2008年普通高等学校招生全国统一考试数学卷(北京.文)含答案
- 格式:doc
- 大小:713.50 KB
- 文档页数:9
2008年普通高等学校招生全国统一考试(新课标全国卷)一、选择题:本大题共12小题,每小题5分,满分60分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1、已知集合M ={ x|(x + 2)(x -1) < 0 },N ={ x| x + 1 < 0 },则M ∩N =( ) A. (-1,1) B. (-2,1)C. (-2,-1)D. (1,2)2、双曲线221102x y -=的焦距为( )3、已知复数1z i =-,则21z z =-( ) A. 2B. -2C. 2iD. -2i4、设()ln f x x x =,若0'()2f x =,则0x =( )A. 2e B. e C. ln 22D. ln 25、已知平面向量a r =(1,-3),b r =(4,-2),a b λ+r r 与a r垂直,则λ是( )A. -1B. 1C. -2D. 26、右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数, 那么在空白的判断框中,应该填入下面四个选项中的( ) A. c > xB. x > cC. c > bD. b > c7、已知1230a a a >>>,则使得2(1)1i a x -<(1,2,3)i =都成立的x 取值范围是( )A.(0,11a ) B. (0,12a ) C. (0,31a ) D. (0,32a )8、设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( ) A. 2 B. 4 C.152D.1729、平面向量a r ,b r共线的充要条件是( )A. a r ,b r 方向相同B. a r ,b r 两向量中至少有一个为零向量C. R λ∃∈, b a λ=r rD. 存在不全为零的实数1λ,2λ,120a b λλ+=r r r10、点P (x ,y )在直线4x + 3y = 0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是( ) A. [0,5]B. [0,10]C. [5,10]D. [5,15]11、函数()cos 22sin f x x x =+的最小值和最大值分别为( )A. -3,1B. -2,2C. -3,32 D. -2,3212、已知平面α⊥平面β,α∩β= l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是( ) A. AB ∥m B. AC ⊥m C. AB ∥βD. AC ⊥β二、填空题:本大题共4小题,每小题5分,满分20分。
2008年普通高等学校招生全国统一考试数学(文史类)(北京卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共40分)注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.若集合{|23}A x x =-≤≤,{|14}B x x x =<->或,则集合A B 等于( ) A .{}|34x x x >或≤ B .{}|13x x -<≤ C .{}|34x x <≤D .{}|21x x --<≤2.若372log πlog 6log 0.8a b c ===,,,则( ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>3.“双曲线的方程为221916x y -=”是“双曲线的准线方程为95x =±”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.已知ABC △中,a =b =60B = ,那么角A 等于( )A .135B .90C .45D .305.函数2()(1)1(1)f x x x =-+<的反函数为( )A .1()11)f x x -=>B .1()11)f x x -=>C .1()11)f x x -=≥D .1()11)f x x -=≥6.若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则2z x y =+的最小值是( )A .0B .12C .1D .27.已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于( ) A .30B .45C .90D .1868.如图,动点P 在正方体1111ABCD A BC D -的对角线1BD 上,过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设B P x =,MN y =,则函数()y f x =的图象大致是( )A BC DMNP A 1B 1C 1D 12008年普通高等学校招生全国统一考试数学(文史类)(北京卷)第Ⅱ卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.若角α的终边经过点(12)P -,,则tan 2α的值为 . 10.不等式112x x ->+的解集是 . 11.已知向量a 与b 的夹角为120,且4==a b ,那么 a b 的值为 .12.5231x x ⎛⎫+ ⎪⎝⎭的展开式中常数项为 ;各项系数之和为 .(用数字作答)13.如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f = ;函数()f x 在1x =处的导数(1)f '= .14.已知函数2()cos f x x x =-,对于ππ22⎡⎤-⎢⎥⎣⎦,上的任意12x x ,,有如下条件:①12x x >; ②2212x x >; ③12x x >. 其中能使12()()f x f x >恒成立的条件序号是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.16.(本小题共14分)如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥.(Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --的大小. 17.(本小题共13分)已知函数32()3(0)f x x ax bx c b =+++≠,且()()2g x f x =-是奇函数. (Ⅰ)求a ,c 的值;(Ⅱ)求函数()f x 的单调区间.18.(本小题共13分)甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率. 19.