶3 ,则ΔADE与ΔABC的面积之比为_________.11.如图,一块含45°角的直角三角板,它的一个锐角顶点A 在⊙O 上,边AB 、AC 分别与⊙O 交于点D 、E ,则∠DOE的度数为 .12.如图,在一笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60︒的方向,在码头B 北偏西45︒的方向,4km AC =.游客小张准备从观光岛屿C 乘船沿CA 回到码头A 或沿CB 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v = (结果保留根号).13.在平面直角坐标系中,点C 的坐标为(0,4),动点A 以每秒1个单位长的速度,从点O 出发沿x 轴的正方向运动,M 是线段AC 的中点.将线段AM 以点A 为中心,沿顺时针方向旋转90°,得到线段AB .过点B 作x 轴的垂线,垂足为E ,过点C 作y 轴的垂线,交直线BE 于点D ,运动时间为t 秒.当S △BCD =254时,t 的值为__________.14.已知二次函数y=ax 2+2x+c 的图象经过点(-2,-5)、(1,4).求这个二次函数的解析式.15.如图,矩形ABCD 的边AB="6" cm ,BC="8" cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP="x" cm ,CQ="y" cm,试以x 为自变量,写出y 与x 的函数关系式.16.将直线31y x 向下平移1个单位长度,得到直线3y x m =+,若反比例函数ky x=的图象与直线3y x m =+相交于点A ,且点A 的纵坐标是3. (1)求m 和k 的值;(2)结合图象求不等式3kx m x+>的解集. 17.如图,E 、F 、G 、H 分别在矩形ABCD 上,EF⊥GH,若AB=2,BC=3,求EFGH值.18.如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC 是等边三角形; (2)求圆心O 到BC 的距离OD .19.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).(1)请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.20.如图,把n 个长为1的正方形拼接成一排,(1)易得tan∠BA 1C=1,求 tan∠BA 4C (写出求解过程) (2)按此规律,写出tan n BA C 的值(用含n 的代数式表示).21.如图,在△ABC 中,∠ACB=90°,CD 是中线,AC=BC ,一个以点D 为顶点的45°角绕点D 旋转,使角的两边分别与AC 、BC 的延长线相交,交点分别为点E ,F ,DF 与AC 交于点M ,DE 与BC 交于点N .(1)如图1,若CE=CF ,求证:DE=DF ;(2)如图2,在∠EDF 绕点D 旋转的过程中:探究三条线段AB ,CE ,CF 之间的数量关系,并说明理由.22.某水产养殖户进行小龙虾养殖已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为()()1t 161t 40,t 4p 1t 4641t 80,t 2⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩为整数为整数,日销售量y(千克)与时问第(天)之间的函数关系如图所示.()1求日销售量y 与时间t 的函数关系式; ()2求利润w 与时间t 的函数关系式;()3哪一天的日销售利润最大?最大利润是多少?参考答案1.B 【解析】 【分析】根据余弦的定义计算即可. 【详解】在Rt △ABC 中,cosA=45AC AB =, 故选B . 【点睛】本题考查的是锐角三角函数的定义,掌握锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦是解题的关键. 2.D 【解析】 【分析】当2x = 时,是抛物线的顶点,代入2x =求出顶点坐标即可. 【详解】由题意得,当2x = 时,是抛物线的顶点 代入2x =到抛物线方程中22(22)33y =-⨯-+= ∴顶点的坐标为(2,3) 故答案为:D . 【点睛】本题考查了抛物线的顶点坐标问题,掌握求二次函数顶点的方法是解题的关键. 3.B 【解析】 【分析】根据比例的基本性质,若b 2=ac ,则b :c 可求. 【详解】∵a :b=3:2,且b 2=ac ,∴b:c=a:b=3:2.故选B.【点睛】根据比例的基本性质进行比例式和等积式的互相转换,并能够熟练应用.4.D【解析】【分析】根据两个三角形三边对应成比例,这两个三角形相似判断出两个三角形相似,再根据相似三角形对应角相等解答.【详解】∵△ABC的每条边长增加各自的10%得'''A B C,∴△ABC与'''A B C的三边对应成比例,∴△ABC∽△'''A B C∴∠'B=∠B.故选D.【点睛】本题考察了相似三角形性质的应用,解决本题的关键是确定两三角形相似.5.D【解析】【分析】由于AB∥CD,那么同旁内角∠A和∠ADC互补.由于OD平分∠ADC,可得∠ADO=∠A=∠CDO.联立∠A+∠ADC=180°,可求得∠A=∠ADO=60°.【详解】∵DO平分∠ADC,∴∠CDO=∠ODA;∵OD=OA,∴∠A=∠ADO=12∠ADC;∵AB∥CD,∴∠A+∠ADC=3∠A=180°,即∠A=∠ADO=60°.【点睛】本题主要考查了平行线的性质、角平分线的定义、等角对等边等知识. 6.C 【解析】 【分析】根据解析式求出A 、B 、C 三点的坐标,即ABC 的底和高求出,然后根据公式求面积. 【详解】解:在243y x x =-+中,当0y =时,1x =、3;当0x =时,3y =; 即()1,0A 、()3,0B 、()0,3C 故ABC 的面积为:12332⨯⨯=; 故选C . 【点睛】考查根据解析式求出二次函数与坐标轴的交点,掌握计算的方法是解题的关键. 7.C 【解析】 【分析】连接OD ,由垂径定理得出AB ⊥CD ,由勾股定理求出BH=3,设OD=x ,则OH= x-3,在Rt △ODH 中,由勾股定理得出方程,解方程即可. 【详解】连接OD ,如图所示:∵AB 是⊙O 的直径,且经过弦CD 的中点H , ∴AB ⊥CD ,∴∠OHD=∠BHD=90°, ∵HD=4,BD=5,设OD=x ,则OH= x-3,在Rt △ODH 中,由勾股定理得:x 2=(x-3)2+42,解得:x=256, ∴OA=OD=256, 故选C . 【点睛】此题考查了垂径定理、勾股定理以及三角函数.此题难度不大,注意数形结合思想的应用. 8.B 【解析】 【分析】 【详解】解:由题意,抛物线的解析式为y =ax (x ﹣9),把(1,8)代入可得a =﹣1, ∴y =﹣t 2+9t =﹣(t ﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m ,故①错误, ∴抛物线的对称轴t =4.5,故②正确,∵t =9时,y =0,∴足球被踢出9s 时落地,故③正确, ∵t =1.5时,y =11.25,故④错误,∴正确的有②③, 故选B . 9.D 【解析】 【分析】根据二次函数图象与系数的关系,由抛物线与x 轴交点的个数确定24b ac >0,由抛物线与y 轴的交点位置确定c>0,然后根据正比例函数图象与系数的关系可判断正比例函数图象经过第一、三象限,根据反比例函数的性质得到反比例函数图象在第一、三象限,由此可对各选项进行判断. 【详解】∵抛物线开口方向向上,抛物线与y 轴的交点在x 轴上方, ∴c >0,∴正比例函数图象经过第一、三象限,∵抛物线与x 轴有两个交点,∴24b ac ->0,∴反比例函数图象在第一、三象限,故选D .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口,当a <0时,抛物线向下;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异);常数项c 决定抛物线与y 轴交点.也考查了正比例函数图象与反比例函数图象.10.4:25【解析】【分析】 首先利用相似三角形的判定与性质得出25AD DE AB BC ==,进而利用相似三角形的面积比等于相似比的平方,得出答案即可.【详解】∵DE ∥BC ,∴△ADE ∽△ABC , ∴AD DE AB BC=, ∵AD :DB=2:3, ∴25AD DE AB BC ==, ∴△ADE 与△ABC 的面积之比为:4:25.故答案为:4:25.【点睛】此题主要考查了相似三角形的判定与性质以及相似三角形的面积比等于相似比的平方,得出25AD DE AB BC ==是解题关键. 11.90°.【解析】试题分析:根据圆周角定理得到,∠DOE=2∠A=90°,故答案为:90°.考点:圆周角定理.12..【解析】【分析】【详解】解:作CD AB ⊥,垂足为D4,30,2AC CAB CD ︒=∠=∴=在Rt BCD ∆中,45CBD BC ︒∠=∴=因为开往码头A 、B 的游船速度分别为1v 、2v ,回到A 、B 所用时间相等,所以12v v ==.考点:特殊角三角函数的应用 .13.3或【解析】【分析】先证明△CAO ∽△ABE ,得出对应边成比例,得出BE=12t ,AE=2.分两种情况:①当0<t<8时;根据题意得出方程,解方程即可;②当t>8时;根据题意得出方程,解方程即可.【详解】根据题意得:∠BAC=90°,∴∠CAO+∠BAE=90°,∵BE⊥x轴,∴∠AEB=90°=∠AOC,∴∠ABE+∠BAE=90°,∴∠CAO=∠ABE.∴△CAO∽△ABE.∴CA AO OC AB BE AE==,∵M是AC的中点,AB=AM,∴CA=2AB,∴24 AB tAB BE AE==,∴BE=12t,AE=2.分两种情况:①当0<t<8时,如图1所示:S=12CD•BD=12(2+t)(4-2t)=254解得:t1=t2=3.②当t>8时,如图2所示,S=12CD•BD=12(2+t )(2t -4)=254. 解得:t 1,t 2.综上所述:当t=3或时,S=254. 故答案为t=3或.【点睛】本题考查了相似三角形的判定与性质、角的互余关系、三角形面积的计算方法、解方程等知识;本题综合性强,有一定难度,需要进行分类讨论才能得出结果.14.2y x 2x 3=-++【解析】【分析】用待定系数法求a ,c 的值,得到二次函数的解析式:y=-x 2+2x+3.【详解】根据题意,得44524a c a c -+-⎧⎨++⎩==, 解得13.a c -⎧⎨⎩== 所以,这个二次函数的解析式为y=-x 2+2x+3.【点睛】本题主要考查了二次函数的解析式的求法.15.(0≤x <8)【解析】【分析】【详解】由B=C 、APB=PQC 得三角形ABP 相似于PCQ .得AB/PC=BP/CQ .即6/(8-x)=x/y .得x 与y 的关系式(0≤x <8) 16.(1)m=0,k=3;(2)101x x -<或.【解析】试题分析:(1)由直线31y x 向下平移1个单位长度得到直线3y x m =+可知m=0,由此可得平移后直线解析式为:3y x =;再由点A 的纵坐标为3,代入3y x =可解得对应的横坐标为1,把点A (1,3)代入k y x=可解得k 的值; (2)在同一坐标系中画出两函数的图象,结合图象就可求得不等式3k x m x +>的解集. 试题解析:(1) 直线31y x 向下平移1个单位长度所得到直线为:3113y x x =+-=,可知:0m =;∵在3y x =中,当3y =时,可得:33x =,解得1x =,∴点A 的把为:A(1,3),把A (1,3)代入k y x=可得:k =1×3=3; (2)在同一坐标系中画出直线3y x =和反比例函数3y x =的图象,如图所示,由图象可得,不等式3+k x m x>的解集为-1<x <0或x >1.点睛:解这道题需注意两点:(1)将函数图象进行上下平移时:向上平移几个单位长度,解析式中的常数项就增加几;向下平移几个单位长度,解析式中常数项就减少几;而解析式中除常数项外的其它部分不变;(2)由图象求不等式33x m x+>的解集,就是求图象中,一次函数3y x m =+的图象在反比例函数k y x=的图象上方部分图象所对应的自变量的取值范围;同时还需注意:反比例函数中自变量不能为0.17.32EH HG = 【解析】【分析】可过点H ,F 作HM ,FN 垂直BC ,AB ,利用相似三角形对应边成比例,即可得到EF 与GH 的比值.