(本小题共14分) 已知ABC △的顶点A B ,在椭圆2234x y +=上,C 在直线2l y x =+:上,且AB l ∥. (Ⅰ)当AB 边通过坐标原点O 时,求AB 的长及ABC △的面积; (Ⅱ)当90ABC ∠=,且斜边AC 的长最大时,求AB 所在直线的方程. 20.(本小题共13分)数列{}n a 满足11a =,21()n n a n n a λ+=+-(12n = ,,),λ是常数.(Ⅰ)当21a =-时,求λ及3a 的值;(Ⅱ)数列{}n a 是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由; (Ⅲ)求λ的取值范围,使得存在正整数m ,当n m >时总有0n a <.ACBP2008年普通高等学校招生全国统一考试数学(文史类)(北京卷)参考答案一、选择题(本大题共8小题,每小题5分,共40分)1.D 2.A 3.A 4.C 5.B 6.A 7.C 8.B二、填空题(本大题共6小题,每小题5分,共30分)9.4310.{}|2x x <-11.8-12.10 3213.2 2-14.②三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(Ⅰ)1cos 2()22x f x x ωω-=112cos 222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭. 因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤. 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,. 16.(共14分)解法一:(Ⅰ)取AB 中点D ,连结PD CD ,. AP BP = , PD AB ∴⊥. AC BC = , CD AB ∴⊥. PD CD D = ,ABDPAB ∴⊥平面PCD . PC ⊂ 平面PCD , PC AB ∴⊥.(Ⅱ)AC BC = ,AP BP =, APC BPC ∴△≌△. 又PC AC ⊥, PC BC ∴⊥.又90ACB ∠=,即AC BC ⊥,且AC PC C = ,BC ∴⊥平面PAC .取AP 中点E .连结BE CE ,. AB BP = ,BE AP ∴⊥.EC 是BE 在平面PAC 内的射影, CE AP ∴⊥.BEC ∴∠是二面角B AP C --的平面角.在BCE △中,90BCE ∠=,2BC =,2BE AB ==sin 3BC BEC BE ∴∠==. ∴二面角B AP C --的大小为. 解法二:(Ⅰ)AC BC = ,AP BP =, APC BPC ∴△≌△. 又PC AC ⊥, PC BC ∴⊥. AC BC C = ,PC ∴⊥平面ABC . AB ⊂ 平面ABC , PC AB ∴⊥.(Ⅱ)如图,以C 为原点建立空间直角坐标系C xyz -.则(000)(020)(200)C A B ,,,,,,,,. 设(00)P t ,,.PB AB == ,2t ∴=,(002)P ,,.ACBEP y取AP 中点E ,连结BE CE ,.AC PC = ,AB BP =,CE AP ∴⊥,BE AP ⊥.BEC ∴∠是二面角B AP C --的平面角.(011)E ,,,(011)EC =-- ,,,(211)EB =--,,,cos EC EB BEC EC EB∴∠=== . ∴二面角B AP C --的大小为arccos3. 17.(共13分)解:(Ⅰ)因为函数()()2g x f x =-为奇函数,所以,对任意的x ∈R ,()()g x g x -=-,即()2()2f x f x --=-+. 又32()3f x x ax bx c =+++所以32323232x ax bx c x ax bx c -+-+-=----+. 所以22a a c c =-⎧⎨-=-+⎩,.解得02a c ==,.(Ⅱ)由(Ⅰ)得3()32f x x bx =++.所以2()33(0)f x x b b '=+≠.当0b <时,由()0f x '=得x =x 变化时,()f x '的变化情况如下表:所以,当0b <时,函数()f x 在(-∞上单调递增,在(上单调递减,在)+∞上单调递增.当0b >时,()0f x '>,所以函数()f x 在()-∞+∞,上单调递增.18.(共13分)解:(Ⅰ)记甲、乙两人同时参加A 岗位服务为事件A E ,那么3324541()40A A P E C A ==,即甲、乙两人同时参加A 岗位服务的概率是140. (Ⅱ)设甲、乙两人同时参加同一岗位服务为事件E ,那么4424541()10A P E C A ==,所以,甲、乙两人不在同一岗位服务的概率是9()1()10P E P E =-=. 19.(共14分)解:(Ⅰ)因为AB l ∥,且AB 边通过点(00),,所以AB 所在直线的方程为y x =. 设A B ,两点坐标分别为1122()()x y x y ,,,.由2234x y y x⎧+=⎨=⎩,得1x =±.所以12AB x =-=又因为AB 边上的高h 等于原点到直线l 的距离.所以h =122ABC S AB h == △. (Ⅱ)设AB 所在直线的方程为y x m =+,由2234x y y x m⎧+=⎨=+⎩,得2246340x mx m ++-=. 因为A B ,在椭圆上, 所以212640m ∆=-+>.设A B ,两点坐标分别为1122()()x y x y ,,,,则1232m x x +=-,212344m x x -=,所以122AB x =-=.又因为BC 的长等于点(0)m ,到直线l的距离,即BC =.所以22222210(1)11AC AB BC m m m =+=--+=-++.所以当1m =-时,AC 边最长,(这时12640∆=-+>) 此时AB 所在直线的方程为1y x =-. 20.(共13分)解:(Ⅰ)由于21()(12)n n a n n a n λ+=+-= ,,,且11a =. 所以当21a =-时,得12λ-=-, 故3λ=.从而23(223)(1)3a =+-⨯-=-.(Ⅱ)数列{}n a 不可能为等差数列,证明如下: 由11a =,21()n n a n n a λ+=+-得22a λ=-,3(6)(2)a λλ=--,4(12)(6)(2)a λλλ=---.若存在λ,使{}n a 为等差数列,则3221a a a a -=-,即(5)(2)1λλλ--=-, 解得3λ=.于是2112a a λ-=-=-,43(11)(6)(2)24a a λλλ-=---=-. 这与{}n a 为等差数列矛盾.所以,对任意λ,{}n a 都不可能是等差数列.(Ⅲ)记2(12)n b n n n λ=+-= ,,,根据题意可知,10b <且0n b ≠,即2λ>且2*()n n n λ≠+∈N ,这时总存在*0n ∈N ,满足:当0n n ≥时,0n b >;当01n n -≤时,0n b <. 所以由1n n n a b a +=及110a =>可知,若0n 为偶数,则00n a <,从而当0n n >时,0n a <;若0n 为奇数,则00n a >,从而当0n n >时0n a >.因此“存在*m ∈N ,当n m >时总有0n a <”的充分必要条件是:0n 为偶数, 记02(12)n k k == ,,,则λ满足22221(2)20(21)210k k b k k b k k λλ-⎧=+->⎪⎨=-+--<⎪⎩.故λ的取值范围是22*4242()k k k k k λ-<<+∈N .。
2011年普通高等学校招生全国统一考试数学(文)(北京卷) 本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、 选择题共8小题,每小题5分,共40分。
在每小题列出四个选项中,选出符合题目要求的一项。
(1) 已知全集U=R ,集合{}21P x x =∣≤,那么U P =ð(A)(,1-∞-) (B)(1,+∞) (C)(-1,1) (D)()()11-∞,-,+∞(2)复数212i i-=+ (A)i (B )i - (C)4355i -- (D)4355i -+ (3)如果1122log log 0x y <<,那么(A )1y x << (B)1x y << (C)1x y << (D)1y x <<(4)若p 是真命题,q 是假命题,则(A )p q ∧是真命题 (B)p q ∨是假命题题 (C)p ⌝是真命题 (D)q ⌝是真命(5)某四棱锥的三视图如图所示,该四棱锥的表面积是 (A)32(B)16+(C)48(D)16+(6)执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为(A)2(B)3(C)4(D)5(7)某车间分批生产某种产品,每批的生产准备费用为800元。
若每批生产x 件,则平均仓储时间为8x 天,且每件产品每天的仓储费用为1元。
为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品(A )60件 (B)80件 (C )100件 (D )120件(8)已知点()()0,2,2,0A B 。
若点C 在函数2y x =的图象上,则使得ABC 的面积为2的点C 的个数为(A )4 (B)3 (C)2 (D)1第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
(9)在ABC 中,若15,,sin 43b B A π=∠==,则a = . (10)已知双曲线2221(0)y x b b-=>的一条渐近线的方程为2y x =,则b = .(11)已知向量),(01),(a b c k ==-=2a b -与c ,共线,则k = .(12)在等比数列{}n a 中,若141,4,2a a ==则公比q = ; 12n a a a ++⋯+= .数 若关于x 的方程()f x k = 有两个不同的实(13)已知函根,则实数k 的取值范围是 . (14)设(0,0),(4,0),(4,3),(,3)(A B C t D t t +∈R )。
第八章 圆锥曲线方程一 椭圆【考点阐述】椭圆及其标准方程.椭圆的简单几何性质.了解椭圆的参数方程. 【考试要求】(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程. 【考题分类】(一)选择题(共6题)1.(湖北卷理10文10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22c a . 其中正确式子的序号是A. ①③B. ②③C. ①④D. ②④ 解:由焦点到顶点的距离可知②正确,由椭圆的离心率知③正确,故应选B.2.(江西卷理7文7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .1(0,]2 C. D. 解:C .由题知,垂足的轨迹为以焦距为直径的圆,则2222212c b c b a c e <⇒<=-⇒< 又(0,1)e ∈,所以1(0,)2e ∈3.(上海卷文12)设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A .4B .5C .8D .10【答案】D【解析】 由椭圆的第一定义知12210.PF PF a +==4.(天津卷理5)设椭圆()1112222>=-+m m y m x 上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为 (A) 6 (B) 2 (C)21(D) 772解析:由椭圆第一定义知2a =,所以24m =,椭圆方程为22111432x y e d +=⇒==所以2d =,选B .5.(天津卷文7)设椭圆22221(00)x y m n m n+=>>,的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( ) A .2211216x y +=B .2211612x y +=C .2214864x y +=D .2216448x y +=解析:抛物线的焦点为(2,0),椭圆焦点在x 轴上,排除A 、C ,由12e =排除D ,选B . 6.(上海春卷14)已知椭圆221102x y m m +=--,长轴在y 轴上. 若焦距为4,则m 等于 ( ) (A )4. (B )5. (C )7. (D )8.解析:由题意得m-2>10-m 且10-m>0,于是6<m<10,再有(m-2)-(10-m)=22,得m=8。
第八章 圆锥曲线方程二 双曲线【考点阐述】双曲线及其标准方程.双曲线的简单几何性质. 【考试要求】(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. 【考题分类】(一)选择题(共13题)1.(福建卷理11文12)双曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为 A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞解:如图,设2PF m =,12(0)F PF θθπ∠=<≤,当P 在右顶点处θπ=,22ce a ===∵1cos 1θ-<≤,∴(]1,3e ∈另外也可用三角形的两边和大于第三边,及两边差小于第三边,但要注意前者可以取到等号成立,因为可以三点一线. 也可用焦半径公式确定a 与c 的关系。