【详解】过点H ,F 作HM ⊥BC ,FN ⊥BC ,由EF ⊥GH ,∠GHM+∠HON=∠EFN+∠FOG=90°, 又∵∠HON=∠FOG (对顶角相等),∴可得∠GHM=∠EFN ,∴Rt △MHG ∽Rt △NFE∴EF :GH=NF :HM=BC :AB=3:2.【点睛】通过构建与已知和所求的条件相关的三角形,然后证明其全等或相似来得出线段间的相等或比例关系.18.(1)证明见解析(2)4【解析】解:(1)证明:∵∠APC 和∠ABC 是同弧所对的圆周角,∴∠APC=∠ABC .又∵在△ABC 中,∠BAC=∠APC=60°,∴∠ABC=60°.∴∠ACB=180°﹣∠BAC ﹣∠ABC=180°﹣60°﹣60°=60°.∴△ABC 是等边三角形.(2)连接OB,∵△ABC为等边三角形,⊙O为其外接圆,∴O为△ABC的外心.∴BO平分∠ABC.∴∠OBD=30°.∴OD=8×12=4.(1)根据同弧所对的圆周角相等的性质和已知∠BAC=∠APC=60°可得△ABC的每一个内角都等于600,从而得证.(2)根据等边三角形三线合一的性质,得含30度角直角三角形OBD,从而根据30度角所对边是斜边一半的性质,得OD=8×12=419.(1)见解析(2【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC 交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.20.(1)tan∠BA 4C=113;(2)tan∠BA n C=211n n -+. 【解析】【分析】作CH ⊥BA 4于H ,根据正方形的性质、勾股定理以及三角形的面积公式求出CH 、A 4H ,根据正切的概念求出tan ∠BA 4C ,总结规律解答.【详解】(1)如图,过点C 作CE ⊥A 4B 于E ,易得∠A 4BC=∠BA 4A 1,故tan ∠A 4BC=tan ∠BA 4A 1=14,在Rt △BCE 中,由tan ∠A 4BC=14, 得BE=4CE ,而BC=1,则,, 而A 4=, 所以A 4E=A 4, 在Rt △A 4EC 中,tan ∠BA 4C=4113CE A E = (2)根据前面的规律,不能得出tan ∠ BA 1C=1101⨯+,tan ∠ BA 2C 1211⨯+, tan ∠ BA 3C=1321⨯+,tan ∠ BA 4C=1431⨯+, 则可得规律tan ∠ BA n C=()211111n n n n =⨯-+-+. 【点睛】本题考查的是正方形的性质、勾股定理的应用以及正切的概念,掌握正方形的性质、熟记锐角三角函数的概念是解题的关键.21.(1)见解析;(2)AB 2=4CE•CF ,理由见解析.【解析】【分析】(1)根据等腰直角三角形的性质得到∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,于是得到∠DCE=∠DCF=135°,根据全等三角形的性质即可的结论;(2)证得△CDF∽△CED,根据相似三角形的性质得到CD CFCE CD=,即CD2=CE•CF,根据等腰直角三角形的性质得到CD=12AB,于是得到AB2=4CE•CF【详解】(1)证明:∵∠ACB=90°,AC=BC,AD=BD,∴∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,∴∠DCE=∠DCF=135°,在△DCE与△DCF中,∵CE=CF,∠DCE=∠DCF,CD=CD,∴△DCE≌△DCF,∴DE=DF(2)∵∠DCF=∠DCE=135°,∴∠CDF+∠F=180°-135°=45°,∵∠CDF+∠CDE=45°,∴∠F=∠CDE,∴△CDF∽△CED,∴CD CF CE CD,即CD2=CE•CF,∵∠ACB=90°,AC=BC,AD=BD,∴CD=12 AB,∴AB2=4CE•CF.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.22.(1)y=﹣2t+200(1≤x≤80,t为整数);(2)① 当1≤t≤40时,w=﹣12(t﹣30)2+2450,② 当41≤t≤80时,w=(t﹣90)2﹣100;(3)第30天的日销售利润最大,最大利润为2450元.【解析】【分析】(1)利用待定系数法求解可得一次函数解析式;(2)根据“日销售利润=每斤的利润×日销售量”,求得函数解析式;(3)结合t的取值范围分情况求解可得.【详解】(1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得:1988040k bk b+=⎧⎨+=⎩,解得:2200kb=-⎧⎨=⎩,∴y=﹣2t+200(1≤x≤80,t为整数)(2)设日销售利润为w,则w=(p﹣6)y,①当1≤t≤40时,w=(14t+16﹣6)(﹣2t+200)=﹣12(t﹣30)2+2450,②当41≤t≤80时,w=(﹣12t+46﹣6)(﹣2t+200)=(t﹣90)2﹣100,(3)当t=30时,w最大=2450;当t=41时,w最大=2301,∵2450>2301,∴第30天的日销售利润最大,最大利润为2450元.【点睛】本题主要考查二次函数的应用,解题的关键是理解题意找到相等关系并确定函数解析式、分类讨论思想的运用及二次函数的性质.。
沪科版九年级上学期六校第一次联考数学试卷温馨提示:1、你拿到的试卷满分为150分,考试时间为120分钟,请合理利用时间;2、请把答案写到相应位置、字迹工整、条理清晰。
一、选择题(本大题共10小题,每小题4分,满分40分)1. 下列各数是无理数的是【】A.B.C.D.162. 在平面直角坐标系中,直线y=x﹣1经过【】A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限3. 某班一个小组7名同学的体育测试成绩(满分30分)依次为:27,29,27,25,27,30,25,这组数据的中位数和众数分别是【】A.27,25 B.25,27 C.27,27 D.27,304. 如图,已知四边形ABCD 是平行四边形,要使它成为菱形,那么需要添加的条件可以是 【 】A .AC ⊥BDB .AB=AC C .∠ABC=90°D .AC=BD5. 已知(5,-1)是双曲线)0(≠=k xk y 上的一点,则下列各点中不.在.该图象上的是【 】A .( 13,-15) B .(5,1) C . (-1,5) D .(10,21-) 6. 已知x :y=5:2,则下列各式中不正确的是【 】A .x+y y = 72B .x-y y = 32C .x x+y = 57D .x y-x = 537. 函数m x x y +--=822的图象上有两点),(11y x A ,),(22y x B ,若212x x <<-,则【 】A.21y y <B.21y y >C.21y y =D.1y 、2y 的大小不确定8. 将抛物线221y x =+的图象向右平移2个单位,再向下平移3个单位,得到的抛物线是【 】A .22(2)3y x =+-B .22(2)2y x =+-C .22(2)3y x =--D .22(2)2y x =--第4题 第9题9. 抛物线y=ax 2+bx+c (a ≠0)的图象大致如图所示,下列说法:①2a+b=0; ②当-1≤x ≤3时,y<0; ③若(x 1,y 1)、(x 2,y 2)在函数图象上,当x 1<x 2时,y 1<y 2; ④9a+3b+c=0。
沪科版九年级上学期六校第一次联考数学试卷温馨提示:1、你拿到的试卷满分为150分,考试时间为120分钟,请合理利用时间;2、请把答案写到相应位置、字迹工整、条理清晰。
一、选择题(本大题共10小题,每小题4分,满分40分)1. 下列各数是无理数的是【 】A .B .C .D .162. 在平面直角坐标系中,直线y=x ﹣1经过【 】 A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限 D .第二、三、四象限3. 某班一个小组7名同学的体育测试成绩(满分30分)依次为:27,29,27,25,27,30,25,这组数据的中位数和众数分别是【 】A .27,25B .25,27C .27,27D .27,304. 如图,已知四边形ABCD 是平行四边形,要使它成为菱形,那么需要添加的条件可以是 【 】A .AC ⊥BDB .AB=AC C .∠ABC=90°D .AC=BD5. 已知(5,-1)是双曲线)0(≠=k xky 上的一点,则下列各点中不.在.该图象上的是【 】A .( 13,-15) B .(5,1) C . (-1,5) D .(10,21-) 6. 已知x :y=5:2,则下列各式中不正确的是【 】A .x+y y = 72B .x-y y = 32C .x x+y = 57D .x y-x = 537. 函数m x x y +--=822的图象上有两点),(11y x A ,),(22y x B ,若212x x <<-,则【 】A.21y y <B.21y y >C.21y y =D.1y 、2y 的大小不确定8. 将抛物线221y x =+的图象向右平移2个单位,再向下平移3个单位,得到的抛物线是【 】A .22(2)3y x =+-B .22(2)2y x =+-C .22(2)3y x =--D .22(2)2y x =--第4题 第9题9. 抛物线y=ax 2+bx+c (a ≠0)的图象大致如图所示,下列说法:①2a+b=0; ②当-1≤x ≤3时,y<0; ③若(x 1,y 1)、(x 2,y 2)在函数图象上,当x 1<x 2 时,y 1<y 2; ④9a+3b+c=0。
闵行区2018-2019学年上学期九年级质量调研考试数 学 试 卷(测试时间:100分钟,满分:150分)1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 3.本次考试可使用科学计算器.一、选择题:(本大题共6题,每题4分,满分24分)1.在Rt △ABC 中,∠C = 90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,下列等式中不成立的是( ) (A )tan bB a=; (B )cos a B c=; (C )sin a A c =; (D )cot a A b=. 2.如果从甲船看乙船,乙船在甲船的南偏东30°方向,那么从乙船看甲船,甲船在 乙船的( )(A )北偏东30°; (B )北偏西30°; (C )北偏东60°; (D )北偏西60°. 3.将二次函数22(2)y x =-的图像向左平移1个单位,再向下平移3个单位后所得图像的函数解析式为( ) (A )22(2)4y x =--; (B )22(1)3y x =-+; (C )22(1)3y x =--;(D )223y x =-.4.已知二次函数2y a x b x c =++的图像如图所示,那么根据图像, 下列判断中不正确的是( ) (A )a < 0;(B )b > 0;(C )c > 0;(D )abc > 0.5.已知:点C 在线段AB 上,且AC = 2BC ,那么下列等式一定正确的是( ) (A )423AC BC AB +=; (B )20AC BC -=; (C )AC BC BC +=;(D )AC BC BC -=.6.已知在△ABC 中,点D 、E 、F 分别在边AB 、AC 和BC 上,且DE // BC ,DF // AC , 那么下列比例式中,正确的是( ) (A )FBCF EC AE =; (B )BC DE EC AE =; (C )BC DE AC DF =; (D )BC FCAC EC =. (第4题图)二、填空题:(本大题共12题,每题4分,满分48分) 7.已知:x ︰y = 2︰5,那么(x +y )︰y = . 8.化简:313()222a b a b -++-= .9.抛物线232y x x =++与y 轴的公共点的坐标是 .10.已知二次函数2132y x =--,如果x > 0,那么函数值y 随着自变量x 的增大而.(填“增大”或“减小”).11.已知线段AB = 4厘米,点P 是线段AB 的黄金分割点(AP > BP ),那么线段 AP = 厘米.(结果保留根号)12.在△ABC 中,点D 、E 分别在边AB 、AC 上,且DE // BC .如果35AD AB =,DE = 6,那么BC = .13.已知两个相似三角形的相似比为2︰3,那么这两个相似三角形的面积比为 .14.在Rt △ABC 中,∠C = 90°,AB =1tan 3A =,那么BC = .15.某超市自动扶梯的坡比为1︰2.4.一位顾客从地面沿扶梯上行了5.2米,那么这位顾客此时离地面的高度为 米. 16.在△ABC 和△DEF 中,AB BC DE EF=.要使△ABC ∽△DEF ,还需要添加一个条件,那么这个条件可以是 (只需填写一个正确的答案).17.如图,在Rt △ABC 中,∠ACB = 90°,AC BC ==,点D 、E 分别在边AB 上,且AD = 2,∠DCE = 45°,那么DE = .18.如图,在Rt △ABC 中,∠ACB = 90°,BC = 3,AC = 4,点D 为边AB 上一点.将△BCD 沿直线CD 翻折,点B 落在点E 处,联结AE .如果AE // CD ,那么BE = .ABC (第18题图)ABCDE(第17题图)三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)已知在平面直角坐标系xOy 中,二次函数2y a x bx c =++的图像经过点A (1,0)、B (0,-5)、C (2,3).求这个二次函数的解析式,并求出其图像的顶点坐标和对称轴.20.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O .E 为边AB 上一点,且BE = 2AE .设AB a =,AD b =. (1)填空:向量DE = ;(2)如果点F 是线段OC 的中点,那么向量EF = ,并在图中画出向量EF 在向量AB 和AD 方向上的分向量.注:本题结果用向量a b 、的式子表示.画图不要求写作法,但要指出所作图中表示结论的向量).21.(本题共2小题,每小题5分,满分10分)如图,在Rt △ABC 中,∠ACB = 90°,BC = 6,AC = 8.点D 是AB 边上一点,过点D 作DE // BC ,交边AC 于E .过点C 作CF // AB ,交DE 的延长线于点F . (1)如果13AD AB =,求线段EF 的长; (2)求∠CFE 的正弦值.(第20题图)ABCD EOABCDEF(第21题22.(本题满分10分)如图,某公园内有一座古塔AB ,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD .中午12时太阳光线与地面的夹角为45°,此时塔尖A 在地面上的影子E 与墙角C 的距离为15米(B 、E 、C 在一条直线上),求塔AB 的高度.(结果精确到0.01米)参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.62491.4142.23.(本题共2小题,每小题6分,满分12分)如图,在△ABC 中,点D 为边BC 上一点,且AD = AB ,AE ⊥BC ,垂足为点E .过点D 作DF // AB ,交边AC 于点F ,联结EF ,212EF BD EC =⋅. (1)求证:△EDF ∽△EFC ; (2)如果14EDF ADCSS=,求证:AB = BD .(第22题图)ABCDE F(第23题图)24.(本题共3小题,每小题4分,满分12分)已知:在平面直角坐标系xOy 中,抛物线2y a x b x =+经过点A (5,0)、B (-3,4),抛物线的对称轴与x 轴相交于点D . (1)求抛物线的表达式;(2)联结OB 、BD .求∠BDO 的余切值; (3)如果点P 在线段BO 的延长线上,且∠P AO =∠BAO ,求点P 的坐标.xyO(第24题图)25.(本题满分14分,其中第(1)小题4分、第(2)、(3)小题各5分)如图,在梯形ABCD 中,AD // BC ,AB = CD ,AD = 5,BC = 15,5cos 13ABC ∠=.E 为射线CD 上任意一点,过点A 作AF // BE ,与射线CD 相交于点F .联结BF ,与直线AD 相交于点G .设CE = x ,AGy DG=. (1)求AB 的长;(2)当点G 在线段AD 上时,求y 关于x 的函数解析式,并写出函数的定义域; (3)如果23ABEF ABCDS S =四边形四边形,求线段CE 的长.ABCDEFG(第25题图)ABCD(备用图)闵行区2018学年第一学期九年级质量调研考试数学试卷参考答案及评分标准一、选择题:1.D ; 2.B ; 3.C ; 4.B ; 5.C ; 6.A . 二、填空题: 7.7︰5(或75); 8.14a b -+; 9.(0,2); 10.减小; 11.2; 12.10; 13.4︰9(或49); 14.2; 15.2; 16.∠B =∠E (或AB AC DE DF =或BC AC EF DF=); 17.103; 18.245(或4.8). 三、解答题:19.解:由这个函数的图像经过点A (1,0)、B (0,-5)、C (2,3),得0,5,42 3.a b c c a b c ++=⎧⎪=-⎨⎪++=⎩…………………………………………………………(3分) 解得 1,6,5.a b c =-⎧⎪=⎨⎪=-⎩……………………………………………………………(3分)所以,所求函数的解析式为265y x x =-+-.…………………………(1分)2265(3)4y x x x =-+-=--+.所以,这个函数图像的顶点坐标为(3,4),…………………………(2分) 对称轴为直线x = 3.……………………………………………………(1分)20.解:(1)13a b -.(4分) (2)53124a b +.(4分)画图及结论正确.(2分)21.解:(1)∵ DE // BC ,∴13AD DE AB BC ==.………………………………(1分) 又∵ BC = 6,∴ DE = 2.………………………………………(1分) ∵ DF // BC ,CF // AB ,∴ 四边形BCFD 是平行四边形.…(1分) ∴ DF = BC = 6.∴ EF = DF – DE = 4.………………………(2分) (2)∵ 四边形BCFD 是平行四边形, ∴ ∠B =∠F .……………(1分)在Rt △ABC 中,∠ACB = 90°,BC = 6,AC = 8,利用勾股定理,得10AB ==.………(1分)∴ 84sin 105AC B AB ===.∴ 4sin 5CFE ∠=.…………………(2分) 22.解:过点D 作DH ⊥AB ,垂足为点H .由题意,得 HB = CD = 3,EC = 15,HD = BC ,∠ABC =∠AHD = 90°, ∠ADH = 32°.设AB = x ,则 AH = x – 3.………………………………………………(1分) 在Rt △ABE 中,由 ∠AEB = 45°,得 tan tan 451ABAEB EB∠=︒==.(2分) ∴ EB = AB = x .∴ HD = BC = BE + EC = x + 15.………………(2分) 在Rt △AHD 中,由 ∠AHD = 90°,得 tan AHADH HD∠=. 即得 3tan3215x x -︒=+.…………………………………………………(2分) 解得 15tan32332.99331tan32x ⋅︒+=≈≈-︒.…………………………………(2分)∴ 塔高AB 约为33米. ………………………………………………(1分)23.证明:(1)∵ AB = AD ,AE ⊥BC ,∴ 12ED BE BD ==.……………(2分) ∵ 212EF BD EC =⋅,∴ 2EF ED EC =⋅.即得 EF EDEC EF=.(2分) 又∵ ∠FED =∠CEF ,∴ △EDF ∽△EFC .………………(2分) (2)∵ AB = AD ,∴ ∠B =∠ADB .………………………………(1分)又∵ DF // AB ,∴ ∠FDC =∠B . ∴ ∠ADB =∠FDC .∴ ∠ADB +∠ADF =∠FDC +∠ADF ,即得 ∠EDF =∠ADC .(2分) ∵ △EDF ∽△EFC ,∴ ∠EFD =∠C .∴ △EDF ∽△ADC .……………………………………………(1分) ∴2214EDF ADCSED SAD ==. ∴12ED AD =,即 12ED AD =.………………………………(1分) 又∵ 12ED BE BD ==,∴ BD = AD . ∴ AB = BD .……………………………………………………(1分)24.解:(1)∵ 抛物线2y a x b x =+经过点A (5,0)、B (-3,4),∴ 2550,93 4.a b a b +=⎧⎨-=⎩…………………………………………………(2分)解得 1,65.6a b ⎧=⎪⎪⎨⎪=-⎪⎩……………………………………………………(1分)∴ 所求抛物线的表达式为21566y x x =-.………………………(1分) (2)由21566y x x =-,得抛物线的对称轴为直线52x =. ∴ 点D (52,0).………………………………………………(1分) 过点B 作BC ⊥x 轴,垂足为点C .由A (5,0)、B (-3,4),得 BC = 4,OC = 3,511322CD =+=.(1分) ∴ 11cot 8CD BDO CB ∠==. ………………………………………(2分) (3)设点P (m ,n ).过点P 作PQ ⊥x 轴,垂足为点Q .则 PQ = -n ,OQ = m ,AQ = 5 – m . 在Rt △ABC 中,∠ACB = 90°,∴ 8cot 24AC BAC BC ∠===. ∵ ∠P AO =∠BAO ,∴ 5cot 2AQ mPAO PQ n-∠===-. 即得 25m n -=. ①…………………………………………(1分) 由 BC ⊥x 轴,PQ ⊥x 轴,得 ∠BCO =∠PQA = 90°. ∴ BC // PQ . ∴BC OC PQ OQ =,即得 43n m=-.∴ 4 m = - 3 n . ②………(1分)由 ①、②解得 1511m =,2011n =-.……………………………(1分) ∴ 点P 的坐标为(1511,2011-).………………………………(1分) 25.解:(1)分别过点A 、D 作AM ⊥BC 、DN ⊥BC ,垂足为点M 、N .∵ AD // BC ,AB = CD ,AD = 5,BC = 15,∴ 11()(155)522BM BC AD =-=-=.…………………………(2分)在Rt △ABM 中,∠AMB = 90°,∴ 55cos 13BM ABM AB AB ∠===. ∴ AB = 13.………………………………………………………(2分) (2)∵AG y DG =,∴ 1AG DGy DG+=+.即得 51DG y =+.……(1分) ∵ ∠AFD =∠BEC ,∠ADF =∠C .∴ △ADF ∽△BCE . ∴51153FD AD EC BC ===.…………………………………………(1分) 又∵ CE = x ,13FD x =,AB = CD = 13.即得 1133FC x =+.∵ AD // BC ,∴ FD DG FC BC =.∴ 5113115133x y x +=+.………(1分) ∴ 3923xy x-=. ∴ 所求函数的解析式为3923x y x -=,函数定义域为3902x <<.(2分) (3)在Rt △ABM 中,利用勾股定理,得12AM =.∴ 11()(515)1212022ABCD S AD BC AM =+⋅=+⨯=梯形.∵23ABEF ABCDS S =四边形四边形,∴ 80ABEF S =四边形. ………………………(1分) 设ADF SS =.由 △ADF ∽△BCE ,13FD EC =,得 9BECS S =.过点E 作EH ⊥BC ,垂足为点H . 由题意,本题有两种情况:(ⅰ)如果点G 在边AD 上,则 840ABCD ABEF S S S -==四边形四边形.∴ S = 5. ∴ 945BECS S ==.∴ 11154522BEC SBC EH EH =⋅=⨯⋅=. ∴ 6EH =.由 DN ⊥BC ,EH ⊥BC ,易得 EH // DN . ∴61122CE EH CD DN ===.大儒诚信教育资源第 1 页 / 共 11 页 又 CD = AB = 13,∴ 132CE =.………………………………(2分) (ⅱ)如果点G 在边DA 的延长线上,则 9ADF ABCD ABEF S S SS ++=四边形四边形. ∴ 8200S =.解得 25S =.∴ 9225BEC SS ==. ∴ 111522522BEC SBC EH EH =⋅=⨯⋅=.解得 30EH =. ∴ 305122CE EH CD DN ===.∴ 652CE =.………………………(2分) ∴ 136522CE =或.。