2.(海南宁夏卷文2)双曲线221102x y -=的焦距为( )【标准答案】D【试题解析】由双曲线方程得22210,212==∴=a b c ,于是2==c c 【高考考点】双曲线的标准方程及几何性质【易错提醒】将双曲线中三个量,,a b c 的关系与椭圆混淆,而错选B【备考提示】在新课标中双曲线的要求已经降低,考查也是一些基础知识,不要盲目拔高3.(湖南卷理8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( ) A.(1,2) B.(2,+∞)C.(1,5)D. (5,+∞)【答案】B【解析】2033,22a ex a e a a a c -=⨯->+ 23520,e e ⇒-->2e ∴>或13e <-(舍去),(2,],e ∴∈+∞故选B.4.(湖南卷文10).双曲线)0,0(12222>>=-b a by a x 的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( )A. B.)+∞ C.1] D.1,)+∞ 【答案】C【解析】200a ex a x c -=+ 20(1)a e x a c ⇒-=+2(1),a a e a c⇒+≥-1111,a e c e∴-≤+=+2210,e e ⇒--≤11e ⇒≤≤ 而双曲线的离心率1,e>1],e ∴∈故选C.5.(辽宁卷文11)已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15,则m =( ) A .1 B .2C .3D .4答案:D解析:本小题主要考查双曲线的知识。
2008年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kk n P k C p p k n -=-=,,,,一、选择题1.若sin 0α<且tan 0α>是,则α是( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,3.原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .54.函数1()f x x x=-的图像关于( )A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8-7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( ) A .1 B .12C .12-D .1-8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( ) A .3B .6C .9D .189.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .410.函数x x x f cos sin )(-=的最大值为( ) A .1B .2 C .3D .211.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( ) A .221+ B .231+ C . 21+ D .31+12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1 B .2C .3D .22008年普通高等学校招生全国统一考试文科数学(必修+选修I)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答)15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13A =-,3cos 5B =. (Ⅰ)求sinC 的值;(Ⅱ)设5BC =,求ABC △的面积. 18.(本小题满分12分)等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .19.(本小题满分12分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率. 20.(本小题满分12分)如图,正四棱柱1111ABCD A BC D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小. 21.(本小题满分12分)设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值;(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围. 22.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点. (Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.AB CD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 文科数学试题(必修+选修Ⅰ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.C 2.B 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.B 11.B 12.C 二、填空题13.2 14.420 15.216.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.1.若sin 0α<且tan 0α>是,则α是( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角 【答案】C【解析】sin 0α<,α在三、四象限;tan 0α>,α在一、三象限,∴选C 2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M 【高考考点】集合的运算,整数集的符号识别 3.原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .5【答案】D【解析】52152=+-=d【高考考点】点到直线的距离公式4.函数1()f x x x=-的图像关于( ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称【答案】C 【解析】1()f x x x=-是奇函数,所以图象关于原点对称 【高考考点】函数奇偶性的性质5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a【答案】C 【解析】由0ln 111<<-⇒<<-x x e,令x t ln =且取21-=t 知b <a <c6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8-【答案】D【解析】如图作出可行域,知可行域的顶点是A (-2,2)、B(32,32)及C(-2,-2) 于是8)(min -=A z7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A .1B .12C .12-D .1-【答案】A【解析】ax y 2'=,于是切线的斜率a y k x 2'1===,∴有122=⇒=a a8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( ) A .3 B .6C .9D .18【答案】B【解析】高360sin 32=︒=h ,又因底面正方形的对角线等于32,∴底面积为 6332212=⨯⨯⨯=S ,∴体积63631=⨯⨯=V【备考提示】在底面积的计算时,要注意多思则少算 9.