2023学年第一学期九年级数学学科素养测试(满分:150分 完成时间:100分钟)一、选择题:(本大题共6小题,每题4分,满分24分)1. 如果ABC DEF ∽△△(其中顶点A 、B 、C 依次与顶点D 、E 、F 对应)那么下列等式中,不一定成立的是( ) A. A D ∠=∠ B.A DB E∠∠=∠∠ C. AB DE =D.AB DEAC DF=【答案】C 【解析】【分析】本题考查了相似三角形的性质,主要利用了相似三角形对应角相等,对应边成比例.根据相似三角形对应角相等,对应边成比例解答即可. 【详解】解:ABC DEF △∽△,A ∴、A D ∠=∠正确,故本选项错误;B 、A DB E∠∠=∠∠正确,故本选项错误; C 、AB DE =不一定成立,故本选项正确; D 、AB DEAC DF=正确,故本选项错误. 故选:C .2. 已知点D 、E 分别是ABC 的边AB 、AC 上,DE BC ∥,且:1:3ADE DBCE S S =△四边形,那么:AD DB 的值是( ).A.14B.13C.12D. 1【答案】D 【解析】【分析】由:1:3ADE DBCE S S =△四边形可得:1:4ADE ABC S S =△△ 再证ADE ABC △△∽可得12AD AB =,则AD BD =即可解答;掌握相似三角形的面积比等于相似比的平方是解题的关键.【详解】解:如图:∵:1:3ADE DBCE S S =△四边形 ∴()::1:4ADE ABCADE ADE DBCE S SS S S =+=△△△四边形∵DE BC ∥, ∴ADE ABC △△∽,∴12AD AB == 即AD BD =, ∴:1AD DB =.故选D .3. 如果抛物线2y ax bx c =++不经过第二象限,且在y 轴的左侧是上升的,那么下列对其顶点的描述中,正确的是( ).A. 其顶点一定不在第一、二象限B. 其顶点一定不在第二、三象限C. 其顶点一定不在第三、四象限D. 其顶点一定不在第四、一象限【答案】B 【解析】【分析】根据题意可知a<0、对称轴bx 02a=−>,然后根据对称轴确定顶点的可能位置即可;根据题意确定对称轴的位置是解题的关键.【详解】解:∵抛物线2y ax bx c =++不经过第二象限,且在y 轴的左侧是上升的, ∴a<0,对称轴bx 02a=−>, ∴顶点不可能在第二、三象限. 故选B .4. 已知在四边形ABCD 中,记AB a =,BC b =,CD c =,DA d =.如果向量a 、b 、c 、d 都是单位向量,那么下列描述中,正确的是( ) A. 向量a 与b 方向相同,且向量c 与d 方向相同 B. 向量a 与c 方向相同,且向量b 与d 方向相同 C. 向量a 与b 方向相反,且向量c 与d 方向相反D. 向量a 与c 方向相反,且向量b 与d 方向相反 【答案】D 【解析】【分析】本题考查了向量的定义,根据题意作出图形,根据向量的定义及数形结合即可求解,熟练掌握向量的定义,利用数形结合思想解决问题是解题的关键. 【详解】解:如图:∴向量a 与c 方向相反,且向量b 与d 方向相反,故选D .5. 如图,在ABC 中,CD 是边AB 上的高,已知90ACB ∠=︒,1AB =.下列线段中,其长为sin 2A 的是( )A. BCB. ACC. BDD. AD【答案】C 【解析】【分析】本题考查正弦的定义,掌握sin A A ∠=的对边斜边是解题的关键.【详解】解:∵CD 是边AB 上的高,已知90ACB ∠=︒, ∴90A ACD ACD DCB ∠+∠=∠+∠=︒, ∴A DCB ∠=∠, 又∵sin BC A AB =,sin BDDCB BC∠=, ∴2sin sin sin =BC BDA A DCB BD AB BC=⋅∠⋅=, 故选C .6. 已知抛物线M :2y ax bx c =++的顶点为P ,抛物线N :2y ax bx d =−++的顶点为Q .命题1:如果点P 在抛物线N 上,那么点Q 也在抛物线M 上;命题2:如果点P 不在抛物线N 上,那么点Q 也不在抛物线M 上.下列说法中,正确的是( ) A. 命题1是真命题,命题2也是真命题 B. 命题1是真命题,命题2是假命题 C. 命题1是假命题,命题2是真命题 D. 命题1是假命题,命题2也是假命题【答案】A 【解析】【分析】根据题意可知抛物线M 、抛物线N 开口方向相反,对称轴互为相反数,据此判断即可;根据二次函数的性质的抛物线M 、抛物线N 的关系是解题的关键.【详解】解:∵抛物线M :2y ax bx c =++的顶点为P ,抛物线N :2y ax bx d =−++的顶点为Q . ∴抛物线M 、抛物线N 开口方向相反,对称轴互为相反数;∴如果点P 在抛物线N 上,那么点Q 也在抛物线M 上;原说法是真命题; 如果点P 不在抛物线N 上,那么点Q 也不在抛物线M 上;即原说法是真命题. 故选A二、填空题:(本大题共12题,每题4分,满分48分)7. 已知::1:3:6a b c =,30a b c ++=,那么−−=c b a ________. 【答案】6 【解析】【分析】设a n =,则3,6b n c n ==,然后代入30a b c ++=求得n ,进而求得a 、b 、c 的值,最后代入计算即可;掌握一元一次方程的应用是解题的关键.【详解】解:设a n =,则3,6b n c n ==,则3630n n n ++=,解得:3n =; ∴3,9,18a b c ===, ∴18936c b a −−=−−=. 故答案为6.8. 已知抛物线2y ax bx c =++的顶点在直线y x =上,且开口向下,请写出一个满足上述条件的抛物线的表达式:________.【答案】2y x =−(答案不唯一)【解析】【分析】先根据开口向下可知a<0,再根据顶点在y x =上,即2424b ac ba a−−=,整理得2240b b ac −−=,然后确定符合条件的值即可解答.【详解】解:∵抛物线2y ax bx c =++开口向下, ∴a<0,∵抛物线2y ax bx c =++的顶点在直线y x =上,∴2424b ac b a a−−=,即2240b b ac −−=,如:当1a =−,0b c ==符合题意. 故答案为:2y x =−(答案不唯一). 9. 已知点()11,A y 和()22,By 在二次函数()220y axax c a =++<图像上,则12y y −________0.(填“>”、“<”或“=”) 【答案】> 【解析】【分析】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.根据二次函数的解析式得出图象的开口向下,对称轴是直线=1x −,根据1x >−时,y 随x 的增大而减小,即可得出答案. 【详解】解:()220y ax ax c a =++<,∴图象的开口向下,对称轴是直线212ax a=−=−, ∴1x >−时,y 随x 的增大而减小, 112−<<,21y y ∴<, 120y y ∴−>,故答案为>.10. 已知平面直角坐标系中点()3,4A 和()0,B b ,满足1tan 2ABO ∠=(O 为原点),那么b 的值为________.【答案】2−或10##10或2− 【解析】【分析】本题考查的是坐标与图形,锐角三角函数的应用,分当点B 在y 轴的正半轴上和负半轴上两种情况,分别画出图形、根据正切的定义列方程求解即可;清晰的分类讨论是解答本题的关键. 【详解】解:①如图:当点B 在y 轴的正半轴上时,则4BC b =−,∵1tan 2ABO ∠=, ∴12AC BC =,即3142b =−,解得:10b =;②如图:当点B 在y 轴的负半轴上时,则4BC b =−,∵1tan 2ABO ∠=,∴12AC BC =,即3142b =−+,解得:=2b −.故答案为2−或10.11. 平面直角坐标系中点()30A ,、()02B ,、()53C −,,设OA a =,OB b =,那么向量CO =________.(用向量a 、b 表示) 【答案】5332a b − 【解析】【分析】本题考查了向量的线性运算:平面向量的加法法则,利用作平面直角坐标系更快速解题,掌握()CO OC =−是解题的关键【详解】解:依题意,如图所示:故()535353323232CO OC OA OB OA OB a b ⎛⎫=−=−−+=−=− ⎪⎝⎭ 故答案为:5332a b − 12. 如果轮船甲位于轮船乙的北偏东35︒方向,那么轮船乙位于轮船甲的________.(注明方向) 【答案】南偏西35︒ 【解析】【分析】根据方位角的相对性进行解答即可;理解相对性是解题的关键. 【详解】解:∵轮船甲位于轮船乙的北偏东35︒方向, ∴轮船乙位于轮船甲的南偏西35︒. 故答案为:南偏西35︒.13. 已知等腰三角形两腰上的中线相互垂直,那么其顶角的正弦值为________. 【答案】35##0.6 【解析】【分析】如图:过B 作BE AC ⊥ 设2BC = 则1BG CG == 再根据直角三角形的性质可得112DG BC ==;根据三角形的重心是中线的三等分点可得3AG =;再运用等腰三角形的性质和勾股定理可得AB AC ==35BE CE ==,最后根据正弦的定义即可解答.【详解】解:如图:过B 作BE AC ⊥ 设2BC = 则1BG CG ==∵D 是重心,BD CD ⊥ ∴112DG BC ==∴BD CD === 22AD DG == 即3AG =∵AD 是中线 AB AC = ∴AG BC ⊥∴AB AC ====∵1tan 3BE AG ACB CE CF ∠=== ∴3BE CE =∵222BC CE BE =+∴()2223BC CE CE =+ 解得:5CE =∴3BE CE ==,∴3sin5BE BAC AB ∠===.故答案为35.【点睛】本题主要考查了等腰三角形的性质、勾股定理、三角形重心的性质、正切、正弦的定义等知识点,掌握三角形的重心是中线的三等分点成为解题的关键.14. 已知菱形的周长为C ,其一个内角(锐角)的正切值为2,设其面积为S ,那么S 关于C 的函数关系式是________.(不必写出定义域)【答案】2S =【解析】【分析】本题考查正切的定义,菱形的性质和面积以及勾股定理.正切等于对边比邻边,菱形的四边长度相等.根据菱形的性质得出菱形的边长,由正切的定义得出2DEAE=,再由勾股定理得出DE 的长,由菱形的面积等于底乘以高即可求解.【详解】解:如图,四边形ABCD 是菱形,DE 是AB 边上的高,∵菱形的周长为C , ∴4C AB AD ==, ∵A ∠的正切值为2, ∴2DEAE=, ∴12AE DE =, 由勾股定理可得222AD AE DE =+,∴222142C DE DE ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭解得:10DE =,菱形面积为241040C S AB DE C C =⋅=⋅=,2.15. 已知一张等腰直角纸片,其底边长为3cm ,将其沿过其重心且平行于底边的直线折叠,则折叠后重叠部分的面积为________2cm . 【答案】34【解析】【分析】本题考查平行线分线段成比例及三角形中位线的性质、勾股定理,熟知相关性质是正确解决本题的关键.过AC 中点E 作EF AB ∥,交CD 于F ,利用平行线分线段成比例求出重叠部分的上底、下底、高,再利用梯形面积公式即可求出.【详解】解:如图所示,3AB =,CD BE 、是中线,M 是重心,PQ 过点M 且PQ AB ∥,将CPQ 沿直线PQ 折叠,重叠部分是梯形GHPQ ,EF AB ∥,12EF FM BD DM ∴==, 3AB =,32BD AD CD ∴===,2AC BC ==, 34EF CF ∴==, 1142FM ,DM ∴==,1CM QM ∴==,2PQ =,CQ =2AQ ∴=, 1AG ∴=,同理1BH =,1GH ∴=,()11312224GHPQ S ∴=⨯+⨯=梯形.故答案为:34.16. 已知在ABC 中,5AB =,4BC =,3CA =,G 是其重心,那么以GA 、GB 、GC 为三边的三角形的面积是________. 【答案】2 【解析】【分析】如图:延长AG 交BC 于D 再延长GD 使得DE DG = 根据题意可证四边形CGBE 是平行四边形,即CE BG =、BE CG =,最后根据三角形的重心将三角形三等分以及等底等高即可解答;掌握三角形的重心是三角形的中线的三等分点是解答本题的关键.【详解】解:如图:延长AG 交BC 于D 再延长GD 使得DE DG = ∵AD 是中线, ∴21,,33CD BD AG AD GD AD ===, AG GE = ∴四边形CGBE 是平行四边形, ∴CE BG =,BE CG = ∵AG GE =,∴那么以GA 、GB 、GC 为三边的三角形为BEG ∵111342333BCGABCSS ==⨯⨯⨯=, ∴平行四边形CGBE 的面积为24BCGS =,∴122BEGCGBE SS ==. 故答案为2.17. 如图,将矩形ABCD 分别沿AE 、DF 折叠,恰好使点B 、C 重合于形内点G 处,如果EFG 与ADG △的面积比为1:4,那么:AB AD =________.【答案】58【解析】【分析】本题考查了矩形与折叠问题,勾股定理,相似三角形的性质与判定,过点G 作MN AD ⊥交AD 于点N ,交BC 于点M ,证明EGM GAN ∽得出12EG EM MG AG NG AN ===,设,EM x MG y ==,分别表示出,MN AB ,得出43y x =,进而表示出,AB AD ,即可求解. 【详解】如图所示,过点G 作MN AD ⊥交AD 于点N ,交BC 于点M ,依题意,,AG AB DG DC ==, 又AB CD =, ∴AG GD =,∴GAD GDA ∠=∠,则BAG CDG ∠=∠, ∵折叠, ∴AGEB ∠=∠,DGFC ∠=∠,∴360180BAG BEG B AGE ∠+∠=︒−∠−∠=︒,又180BEG MEG ∠+∠=︒, ∴MEG BAG ∠=∠, ∵90EGA ∠=︒∴90EGM AGN ∠+∠=︒∴90GAN AGN EGM ∠=︒−∠=∠ ∴EGM GAN ∽ 同理可得MGF NDG ∽∵EFG 与ADG △的面积比为1:4, ∴12EG EM MG AG NG AN === 设,EM x MG y == ∴2,2NG x AN y ==,∴EG =AB AG ==∴222BC BE EM x =+= ∴2AB MN MG NG y x ==+=+∴2y x =+ 解得:43y x =∴410233AB x x x =+=,1623AD BC x x === ∴58AB AD = 故答案为:58.18. 如图,直线123l l l ∥∥,等边ABC 的三个顶点分别在直线1l 、2l 、3l 上,如果直线1l 、2l 间的距离与直线2l 、3l 的距离之比为1:2,那么AB 与直线1l 夹角的正切值是________.【答案】5【解析】【分析】本题考查旋转性质,等边三角形的性质,解直角三角形,过点C 作2CD l ⊥于点D ,然后把CDB 绕点C 顺时针旋转60︒得到CEA ,过点E 作3FG l ⊥于点F ,交1l 于点G ,过点B 作1BH l ⊥于点H ,设BH a =,得到12EF EC a ==,然后求出正切值即可. 【详解】解:过点C 作2CD l ⊥于点D ,然后把CDB 绕点C 顺时针旋转60︒得到CEA ,过点E 作3FG l ⊥于点F ,交1l 于点G ,过点B 作3BH l ⊥于点H ,设BH a =,则2CD a =,则2CE CD a ==,90FCD CDB FEC ∠=∠=∠=︒,60ECD ∠=︒,3FG a = ∴30ECF ∠=︒, ∴12EF EC a ==, ∴32EG FG EF a a a =−=−=,又∵90ECF FEC GEA FEC ∠+∠=∠+∠=︒, ∴30GEA ∠=︒∴2cos cos303EG a EA a GEA ===∠︒,∴3AC a ===,又∵等边ABC , ∴3AB AC a ==,∴3AH a ===,∴tan 5BH BAH AH∠===,故答案为:5. 的三、解答题:(本大题共7题,满分78分)19. 计算:()043tan 30tan 60cot 60cos701sin 60cos 45︒︒+︒+︒−−︒︒. 【答案】7 【解析】【分析】本题考查了实数的运算,掌握特殊角的三角函数值是解题的关键,将特殊角的三角函数值代入并结合零次幂的性质计算即可. 【详解】解:()043tan 30tan 60cot 60cos701sin 60cos 45︒︒+︒+︒−−︒︒431=+−⎝⎭114=−61=+− 7=.20. 如图,在等腰梯形ABCD 中,AD BC ∥,2AD =,4BC =,3AB =,BE CD ⊥,垂足为E .(1)设AB a =,AD b =,求作向量EC 分别在AB 、AD 方向上的分向量; (2)求sin ABE ∠的值.【答案】(1)见解析 (2)79【解析】【分析】(1)如图:作,AM BC DN BC ⊥⊥ 则四边形AMND 是矩形.可以得到2MN AD ==、1BM CN ==,再根据三角函数可得43CE =,进而可得49EC CD =,再根据向量的和差可得DC a b =+,即4499EC a b =+,据此作图即可; (2)如图:如图:设AM 与BE 交于点H ,由等腰梯形的性质可得1BF =,再根据勾股定理可得AM =BE =4HM =、BH =AH =;再根据三角函数可得HI =73AI =,进而得到23BI =,最后根据正弦的定义即可解答. 【小问1详解】解:如图:作,AM BC DN BC ⊥⊥ 则四边形AMND 是矩形.∴2MN AD == ∴1BM CN ==∴1cos 3CE NC C BC DC ∠=== 即143CE =,即43CE = ∴49CE CD = 即49EC CD = ∵AD BC ∥,2BC AD = ∴22BC AD b ==,∴2DC DA AB BC b a b a b =++=−++=+, ∴4499EC a b =+ ∴向量EC 在AB 、AD 的分向量分别为4499a b 、;作图见图:小问2详解】解:如图:设AM 与BE 交于点H ,∵等腰梯形ABCD 中,AD BC ∥,2AD =,4BC =, ∴1BF = ∴AM ==BE ==∵4tan 43HM CE EBC BM BE ∠====即14HM =,解得:4HM =;∴BH ==∴AH AM MH =−= 如图:作HIAB ⊥∴1sin 3HI BM BAM AH AB ∠=== 即173HI =,解得:HI = 同理可得:73AI =,∴72333BI =−=,∴712sin 39IH ABE BH ∠===.【点睛】本题主要考查了等腰梯形的性质、矩形的判定与性质、解直角三角形、三角函数、向量等知识点,正确作出辅助线、灵活运用三角函数解直角三角形是解题的关键.【21. 已知函数2423y x x =++.(1)试着通过列表、描点、连线的方式,画出其图像的草图; (2)根据所画草图,请写出该函数的三条图像特征.【答案】(1)见解析 (2)①函数图像的对称轴为=1x −;②当1x >−,y 随x 的增大而减小;③函数图像无限靠近x 轴,但不会和x 轴相交(不唯一合理即可). 【解析】【分析】(1)根据列表、描点、连线的步骤画出函数图像即可;掌握作图步骤是解题的关键; (2)根据函数图像,总结归纳性质即可;掌握数形结合思想是解题的关键. 【小问1详解】 解:①列表如下:②描点、连线如下:【小问2详解】解:由(1)所得图像可得如下性质:①函数图像的对称轴为=1x −;②当1x >−,y 随x 的增大而减小;③函数图像无限靠近x 轴,但不会和x 轴相交(不唯一合理即可).22. 小明想利用建筑CD 玻璃幕墙的反射作用来测建筑AB 的高度.如图所示,他先在建筑AB 的底部A 处用测角仪测得其顶部B 在建筑CD 玻璃幕墙上的反射点E 的仰角为α,然后他沿AC 前进了10米到达点F 处,再用测角仪测得建筑AB 的顶部B 在建筑CD 玻璃幕墙上的反射点G 的仰角为β.已知1tan 3α=,sin 13β=,测角仪置于水平高度1.5米的M 、N 处.求建筑AB 的高度.【答案】31.5 【解析】【分析】延长BE BG ,分别交MN 的延长线于M N '',,MM '于CD 相交于H ,设m NH x =,则()()()10m,210m,220m MH x N M x MM x '=+=+'=+,然后在Rt MM B '和Rt MN B '中解直角三角形可得()1·tan 2103BM MM x α==+'、·tan BM MN β'=,由sin 13β=可得tan 4β=,进而得到()2104BM x =+,据此列方程解得35x =,最后代入即可解答.正确的作出辅助线、灵活应用解直角三角形解实际问题是解题的关键.【详解】解:如图:延长BE BG .分别交MN 的延长线于M N '',,MM '于CD 相交于H ,设m NH x = 则()()()10m,210m,220m MH x N M x MM x '=+=+'=+在Rt MM B '中,()1·tan 2103BM MM x α==+'; Rt MN B '中,·tan BM MN β'=, ∵sin 13β=,∴cos 3β=,∴tan 4β=,∴()2104BM x =+,∴())122021034x x +=+,解得:35x =+,∴()()123520 1.531.5m 3AB ⎡⎤=⨯++=+⎣⎦.答:建筑AB 的高度为()31.5m +.23. 如图,正方形纸片ABCD .现对纸片做如下操作:第一步,对折纸片,使边AD 与BC 重合,得到折痕EF ;第二步,将BCF △折叠,得到折痕BF ;第三步,将ABP 折叠,使顶点A 落在折痕BF 上点Q 处.(1)求证:点P 恰为线段AD 的黄金分割点;(2)现有矩形纸片ABCD ,其中AB BC <,如图所示.请你借助这张纸片,设法折出一个30︒的角.要求写出折纸的步骤(可仿照上面的表述),并在图中画出各步骤的折痕位置,注明30︒角的位置,不需要证明.【答案】(1)见解析 (2)见解析 【解析】【分析】本题考查折叠作图,黄金分割点的定义,勾股定理,掌握黄金分割的比值是解题的关键.(1)先运用勾股定理得到2BF =,然后在Rt QPF 和Rt DGF 中,运用2222FQ PQ DF DP +=+解题计算即可证明;(2)先对折矩形,然后再折叠,使得点A 落在第一次的折痕上,即可得到30︒角. 【小问1详解】 证明:如图,连接PF ,设正方形ABCD 的边长为1,则12DF =.在Rt BCF 中,2BF ==,则12QF BF BQ =−=−. 设AP PQ x ==,则1PD x =−, 在Rt QPF 和Rt DGF 中,有2222FQ PQ DF DP +=+, 即()222211122x x ⎛⎫⎛⎫−++− ⎪ ⎪ ⎪⎝⎭⎝⎭=, 解得512x √−=, 即点P 是AD 的黄金分割点(AG GD >); 【小问2详解】方法如图所示:第一步:对折矩形纸片ABCD ,使 AD 与BC 重合,得到折痕EF ,把纸片展平;第二步:再一次折叠纸片,使点A 落在EF 上,落点为点N ,并使折痕经过点B ,得到折痕BM ,同时,得到线段BN .则30ABM MBN NBC ∠∠∠===︒.24. 如图,直线1l :122y x =+与x 、y 轴的交点为A 、B ,点P 是该直线上位于第一象限内的一点,满足12PB BA =.(1)以B 为顶点的抛物线2y ax bx c =++与线段AB (不含点A 、B )有交点,求a 的取值范围; (2)将直线1l 平移得到直线2l ,直线2l 与x 、y 轴的交点为C 、D ,且使BC CD ⊥,问:直线1l 平移到直线2l ,至少需要平移多少距离?(3)如果(1)中抛物线2y ax bx c =++与直线2l 在抛物线对称轴右侧的交点为Q ,当PQA △与PQB △相似时,求此时抛物线的表达式.