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .4【答案】A【解析】41666141404242404-=-+=-+C C C C C C 【易错提醒】容易漏掉1414C C 项或该项的负号10.函数x x x f cos sin )(-=的最大值为( ) A .1 B .2 C .3D .2【答案】B【解析】)4sin(2cos sin )(π-=-=x x x x f ,所以最大值是2【高考考点】三角函数中化为一个角的三角函数问题【备考提示】三角函数中化为一个角的三角函数问题是三角函数在高考中的热点问题 11.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( ) A .221+ B .231+ C . 21+ D .31+【答案】B【解析】由题意BC c =2,所以c c AC 3260sin 220=⨯⨯=,由双曲线的定义,有c a c c BC AC a )13(2322-=⇒-=-=,∴231131+=-==a c e 【高考考点】双曲线的有关性质,双曲线第一定义的应用12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1 B .2C .3D .2【答案】C【解析】设两圆的圆心分别为1O 、2O ,球心为O ,公共弦为AB ,其中点为E ,则21EO OO 为矩形,于是对角线OE O O =21,而3122222=-=-=AE OA OE ,∴321=O O 【高考考点】球的有关概念,两平面垂直的性质13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 【答案】 2【解析】λ+a b =)32,2(++λλ则向量λ+a b 与向量(47)=--,c 共线274322=⇒--=++⇔λλλ14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答) 【答案】 420【解析】4202701501621026110=+=+C C C C15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 .【答案】 2 【解析】设过M的直线方程为)2(2-=-x k y ,由0)1(444)2(22222=-+-⇒⎩⎨⎧=-=-k kx x k xy x k y ∴k x x 421=+,2221)1(4kk x x -=,由题意144=⇒=k k ,于是直线方程为x y = 421=+x x ,021=x x ,∴24=AB ,焦点F (1,0)到直线x y =的距离21=d∴ABF △的面积是216.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)【答案】两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.三、解答题17.解:(Ⅰ)由5cos 13A =-,得12sin 13A =, 由3cos 5B =,得4sin 5B =. ··········································································· 2分所以16sin sin()sin cos cos sin 65C A B A B A B =+=+=. ····································· 5分(Ⅱ)由正弦定理得45sin 13512sin 313BC B AC A ⨯⨯===. ··········································· 8分 所以ABC △的面积1sin 2S BC AC C =⨯⨯⨯1131652365=⨯⨯⨯83=. ····················· 10分18.解:设数列{}n a 的公差为d ,则3410a a d d =-=-, 642102a a d d =+=+,1046106a a d d =+=+. ················································································ 3分 由3610a a a ,,成等比数列得23106a a a =,即2(10)(106)(102)d d d -+=+, 整理得210100d d -=,解得0d =或1d =.······················································································· 7分 当0d =时,20420200S a ==. ······································································ 9分 当1d =时,14310317a a d =-=-⨯=, 于是2012019202S a d ⨯=+207190330=⨯+=. ············································· 12分 19.解:记12A A ,分别表示甲击中9环,10环,12B B ,分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ)112122A A B A B A B =++,··································································· 2分 112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++112122()()()()()()P A P B P A P B P A P B =++0.30.40.10.40.10.40.2=⨯+⨯+⨯=. ····························································· 6分(Ⅱ)12B C C =+, ······················································································ 8分22213()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=,332()[()]0.20.008P C P A ===,1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=. ··························· 12分 20.解法一:依题设,2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.