【答案】(1)108a −<<(2 (3)2129y x =−+ 【解析】【分析】(1)根据题意可得:a<0、0b =、()()4,0,0,2A B −,然后求出抛物线过临界点时的a 的取值,进而完成解答;确定a 、b 的取值范围是解答本题的关键; (2)设平移后的直线2l 的解析式为:212y x t =+;BC 的解析式为3y kx b =+,根据垂直直线的关系可得2k =−,进而确定(),0,0,2b C D t ⎛⎫⎪⎝⎭;再根据点C 在2l 上可得4b t =−,则0,4b D ⎛⎫− ⎪⎝⎭;再运用勾股定理列方程可得2b =,然后确定()11,0,0,2C D ⎛⎫− ⎪⎝⎭,最后根据两点间距离公式即可解答;明确各直线间的关系是解题的关键; (3)设1,22P a a ⎛⎫+ ⎪⎝⎭,根据题意和勾股定理可得()2,3P ;再根据PQA PQB ∽可得3PA PQ AQ PB BQ PQ ===;设Q 的坐标为11,22n n ⎛⎫− ⎪⎝⎭,根据两点间距离公式可得3=,解得:3n =或92n =(舍),即Q 的坐标为()3,1;再结合(1)、(2)即可解答;灵活运用相似三角形的性质和两点间距离公式是解题的关键. 【小问1详解】解:∵以B 为顶点的抛物线2y ax bx c =++与线段AB (不含点A 、B )有交点, ∴抛物线的开口一定向下,即a<0;且对称轴为y 轴,则02ba−=、0b =, 当0x =时,1222y x =+=;当0y =时,4x =−, ()()4,0,0,2A B −;当2y ax bx c =++恰好过()0,2B 点时,则2c =,()220y ax a =+<;当2y ax bx c =++恰好过()()4,0,0,2A B −两点时,有0162a =+,即18a =−; 综上,a 的取值范围为108a −<<. 【小问2详解】解:设平移后的直线2l 的解析式为:212y x t =+;BC 的解析式为3y kx b =+, ∵BC CD ⊥, ∴112k =−,即2k =−, ∴32y x b =−+,∴(),0,0,2b C D t ⎛⎫⎪⎝⎭由点C 在2l 上,则1022b t ⨯+=,解得:4b t =−,即0,4b D ⎛⎫− ⎪⎝⎭,在Rt BCD 中有222BC CD BD +=,即2222422244b b b b ⎛⎫⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,解得:2b =,∴()11,0,0,2C D ⎛⎫− ⎪⎝⎭21122y x =−∴平移距离BC ==【小问3详解】 解:设1,22P a a ⎛⎫+ ⎪⎝⎭, ∵12PB BA =, ∴2BA PB =∴=,解得:2a =,即()2,3P ; ∵PQA PQB ∽∴3PA PQ AQPB BQ PQ=== 设Q 的坐标为11,22n n ⎛⎫− ⎪⎝⎭3=,解得:3n =或92n =(舍), ∴Q 的坐标为()3,1,(1)可得由22y ax =+,则192a =+,解得:19a =−. ∴抛物线表达式为:2129y x =−+;25. 如图,在ABC 中,90ACB ∠=︒,3AC =,4BC =,O 是边AC 的中点,点D 位于边AB 上,连接DO 并延长交BC 的延长线于点E ,过点D 作DF BC ⊥,垂足为F .(1)当DE AB ⊥时,求tan AED ∠的值; (2)当EA AB ⊥时,求证:2DF DA DB =⋅;(3)作射线OP ,使其平行于BC ,且在AC 的右侧.试问:在射线OP 上是否存在点Q ,使得OQD OQE ∠=∠如果存在,请求出OQ 的长;如果不存在,请说明理由.【答案】(1)1241(2)见解析 (3)4 【解析】【分析】(1)由中点的性质可得32OA OC ==,再直角三角形可得65OD =、910AD =、158OE = 进而得到12340ED =;最后根据正切的定义即可解答; (2)如图:延长EA FD 、相交于G ,根据平行线等分线段定理可得,,OA EO CO EODG ED DF ED==再说明GD DF =,可得sin ADG DG ∠=;再说明sin DF B DB ∠= 则B G ∠=∠;然后可得AD DF DG BD =,再结合GD DF =即可证明结论;(3)如图:作AI BC ∥交BD 延长线于I ,过O 作射线OP 交AB 于G ,,连接CG 交DF 于H DF 与OG 交于J ,再证DJG HJG ≌可得,DJ JH DG HG ==,进而说明DQO EQO ∠=∠,即H 在EQ上;再根据平行线等分线段定理可得GQ HG DGCE CH AD==;然后再说明OG CQ =即可解答. 【小问1详解】解:∵O 是边AC 的中点,3AC = ∴32OA OC ==∵DE AB ⊥,∴346sin 255BC OD OA CAB OA AB =⋅∠=⋅=⨯= 339cos 2510AC AD OA CAB OA AB =⋅∠=⋅=⨯=631553cos cos 282OC OC OE COE AOD ===÷=∠∠∴1561238540ED =+= ∴912312tan 104041AD AED DE ∠==÷=. 【小问2详解】解:如图:延长EA FD 、相交于G , ∵AC GF ∥∴,,OA EO CO EODG ED DF ED == ∴OA CODG DF=, ∵OA OC = ∴GD DF = ∵EA AB ⊥, ∴sin ADG DG∠=在Rt DFB △中,sin DFB DB∠= 则B G ∠=∠ ∴AD DFDG BD= ∵GD DF =, ∴AD DFDF BD= 即2DF DA DB =⋅. 【小问3详解】解:如图:假设Q 存,作AI BC ∥交BD 延长线于I ,过O 作射线OP 交AB 于G ,,连接CG 交DF于H DF 与OG 交于J ,∵OG AC ⊥ AG CG = OG BC ∥ ∴G 是AB 的中点,∴,AG CG BG AGO CGO ==∠= ∵DF OP ⊥ JG GJ = ∴DJG HJG ≌ ∴,DJ JH DG HG ==∴DQ HQ = DQO HQO ∠=∠ 又∵DQO EQO ∠=∠ ∴H 在EQ 上, ∵CE QG ∥ ∴GQ HG DGCE CH AD == ∵AI OG ∥ ∴OG DG AI AD= 则OG GQAI CE = ∵,AO CO AI CE =∥ ∴AI CE = ∴OG CQ = ∴12OG AO OB AC == 即12OG OB = ∴24OQ OG BC ===.【点睛】本题主要考查了中点的性质、解直角三角形、三角函数、平行线等分线段定理、全等三角形的判定与性质等知识点,灵活运用相关知识成为解答本题的关键.,。
2018-2019学年度第一学期期末教学质量验收九年级数学测试卷一、选择题(本大题共10小题,共30.0分)1.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A. y=2x2+3B. y=2x2−3C. y=2(x+3)2D. y=2(x−3)2【答案】C【解析】解:将抛物线y=2x2向左平移3个单位所得直线解析式为:y=2(x+3)2;故选:C.根据“左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.2.若a:b=3:2,且b2=ac,则b:c=()A. 4:3B. 3:2C. 2:3D. 3:4【答案】B【解析】解:∵b2=ac,∴b:a=c:b,∵a:b=3:2,∴b:c=a:b=3:2.故选:B.根据比例的基本性质,a:b=3:2,b2=ac,则b:c可求.利用比例的基本性质,对比例式和等积式进行互相转换即可得出结果.3.若点A(−6,y1),B(−2,y2),C(3,y3)在反比例函数y=2k2+3(k为常数)的图象上,则xy1,y2,y3大小关系为()A. y1>y2>y3B. y2>y3>y1C. y3>y2>y1D. y3>y1>y2【答案】D【解析】解:∵k2≥0,∴2k2+3≥3,∴反比例函数y=2k2+3(k为常数)的图象位于第一三象限,x∵−6<−2,∴0>y1>y2,∵3>0,∴y3>0,故选:D .先判断出反比例函数图象在第一三象限,再根据反比例函数的性质,在每一个象限内,y 随x 的增大而减小判断.本题考查了反比例函数图象上点的坐标特征,熟记反比例函数的增减性是解题的关键.4. 如图,DE//BC ,分别交△ABC 的边AB 、AC 于点D 、E ,AD AB =13,若AE =5,则EC 的长度为( ) A. 10B. 15C. 20D. 25【答案】A【解析】解:∵DE//BC ,∴AD AB =AE AC , ∴5AC =13, ∴AC =15.∴EC =AC −AE =15−5=10.故选:A .根据平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例,由DE//BC 得到AD AB =AEAC ,于是可计算出AC 的长,然后利用EC =AC −AE 进行计算即可. 本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例;平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.5. 如图,已知∠α的一边在x 轴上,另一边经过点A(2,4),顶点为(−1,0),则sinα的值是( )A. 25B. √55C. 35D. 45【答案】D【解析】解:作AC ⊥x 轴于点C ,由题意得,BC =3,AC =4,由勾股定理得,AB =5,则sinα=AC AB =45,故选:D .作AC ⊥x 轴于点C ,根据点的坐标特征求出点A 、B 的坐标,得到CA 、CB 的长,根据勾股定理求出AB ,根据正弦的定义解答即可.个角的正弦,邻边比斜边是这个角的余弦,对边比邻边是这个角的正切是解题的关键.6.k为任何实数,则抛物线y=2(x+k)2−k的顶点在()上.A. 直线y=x上B. 直线y=−xC. x轴D. y轴【答案】A【解析】解:∵抛物线y=2(x+k)2−k的顶点坐标为(−k,−k),∴顶点坐标满足直线y=x,故顶点总在直线y=x上,故选:A.已知抛物线解析式为顶点式,可求出顶点坐标,再确定顶点所在的直线解析式.本题考查了抛物线的顶点坐标的求法及其运用,需要熟练掌握.7.如图,放映幻灯片时,通过光源把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为()A. 6cmB. 12cmC. 18cmD. 24cm【答案】C【解析】解:∵DE//BC,∴△AED∽△ABC∴AEAC =DEBC,设屏幕上的小树高是x,则2060=6x,解得x=18cm.故选:C.根据题意可画出图形,再根据相似三角形的性质对应边成比例解答.本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.8.如图,二次函数y=x2−4x+3的图象交x轴于A,B两点,交y轴于C,则△ABC的面积为()A. 6B. 4C. 3D. 1【答案】C【解析】解:在y=x2−4x+3中,当y=0时,x=1、3;当x=0时,y=3;即A(1,0)、B(3,0)、C(0,3)故△ABC的面积为:12×2×3=3;根据解析式求出A 、B 、C 三点的坐标,即△ABC 的底和高求出,然后根据公式求面积. 本题考查根据解析式确定点的坐标.9. 如图,矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,AD AB =12,△CEF 的面积为S 1,△AEB 的面积为S 2,则S 1S 2的值等于( ) A. 116B. 15C. 14D. 125 【答案】A【解析】解:∵AD AB =12,∴设AD =BC =a ,则AB =CD =2a ,∴AC =√5a ,∵BF ⊥AC ,∴△CBE∽△CAB ,△AEB∽△ABC ,∴BC 2=CE ⋅CA ,AB 2=AE ⋅AC∴a 2=CE ⋅√5a ,2a 2=AE ⋅√5a ,∴CE =√5a 5,AE =4√5a 5, ∴CE AE =14, ∵△CEF∽△AEB ,∴S 1S 2=(CE AE )2=116,故选:A .根据已知条件设AD =BC =a ,则AB =CD =2a ,由勾股定理得到AC =√5a ,根据相似三角形的性质得到BC 2=CE ⋅CA ,AB 2=AE ⋅AC 求得CE =√5a 5,AE =4√5a 5,得到CE AE =14,根据相似三角形的性质即可得到结论.本题考查了矩形的性质及相似三角形的判定,能够牢记射影定理的内容对解决本题起到至关重要的作用,难度不大.10. 如图在Rt △ABC 中,∠ACB =90∘,∠BAC =30∘,AB =2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E.设AD =x ,CE =y ,则下列图象中,能表示y 与x 的函数关系图象大致是( )A. B. C. D.