由三垂线定理知,1BD AC ⊥. ········································································· 3分 在平面1ACA 内,连结EF 交1AC 于点G ,由于1AA ACFC CE== 故1Rt Rt A AC FCE △∽△,1AAC CFE ∠=∠, CFE ∠与1FCA ∠互余.于是1AC EF ⊥. 1AC 与平面BED 内两条相交直线BD EF ,都垂直, 所以1AC ⊥平面BED . ·················································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角.························································ 8分EF =CE CF CG EF ⨯==EG ==. AB CDEA 1B 1C 1D 1 FH G13EG EF =,13EF FD GH DE ⨯=⨯=又1AC ==113AG AC CG =-=.11tan A GA HG HG∠== 所以二面角1A DE B --的大小为 ················································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB ==,,,,,,11(224)(204)AC DA =--=,,,,,. ······························ 3分 (Ⅰ)因为10AC DB =,10AC DE =, 故1AC BD ⊥,1AC DE ⊥. 又DBDE D =,所以1AC ⊥平面DBE . ·················································································· 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ····················································· 9分1AC <>,n 等于二面角1A DE B --的平面角, 11114cos 42AC AC AC <>==,n n n 所以二面角1A DE B --的大小为arccos42. ················································· 12分21.解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =. 经验证,当1a =时,2x =是函数()y f x =的极值点. ········································· 4分 (Ⅱ)由题设,3222()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+. 当()g x 在区间[02],上的最大值为(0)g 时,(0)(2)g g ≥,即02024a -≥.故得65a ≤. ································································································ 9分 反之,当65a ≤时,对任意[02]x ∈,, 26()(3)3(2)5g x x x x x +-+≤23(210)5xx x =+- 3(25)(2)5xx x =+- 0≤,而(0)0g =,故()g x 在区间[02],上的最大值为(0)g . 综上,a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,. ··································································· 12分22.(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ····································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <,且12x x ,满足方程22(14)4k x +=, 故21x x =-=.①由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==; 由D 在AB 上知0022x kx +=,得0212x k=+.所以212k =+, 化简得2242560k k -+=,解得23k =或38k =. ······················································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB的距离分别为1h ==2h ==······················································· 9分又AB ==AEBF 的面积为121()2S AB h h =+ 1525(14k =+==≤当21k =,即当12k =时,上式取等号.所以S 的最大值为 ························ 12分 解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+ ···································································································· 9分===当222x y =时,上式取等号.所以S 的最大值为 ······································· 12分。
第一章 集合与简易逻辑一 集合【考点阐述】集合.子集.补集.交集.并集. 【考试要求】(1)理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合. 【考题分类】(一)选择题(共20题)1、(安徽卷理2)集合{}|lg ,1A y R y x x =∈=>,}{2,1,1,2B =--则下列结论正确的是( )A .}{2,1A B =-- B . ()(,0)R C A B =-∞ C .(0,)A B =+∞D . }{()2,1R C A B =--解: }{0A y Ry =∈>,R (){|0}A y y =≤ð,又{2,1,1,2}B =--∴ }{()2,1R A B =-- ð,选D 。
2、(安徽卷文1)若A 为全体正实数的集合,{}2,1,1,2B =--则下列结论正确的是( )A .}{2,1A B =-- B . ()(,0)R C A B =-∞ C .(0,)A B =+∞D . }{()2,1R C A B =--解:R A ð是全体非正数的集合即负数和0,所以}{()2,1R A B =-- ð3、(北京卷理1)已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合A ∩(C U B )等于( )A .{}|24x x -<≤ B .{}|34x x x 或≤≥ C .{}|21x x -<-≤ D .{}|13x x -≤≤【标准答案】: D【试题分析】: C U B=[-1, 4],()U A B ð={}|13x x -≤≤ 【高考考点】:集合【易错提醒】: 补集求错【备考提示】: 高考基本得分点4、(北京卷文1)若集合{|23}A x x =-≤≤,{|14}B x x x =<->或,则集合A B 等于( )A .{}|34x x x >或≤ B .{}|13x x -<≤ C .{}|34x x <≤D .{}|21x x --<≤【答案】D【解析】{}|21A B x x =-≤-<5、(福建卷文1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于( )A.{x |0<x <1}B.{x |0<x <3}C.{x |1<x <3}D. Φ 解:A ={x |0<x<1}∴A ∩B={x |0<x <1} 6、(广东卷文1)第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A ={参加北京奥运会比赛的运动员},集合B ={参加北京奥运会比赛的男运动员}。
绝密★启用前2008年普通高等学校招生全国统一考试数学(文史类)(北京卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至9页,共150分,考试时间120分钟。
考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡颇擦干净后,再选涂其他答案。
不能答在试卷上。
一、题共8小题,第小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合A ={x |-2≤x ≤3}≤3,B ={x |x <-1或x >4},则集合A ∩B 等于 (A ){x |x ≤3或x >4} (B ){x |-1<x ≤3} (C ){x |3≤x<4} (D) {x |-2≤x<-1} (2)若a =log, π,b =log,6,c =log 20.8,则 (A )a>b >c (B )b>a >c (C )c>a >b (D )b>c >a(3)“双黄线的方程为116922=-y x ”是“双曲线的准线方程为x =59±”的 (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )即不充分也不必要条件(4)已知△ABC 中,a =2,b =3,B =60°,那么角A 等于 (A )135° (B)90° (C)45°(D)30°(5)函数f (x )=(x -1)2+1(x <1)的反函数为 (A )f --1(x )=1+1-x (x>1) (B )f --1(x )=1-1-x (x>1) (A )f --1(x )=1+1-x (x ≥1)(A )f --1(x )=1-1-x (x ≥1)x -y +1≥0,(6)若实数x ,y 满足 x +y ≥0, 则z =x +2y 的最小值是x ≤0, (A)0(B)21 (C) 1 (D)2(7)已知等差数列{a n }中,a 2=6,a 5=15.若b n =a 2n ,则数列{b n }的前5项和等于 (A)30 (B )45(C)90 (D)186(8)如图,动点P 在正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,过点P 作垂直平面BB 1D 1D 的直线,与正方体表面相交于M 、N.设BP =x ,MN =y ,则函数y =f (x )的图象大致是绝密★使用完毕前2008年普通高等学校校招生全国统一考试数学(文史类)(北京卷)第Ⅱ卷(共110分)注意事项:1. 用钢笔或圆珠笔将答案直接写在试卷上。
二、填空题:本大题共6小题,每小题5分,共30分。
把答案填在题中横线上。
(9)若角α的终边经过点P (1,-2),则tan 2α的值为 . (10)不等式121>+-x x 的解集是 .(11)已知向量a 与b 的夹角为120°,且|a |=|b |=4,那么a ²b 的值为 . (12)若532)1(xx +展开式的各项数之和为 ; 各项系数之和为 .(用数字作答)(13)如图,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f (f (0))= ; 函数f (x )在x =1处的导数f ′(1)= . (14)已知函数f (x )=x 2=-cos x ,对于[-22ππ,]上的任意x 1,x 2,有如下条件: ① x 1>x 2; ②x 21>x 22; ③|x 1|>x 2.其中能使f (x 1)> f (x 2)恒成立的条件序号是 .6小题,共80分。
解答应写出文字说明。
演算步骤或证明过程。
(15)(本小题共13分)已知函数2()sin sin()(0)2f x x x x πωωωω=+的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数f (x )在区间[0,23π]上的取值范围.(16)(本小题共14分)如图,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC .(Ⅰ)求证:PC ⊥AB ;(Ⅱ)求二面角B -AP -C 的大小.(17)(本小题共13分)已知函数32()3(0),()()2f x x ax bx c b g x f x =+++≠=-且是奇函数. (Ⅰ)求a ,c 的值;(Ⅱ)求函数f (x )的单调区间.13分)甲、乙等五名奥运志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率.(19)(本小题共14分)已知△ABC 的顶点A ,B 在椭圆2234x y +=上,C 在直线l :y =x +2上,且AB ∥l . (Ⅰ)当AB 边通过坐标原点O 时,求AB 的长及△ABC 的面积;(Ⅱ)当∠ABC =90°,且斜边AC 的长最大时,求AB 所在直线的方程.(20)(本小题共13分)数列{a n }满足2111,()(1,2,),.n n a a n n a n λλ+==+-=是常数(Ⅰ)当a 2=-1时,求λ及a 3的值;(Ⅱ)数列{a n }是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由; (Ⅲ)求λ的取值范围,使得存在正整数m ,当n >m 时总有a n <0.