【答案】B【解析】解:解法一、∵∠ACB =90∘,∠BAC =30∘,AB =2,∴BC =1,AC =√3, ∴当x =0时,y 的值是√3,当x =1时,y 的值是2√33, ∵当x =2时CD 的垂线与CA 平行,虽然x 不能取到2,但y 应该是无穷大, ∴y 与x 的函数关系图象大致是B ,过点D 作点DG ⊥AC 于点G ,过点D 作点DF ⊥BC 于点F ,∴CF =DG =x 2,DF =CG =√32(2−x), ∴EG =y −CG ,分别在直角三角形CDF 、直角三角形DGE 、直角三角形CDE 中利用勾股定理,DF 2+CF 2+DG 2+GE 2=CE 2,y =2√3(2−x).解法二、∵∠ACB =90∘,∠BAC =30∘,AB =2,∴BC =1,AC =√3.∴当x =0时,y =√3;当x =1时,y =2√33∵当x =2时,CD 的垂线与CA 平行,虽然x 不能取到2,但y 应该是无穷大, ∴y 与x 的函数关系图象大致是B 选项.故选:B .本题需先根据题意,求出BC ,AC 的长,再分别计算出当x =0和x =2时,y 的值,即可求得y 与x 的函数图象.本题主要考查了动点问题的函数图象.在解题时要能根据题意得出函数关系是解答本题的关键.11.抛物线y=−x2+2x−2的顶点坐标为______.【答案】(1,−1)【解析】解:由y=−x2+2x−2,知y=−(x−1)2−1;∴抛物线y=−x2+2x−2的顶点坐标为:(1,−1).故答案是:(1,−1).利用配方法将抛物线的解析式y=−x2+2x−2转化为顶点式解析式,然后求其顶点坐标.本题考查了二次函数的性质.二次函数的三种形式:一般式:y=ax2+bx+c,顶点式:y=(x−h)2+k;两根式:y=a(x−x1)(x−x2).12.若锐角α满足sinα≥cosα,则α的取值范围是______.【答案】45∘≤α<90∘【解析】解:∵cosα=sin(90∘−α),且sinα随α的增大而增大,∴由sinα≥cosα,即sinα≥sin(90∘−α)知α≥90∘−α,解得:a≥45∘,又α是锐角,∴45∘≤α<90∘,故答案为:45∘≤α<90∘.由cosα=sin(90∘−α)且sinα随α的增大而增大,结合sinα≥cosα知α≥90∘−α,解之可得.本题主要考查同角三角函数的关系,解题的关键是掌握同角三角函数的关系及锐角三角函数的增减性.13.在平面直角坐标系中,一直角三角板如图放置,其中30∘(k≠0)在第一象限内交于A、B角的两边与双曲线y=kx两点,若点A的纵坐标、点B的横坐标都是1,则该双曲线的解析式是______.【答案】y=√3x(k≠0)过点A、B,且点A的纵【解析】解:∵双曲线y=kx坐标、点B的横坐标都是1,∴可设A(k,1),B(1,k).如图,过A作AC⊥x轴于C,过B作BD⊥y轴于D,则AC=BD=1,∠ACO=∠BDO=90∘,OC=OD=k,∴∠AOC=∠BOD=12(∠COD−∠AOB)=12(90∘−30∘)=30∘.在Rt△AOC中,tan∠AOC=ACOC,∴OC=AC tan∠AOC∴点A的坐标为(√3,1).∵点A(√3,1)为双曲线y=kx上的点,∴k=1×√3=√3.∴反比例函数的解析式为y=√3x.故答案为y=√3x.如果过A作AC⊥x轴于C,过B作BD⊥y轴于D,那么首先证明△ACO≌△BDO,得出∠AOC=∠BOD=30∘,然后在Rt△AOC中,由AC=1,∠AOC=30∘,求出OC的值,即得到点A的坐标,由点A在双曲线上,利用待定系数法即可求出双曲线的解析式.本题考查的是反比例函数图象上点的坐标特点,涉及到利用待定系数法求反比例函数的解析式,全等三角形的判定与性质,正切函数的定义等多个知识点.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.14.如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45∘,测得旗杆顶端A的仰角为30∘.若旗杆与教学楼的距离为9m,则旗杆AB的高度是______m(结果保留根号)【答案】3√3+9【解析】解:在Rt△ACD中,∵tan∠ACD=ADCD,∴tan30∘=AD9,∴AD9=√33,∴AD=3√3m,在Rt△BCD中,∵∠BCD=45∘,∴BD=CD=9m,∴AB=AD+BD=3√3+9(m).根据在Rt△ACD中,tan∠ACD=ADCD ,求出AD的值,再根据在Rt△BCD中,tan∠BCD=BDCD,求出BD的值,最后根据AB=AD+BD,即可求出答案.此题考查了解直角三角形的应用−仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.15.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45∘;②△DEF∽△ABG;③S△ABG=32S△FGH;④AG+DF=FG.其中正确的是______.(把所有正确结论的序号都选上)【答案】①③④【解析】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF=√102−62=8,∴DF=AD−AF=10−8=2,设EF=x,则CE=x,DE=CD−CE=6−x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6−x)2+22=x2,解得x=103,∴ED=83,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=12∠ABC=45∘,所以①正确;HF=BF−BH=10−6=4,设AG=y,则GH=y,GF=8−y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8−y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,AB DE=683=94,AGDF=32,∴ABDE ≠AGDF,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=12⋅6⋅3=9,S△FGH=12⋅GH⋅HF=12×3×4=6,∵AG +DF =3+2=5,而GF =5,∴AG +DF =GF ,所以④正确.故答案为①③④.由折叠性质得∠1=∠2,CE =FE ,BF =BC =10,则在Rt △ABF 中利用勾股定理可计算出AF =8,所以DF =AD −AF =2,设EF =x ,则CE =x ,DE =CD −CE =6−x ,在Rt △DEF 中利用勾股定理得(6−x)2+22=x 2,解得x =103,即ED =83;再利用折叠性质得∠3=∠4,BH =BA =6,AG =HG ,易得∠2+∠3=45∘,于是可对①进行判断;设AG =y ,则GH =y ,GF =8−y ,在Rt △HGF 中利用勾股定理得到y 2+42=(8−y)2,解得y =3,则AG =GH =3,GF =5,由于∠A =∠D 和AB DE ≠AGDF ,可判断△ABG 与△DEF不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG =3,GF =5,DF =2可对④进行判断.本题考查了相似形综合题:熟练掌握折叠和矩形的性质、相似三角形的判定方法;会运用勾股定理计算线段的长.三、解答题(本大题共7小题,共70.0分)16. 计算:−12009+(−13)−1−|3tan30∘−1|.【答案】解:原式=−1−3−(3×√33−1) =−4−(√3−1)=−3−√3.【解析】直接利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.17. 如图所示,在边长为1的正方形网格中,建立如下平面直角坐标系中其中△ABO 的顶点A(3,4)、B(8,1)、O(0,0)(1)以O 为位似中心,在第一象限内作出△ABO 的位似图形△A 1B 1O ,其相似比为12.(2)将△ABO 绕点O 逆时针旋转90∘得到△A 2B 2O【答案】解:(1)如图所示,△A 1B 1O 即为所求.(2)如图所示,△A 2B 2O 即为所求.【解析】(1)根据位似变换的定义和性质作出点A 和点B 的对应点,再与点O 首尾顺次连接即可得;(2)分别作出点A 和点B 绕点O 逆时针旋转90∘得到的对应点,再首尾顺次连接即可得. 本题主要考查作图−位似变换、旋转变换,解题的关键是掌握位似变换和旋转变换的定义与性质,并据此得出变换后的对应点.18. 已知二次函数y =ax 2+bx +c 的图象过A(2,0),B(0,−1)和C(4,5)三点(1)求二次函数的解析式;(2)直接写出不等式ax 2+bx +c <x +1的解集.【答案】解:(1)根据题意得{4a +2b +c =0c =−116a +4b +c =5,解得{a =12b =−12c =−1,所以抛物线解析式为y =12x 2−12x −1;(2)解方程12x 2−12x −1=x +1得x 1=−1,x 2=4,即抛物线y =ax 2+bx +c 与直线y =x +1的交点的横坐标分别为−1,4;如图, 所以当−1<x <4时,ax 2+bx +c <x +1,即不等式ax 2+bx +c <x +1的解集为−1<x <4.【解析】(1)利用待定系数法求抛物线解析式;(2)先解方程12x 2−12x −1=x +1得抛物线y =ax 2+bx +c 与直线y =x +1的交点的横坐标分别为−1,4;如图,然后写出直线在抛物线上方所对应的自变量的范围即可.本题考查了二次函数与不等式(组):对于二次函数y =ax 2+bx +c(a 、b 、c 是常数,a ≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.19.如图,在△ABC中,D、E在边BC上,且△ADE是等边三角形,∠BAC=120∘.试探究线段BD、DE、CE之间的数量关系,并说明理由.【答案】解:结论:DE2=BD⋅CE.理由:∵△ABC是等边三角形,∴AD=AE=DE,∠ADE=∠AED=60∘,∴∠ADB=∠AEC=120∘,∵∠BAC=120∘,∴∠B+∠BAD=∠BAD+∠CAE=60∘,∴∠B=∠CAE,∴△ABD∽△CAE,∴ADCE =BDAE,∴AD⋅AE=CE⋅BD,∴DE2=BD⋅CE.【解析】根据等边三角形的性质得到AD=AE=DE,∠ADE=∠AED=60∘,由邻补角的定义得到∠ADB=∠AEC=120∘,求得∠B=∠CAE,根据相似三角形的性质得到ADCE=BDAE,等量代换即可得到结论.本题考查了相似三角形的判定和性质,等边三角形的性质,熟练掌握相似三角形的判定定理是解题的关键.20.某海域有A,B两个港口,B港口在A港口北偏西30∘方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75∘方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】解:作AD⊥BC于D,∵∠EAB=30∘,AE//BF,∴∠FBA=30∘,又∠FBC=75∘,∴∠ABD=45∘,又AB=60,∴AD=BD=30√2,∵∠BAC=∠BAE+∠CAE=75∘,∠ABC=45∘,∴∠C=60∘,在Rt△ACD中,∠C=60∘,AD=30√2,则tanC=ADCD,∴CD =30√2√3=10√6,∴BC =30√2+10√6.故该船与B 港口之间的距离CB 的长为30√2+10√6海里.【解析】作AD ⊥BC 于D ,根据题意求出∠ABD =45∘,得到AD =BD =30√2,求出∠C =60∘,根据正切的概念求出CD 的长,得到答案.本题考查的是解直角三角形的知识的应用,掌握锐角三角函数的概念、选择正确的三角函数是解题的关键.21. 某水产养殖户进行小龙虾养殖已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为p ={14t +16(1≤t ≤40,t 为整数)−12t +46(41≤t ≤80,t 为整数),日销售量y(千克)与时问第(天)之间的函数关系如图所示.(1)求日销售量y 与时间t 的函数关系式;(2)求利润w 与时间t 的函数关系式;(3)哪一天的日销售利润最大?最大利润是多少?【答案】解:(1)设解析式为y =kt +b ,将(1,198)、(80,40)代入,得:{80k +b =40k+b=198,解得:{b =200k=−2, ∴y =−2t +200(1≤t ≤80,t 为整数);(2)设日销售利润为w ,则w =(p −6)y ,①当1≤t ≤40时,w =(14t +16−6)(−2t +200)=−12(t −30)2+2450.②当41≤t ≤80时,w =(−12t +46−6)(−2t +200)=(t −90)2−100.∴(3)∴①中当t =30时,w 最大=2450;②中当t =41时,w 最大=2301,∵2450>2301,∴第30天的日销售利润最大,最大利润为2450元.【解析】(1)利用待定系数法求解可得一次函数解析式;(2)根据“日销售利润=每斤的利润×日销售量”,结合t 的取值范围分情况讨论可得;(3)分别求得两种情况中的最值,然后比较后即可确定答案.本题主要考查二次函数的应用,解题的关键是理解题意找到相等关系并确定函数解析式、分类讨论思想的运用及二次函数的性质.22. (1)如图1,在△ABC 中,点D 、E 、Q 分别在AB 、AC 、BC 上,且DE//BC ,AQ 交DE 于点P ,求证:DP BQ =PE QC ; (2)如图,△ABC 中,∠BAC =90∘,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF 分别交DE 于M ,N 两点.①如图2,若AB =AC =1,直接写出MN 的长;②如图3,求证:MN 2=DM ⋅EN .【答案】(1)证明:在△ABQ 和△ADP 中,∵DP//BQ ,∴△ADP∽△ABQ ,∴DP BQ =AP AQ ,同理在△ACQ 和△APE 中,EP CQ=AP AQ , ∴DP BQ =PE QC .(2)①作AQ ⊥BC 于点Q .∵BC 边上的高AQ =√22, ∵DE =DG =GF =EF =BG =CF∴DE :BC =1:3又∵DE//BC ,∴AD :AB =1:3,∴AD =13,DE =√23, ∵DE 边上的高为√26,MN :GF =√26:√22, ∴MN :√23=√26:√22, ∴MN =√29. 故答案为:√29.②证明:∵∠B +∠C =90∘∠CEF +∠C =90∘,∴∠B =∠CEF ,又∵∠BGD =∠EFC ,∴△BGD∽△EFC ,∴DG CF =BG EF ,∴DG ⋅EF =CF ⋅BG ,又∵DG =GF =EF ,∴GF 2=CF ⋅BG ,由(1)得DM BG =MN GF =EN FC , ∴MN GF ×MN GF =DM BG ⋅EN CF ,∴(MN GF )2=DM BG ⋅EN CF ,∵GF 2=CF ⋅BG ,∴MN 2=DM ⋅EN .【解析】(1)可证明△ADP∽△ABQ ,△ACQ∽△ADP ,从而得出DP BQ =PE QC ;(2)①根据三角形的面积公式求出BC 边上的高√22,根据△ADE∽△ABC ,求出正方形DEFG 的边长√23,根据MN GF 等于高之比即可求出MN ; ②可得出△BGD∽△EFC ,则DG ⋅EF =CF ⋅BG ;又由DG =GF =EF ,得GF 2=CF ⋅BG ,再根据(1)DM BG =MN GF =EN FC ,从而得出答案. 本题考查了相似三角形的判定和性质以及正方形的性质,是一道综合题目,难度较大.。
沪科版九年级上学期六校第一次联考数学试卷温馨提示:1、你拿到的试卷满分为150分,考试时间为120分钟,请合理利用时间;2、请把答案写到相应位置、字迹工整、条理清晰。
一、选择题(本大题共10小题,每小题4分,满分40分) 1. 下列各数是无理数的是【 】A .B .C .D .162. 在平面直角坐标系中,直线y=x ﹣1经过【 】 A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限 D .第二、三、四象限3. 某班一个小组7名同学的体育测试成绩(满分30分)依次为:27,29,27,25,27,30,25,这组数据的中位数和众数分别是【 】A .27,25B .25,27C .27,27D .27,304. 如图,已知四边形ABCD 是平行四边形,要使它成为菱形,那么需要添加的条件可以是 【 】A .AC ⊥BDB .AB=AC C .∠AB C=90°D .AC=BD5. 已知(5,-1)是双曲线)0(≠=k xky 上的一点,则下列各点中不.在.该图象上的是【 】A .( 13,-15) B .(5,1) C . (-1,5) D .(10,21-) 6. 已知x :y=5:2,则下列各式中不正确的是【 】A .x+y y = 72B .x-y y = 32C .x x+y = 57D .xy-x= 537. 函数m x x y +--=822的图象上有两点),(11y x A ,),(22y x B ,若212x x <<-,则【 】A.21y y <B.21y y >C.21y y =D.1y 、2y 的大小不确定8. 将抛物线221y x =+的图象向右平移2个单位,再向下平移3个单位,得到的抛物线是【 】A .22(2)3y x =+-B .22(2)2y x =+-C .22(2)3y x =--D .22(2)2y x =--第4题 第9题 9. 抛物线y=ax 2+bx+c (a ≠0)的图象大致如图所示,下列说法:①2a+b=0;②当-1≤x≤3时,y<0; ③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2; ④9a+3b+c=0。
其中正确的是【】A.①②④ B.①④ C.①②③ D.③④10. 在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是【】A B C D二、填空题(本大题共4小题,每小题5分,满分20分)11. 因式分解:2a2﹣3a= .12. 若函数y=﹣kx+2k+2与y=(k≠0)的图象有两个不同的交点,则k的取值范围是.13.二次函数y=ax2+bx+c的图象如图所示,以下结论:①a+b+c=0;②4a+b=0;③abc<0;④4ac-b2<0;⑤当x≠2时,总有4a+2b>ax2+bx其中正确的有(填写正确结论的序号).y第13题图O13 x第14题 14. 二次函数 y=x 2的图象如图,点O 为坐标原点,点A 在y 轴的正半轴上,点B 、C 在二次函数y=3x 2 的图象上,四边形OBAC 为菱形, 且∠OBA =120°,则菱形OBAC 的面积为 .三、(本大题共2小题,每小题8分,满分16分) 15. 已知二次函数6422++-=x x y 错误!未找到引用源。
. (1)求该函数图象的顶点坐标. (2)求此抛物线与x 轴的交点坐标..16. 已知2222:,d b c a cd ab dc ba+++=和是求证的比例中项。
四、(本大题共2小题,每小题8分,满分16分)17. 如图,一次函数51+-=x y 与反比例函数2k y x=的图象交于A (1,m )、B(4,n ) 两点.(1)求A 、B 两点的坐标和反比例函数的解析式; (2)根据图象,直接写出当y 1>y 2时x 的取值范围; (3)求△AOB 的面积.18. 已知实数x 、y 、z 满足430320x y y z -=⎧⎨-=⎩,试求22x y zx y z+--+的值.五、(本大题共2小题,每小题10分,满分20分)19. 如图,已知抛物线y=ax 2+bx+c ,根据图象,回答下列问题: (1)判断下列各代数式的符号:a ,b ,c ,b 2-4ac ,a-b+c ,4a 2-2b+c ;(2)写出不等式ax 2+bx+c <0的解集;(3)若方程ax 2+bx+c=k ,有两个不相等 的实根,求k 的取值范围;20. 如图所示,有一座抛物线形拱桥,桥下面在正常水位AB 时,宽20 m ,水位上升3 m 就达到警戒线CD ,这时水面宽度为10 m . (1)求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2 m 的速度 上升,从警戒线开始,再持续多少小时才能 到达拱桥顶?六、(本题满分12分)21. 如图所示,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE =CF ,连接EF 、BF ,EF 与对角线AC 交于点O ,且BE =BF ,∠BEF =2∠BAC.(1)求证:OE =OF ;(2)若BC =23,求AB 的长.七、(本题满分12分)22. 已知关于x的一元二次方程x2+2x+=0有两个不相等的实数根,k为正整数.(1)求k的值;(2)当此方程有一根为零时,直线y=x+2与关于x的二次函数y=x2+2x+的图象交于A、B两点,若M是线段AB上的一个动点,过点M作MN⊥x轴,交二次函数的图象于点N,求线段MN的最大值及此时点M的坐标;八、(本题满分14分)23. 某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单元:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义.(2)求线段AB所表示的y1与x之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?数学参考答案1、B .2、C .3、C.4、A .5、B.6、D.7、B.8、D.9、B .10、C .11、a (2a ﹣3). 12、k 且k≠0.13、①②④⑤. 14、2.15、(1)∵ 错误!未找到引用源。
,∴ 顶点坐标为(1,8).(2)令错误!未找到引用源。
,则错误!未找到引用源。
, 解得错误!未找到引用源。
,错误!未找到引用源。
.∴ 抛物线与错误!未找到引用源。
轴的交点坐标为(错误!未找到引用源。
),(错误!未找到引用源。
). 16、略17、(1)A (1,4)、B (4,1) 反比例函数的解析式为xy 4=。
(2)由图象,得所求的x 取值范围是:x <0或1<x <4 (3)作AC ⊥x 轴于C ,BD ⊥x 轴于D. ∴AOBAOCOBDACDB SSS S=+-梯形=15218、8519、20、(1)设所求抛物线的解析式为y=ax2,设D(5,b),则B(10,b-3),把D,B的坐标分别代入y=ax2,得251003a ba b=⎧⎨=⎩,-,解得1251ab⎧=-⎪⎨⎪=⎩,-,∴y=-2125x.(2)因为b=-1,所以10.2=5(小时).所以再持续5小时到达拱桥顶.21、(1)略,(2)6 . 22、(1)∵关于x 的一元二次方程有两个不相等的实数根.∴.∴k﹣1<2.∴k<3.∵k为正整数,∴k为1,2.(2)把x=0代入方程得k=1,此时二次函数为y=x2+2x,此时直线y=x+2与二次函数y=x2+2x的交点为A(﹣2,0),B(1,3)由题意可设M(m,m+2),其中﹣2<m<1,则N(m,m2+2m),MN=m+2﹣(m2+2m)=﹣m2﹣m+2=﹣.∴当m=﹣时,MN 的长度最大值为.此时点M 的坐标为.23、(1)点D 的横坐标、纵坐标的实际意义:当产量为为130kg 时,该产品每千克生产成本与销售价相等,都为42元.(2)设线段AB 所表示的y 1与x 之间的函数关系式为111y k x b =+ ,∵111y k x b =+的图像过(0,60)与(90,42),∴111609042b k b =⎧⎨+=⎩,解得,110.260k b =-⎧⎨=⎩.∴线段AB 所表示的y 1与x 之间的函数表达式为10.260(090)y x x =-+≤≤ .(3)设y 2与x 之间的函数表达式为222y k x b =+ ,∵222y k x b =+的图像过(0,120)与(130,42),∴22212013042b k b =⎧⎨+=⎩, 解得,220.6120k b =-⎧⎨=⎩ . ∴y 2与x 之间的函数表达式为20.6120(0130)y x x =-+≤≤.设产量为xkg 时,获得的利润为W 元,当090x ≤≤时,2[(0.6120)(0.260)]0.4(75)2250W x x x x =-+--+=--+,∴当x=75时,W 的值最大,最大值为2250.当90130x ≤≤时,2[(0.6120)42]0.6(65)2535W x x x =-+-=--+,∵当x=90时,20.6(9065)25352160W =--+=,由0.60-<知,当x>65时,W 随x 的增大而减小,∴90130x ≤≤时,2160W ≤.因此,当该产品产量为75kg时获得的利润最大,最大利润是2250元.。