绝密★考试结束前2008年普通高等学校招生全国统一考试数学(文史类)(北京卷)参考答案一、选择题(本大题共8小题,每小题5分,共40分)(1)D (2)A (3)A (4)C (5)B (6)A (7)C (8)B二、填空题(本大题共6小题,每小题5分,共30分) (9)43(10)|x |x <-2| (11)-8 (12)10 32 (13)2 -2 (14)② 三、解答题(本大题共6小题,共80分) (15)(共13分)解:(Ⅰ)1cos 2()22x f x x ωω-=+11cos 222x x ωω-+ =1sin(2).62x πω-+ 因为函数f (x )的最小正周期为π,且ω>0, 所以22ππω= 解得ω=1.(Ⅱ)由(Ⅰ)得1()sin(2).62f x x π=-+ 因为0≤x ≤23π, 所以12-≤26x π-≤7.6π所以12-≤(2)6x π-≤1.因此0≤1sin(2)62x π-+≤32,即f (x )的取值范围为[0,32](16)(共14分)解法一:(Ⅰ)取AB 中点D ,连结PD ,CD . ∵AP =BP , ∴PD ⊥AB . ∵AC =BC .∴CD ⊥AB . ∵PD ∩CD =D . ∴AB ⊥平面PCD . ∵PC ⊂平面PCD , ∴PC ⊥AB .(Ⅱ)∵AC =BC ,AP =BP ,∴△APC ≌△BPC . 又PC ⊥AC , ∴PC ⊥BC.又∠ACB =90°,即AC ⊥BC , 且AC ∩PC =C , ∴AB =BP , ∴BE ⊥AP .∵EC 是BE 在平面P AC 内的射影, ∴CE ⊥AP .∴∠BEC 是二面角B -AP-C 的平面角. 在△BCE 中,∠BCE =90°,BC=2,BE =623=AB , ∴sin ∠BEC =.36=BE BC ∴二面角B -AP -C 的大小为aresin.36解法二:(Ⅰ)∵AC =BC ,AP =BP , ∴△APC ≌△BPC . 又PC ⊥AC . ∴PC ⊥BC. ∵AC ∩BC =C , ∴PC ⊥平面ABC . ∵AB ⊂平面ABC , ∴PC ⊥AB .(Ⅱ)如图,以C 为原点建立空间直角坐标系C-xyz.则C (0,0,0),A (0,2,0),B (2,0,0). 设P (0,0,t ),∵|PB |=|AB |=22, ∴t =2,P (0,0,2).取AP 中点E ,连结BE ,CE .∵|AC |=|PC |,|AB |=|BP |, ∴CE ⊥AP ,BE ⊥AP .∴∠BEC 是二面角B-AP -C 的平面角. ∵E (0,1,1),),1,1,2(),1,1,0(--=--=EB EC ∴cos ∠BEC.33622=⋅=∴二面角B-AP-C 的大小为arccos.33 (17)(共13分) 解:(Ⅰ)因为函数g (x )=f (x )-2为奇函数,所以,对任意的x ∈R ,g (-x )=-g (x ),即f (-x )- 2=-f (x )+2. 又f (x )=x 3+ax 2+3bx +c ,所以-x 3+ax 2-3bx +c -2=-x 3-ax 2-3bx -c +2. 所以.22,+-=--=c c a a解得a =0,c =2.(Ⅱ)由(Ⅰ)得f (x )=x 3+3bx +2. 所以f ′(x )=3x 2+3b (b ≠0).当b <0时,由f ′(x )=0得x =±.b -所以,当b <0时,函数f (x )在(-∞,-b -)上单调递增,在(-b -,b -)上单调递减,在(b -,+∞)上单调递增.当b >0时,f ′(x )>0.所以函数f (x )在(-∞,+∞)上单调递增.(18)(共13分) 解:(Ⅰ)记甲、乙两人同时参加A 岗位服务为事件E A ,那么P (E A )=.401442333-A C A即甲、乙两人同时参加A 岗位服务的概率是.401 (Ⅱ)记甲、乙两个同时参加同一岗位服务为事件E ,那么P (E )=.101442344=A C A所以,甲、乙两人不在同一岗位服务的概率是P (E )=1-P (E )=.109 (19)(共14分) 解:(Ⅰ)因为AB ∥l ,且AB 边通过点(0,0),所以AB 所在直线的方程为y =x .设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2).由2234,x y y x ⎧+=⎨=⎩得1,x =±所以12AB x =-=又因为AB 边上的高h 等于原点到直线l 的距离,所以12.2ABCh AB h === (Ⅱ)设AB 所在直线的方程为y =x +m . 由2234,x y y x m⎧+=⎨=+⎩得2246340.x mx m ++-= 因为A ,B 在椭圆上,所以212640.m ∆=-+>设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2).则21212334,,24m m x x x x -+=-=所以12AB x =-=又因为BC 的长等于点(0,m )到直线l的距离,即BC =所以22222210(1)11.AC AB BC m m m =+=--+=-++所以当m =-1时,AC 边最长.(这时12640=-+>) 此时AB 所在直线的方程为y =x -1. (20)(共13分)解:(Ⅰ)由于21()(1,2,),n n a n n a n +=+-λ=⋅⋅⋅且a 1=1, 所以当a 2=-1时,得12-=-λ, 故 3.λ=从而23(223)(1) 3.a =+-⨯-=-(Ⅱ)数列{a n }不可能为等差数列.证明如下:由a 1=1,21()n n a n n a +=+-λ得2342,(6)(2),(12)(6)(2).a a a =-λ=-λ-λ=-λ-λ-λ 若存在λ,使{a n }为等差数列,则a 3-a 2=a 2-a 1,即 (5)(2)1-λ-λ=-λ, 解得λ=3.于是214312,(11)(6)(2)24.a a a a -=-λ=--=-λ-λ-λ=-这与{a n }为等差数列矛盾,所以,对任意λ,{a n }都不可能是等差数列. (Ⅲ)记2(1,2,),n b n n n =+-λ=⋅⋅⋅根据题意可知,b 1<0且0n b ≠,即λ>2且2(n n n λ≠+∈N *),这时总存在0n ∈N *,满足:当n ≥n 0时,b n >0;当n ≤n 0-1时,b n <0.所以由a n +1=b n a n 及a 1=1>0可知,若n 0为偶数,则00n a <,从而当n >n 0时a n <0;若n 0为奇数,则00n a >,从而当n >n 0时a n >0.因此“存在m ∈N *,当n >m 时总有a n <0”的充分必要条件是:n o 为偶数, 记n o =2k (k =1,2, …),则λ满足22221(2)20(21)210.k k b k k b k k -⎧=+-λ⎨=-+--λ⎩>,< 故λ的取值范围是242k k -λ<<4k 2+2k (k ∈N *).。