分式方程(简讲义)
- 格式:docx
- 大小:140.99 KB
- 文档页数:7
七年级上:初一数学提高(1)班辅导讲义6:分式方程及整数指数幂姓名______________辅导时间______【知识要点】1、 分式方程:分母中含有未知数的方程。
.解分式方程的基本思想:去分母,把分式方程转化为整式方程解分式方程的一般步骤:(1) 去分母:在原方程的两边同时乘以最简公分母,把分式方程转化成整式方程(2) 解这个整式方程:得到整式方程的根(3) 验根:检验整式方程的根是否为原分式方程的根(把整式方程的根代入最简公分母检验,使最简公分母等于零的根是原方程的增根,必须舍去)(4) 写结论:原方程的根为……,或原方程无解列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。
2、整数指数幂:正整数、0、负整数都可以作指数;幂的有关运算法则依然成立(0和负整数作指数时要求底数不等于0)3、科学计数法的简单应用【基础自测】1、下列方程中是分式方程的是( )A.2413x x +-+ B. 5042x x -+= C. ()34243x x -= D. 142x x +=+ 2、1a =-是下列哪个方程的根?( )A. 21012a a -=++B. 2201a a-=- C. 21012a a +=-+ D. 2212a a =-+ 3、下列运算正确的是( )A. ()224--=B. 2124--=C. 22155x x -=D. ()122xy xy-= 4、下列等式正确的是( )A. ()311--=B. ()()236222-⨯-=C. ()()826555-÷-=-D. ()0241-=5、分式方程5231x x=-的解是______________ 6、 若分式方程()()2815x a a x +=--的解为15x =-,则a =____________; 7、x =1_________(是、不是)方程1111x x x +=--的根8、去分母解关于x 的方程3022x m x x --=--时会产生增根,则m = _______ 9、科学计数法表示:1340000= _________________;0.0001034= __________________10、写出原数:65.7110-⨯=______________;84.0310-⨯=______________; 11、大小比较:24--,20.2-,0133⎛⎫- ⎪⎝⎭,334-⎛⎫ ⎪⎝⎭:___________________________________ 12、用50克盐加水调制成浓度为25%的盐水,需要加水____________克13、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队恰好同时开工同时完工;甲队比乙队每天多安装2台,设乙队每天安装x 台空调,根据题意,可以列出方程为____________【例题选讲】:1、解方程 (1)21211x x =-- (2)3233x x x =+--(3)22254212343x x x x x -=-+-++ (4)23251x x x x x +-=+-2、(1)m 为何值时,关于x 的方程22432x mx x x -+-=+2会产生增根?(2)已知关于x 的方程323-=--x m x x 解为正数,求m 的取值范围.3、计算:(1)()11xy x y --+; (2)()()1122x y x y ----+÷-(3)2110162123733---⎛⎫⎛⎫⎛⎫⎛⎫⋅-+-⋅- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (4)()110111432232---⎡⎤⎡⎤⎛⎫⎛⎫-⨯÷+--⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦4、 应用题:(1)轿车和货车同时从上海出发,轿车行270千米到达南京时,货车才行120千米到达无锡,如果轿车每小时比货车多行50千米,那么求轿车的速度(2)一个分数的分母比它的分子大5;如果这个分数的分子加上14,分母减去1,那么所得的分数为原分数的倒数,去这个分数(3)某文具厂加工一种学生画图工具2500套,在加工了1000套后,采用了新技术,使每天的工作效率提高到原来的1.5倍,结果提前5天完成任务。
《分式方程》讲义一、什么是分式方程在我们学习数学的过程中,方程是一个非常重要的概念。
之前我们接触过一元一次方程、二元一次方程等,今天我们要来认识一种新的方程类型——分式方程。
那到底什么是分式方程呢?分式方程是指方程里含有分式,并且分母里含有未知数或含有未知数整式的有理方程。
比如说,像这样的方程:$\frac{x}{x-1} = 2$ ,$\frac{2}{x} + 3 = 5$ ,它们都是分式方程。
因为在这些方程中,分母中都含有未知数。
二、分式方程的解法接下来,我们重点来学习一下分式方程的解法。
解分式方程的一般步骤可以总结为以下几步:1、去分母这是解分式方程最为关键的一步。
我们要找到所有分式的最简公分母,然后将方程两边同时乘以这个最简公分母,把分式方程化为整式方程。
例如,对于方程$\frac{x}{x-1} = 2$ ,最简公分母是$x 1$ ,方程两边同时乘以$x 1$ ,得到$x = 2(x 1)$。
2、解整式方程完成去分母后,我们得到了一个整式方程。
接下来,按照解整式方程的方法求解这个方程。
就以上面得到的整式方程$x = 2(x 1)$为例,展开得到$x =2x 2$ ,移项可得$2x x = 2$ ,即$x = 2$ 。
3、检验这一步非常重要,却很容易被忽略。
我们将求得的解代入原分式方程的分母中,如果分母不为零,那么这个解就是原分式方程的解;如果分母为零,那么这个解就是增根,原分式方程无解。
还是以方程$\frac{x}{x-1} = 2$ 为例,把$x = 2$ 代入分母$x 1$ ,$2 1 = 1$ ,不为零,所以$x = 2$ 是原方程的解。
三、分式方程的增根在解分式方程的过程中,增根是一个需要特别关注的概念。
增根是分式方程化为整式方程后,产生的使分式方程的分母为零的根。
为什么会产生增根呢?这是因为在去分母的过程中,我们乘以了一个含有未知数的式子,这个式子有可能为零。
而等式两边同乘以零是不符合数学规则的,所以可能会产生额外的根,也就是增根。
分式方程1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。
1)分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。
2)分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。
3)分式的值为零的条件:分子为零且分母不为零2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
用式子表示 其中A 、B 、C 为整式(0≠C ) 注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。
(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。
(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。
3. 分式的通分和约分:关键先是分解因式1)分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。
2)最简分式:分子与分母没有公因式的分式 3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。
4)最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。
4. 分式的符号法则分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。
用式子表示为注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。
5. 条件分式求值1) 整体代换法:指在解决某些问题时,把一些组合式子视作一个“整体”,并把这个“整体”直接代入另一个式子,从而可避免局部运算的麻烦和困难。
例:已知 ,则求2)参数法:当出现连比式或连等式时,常用参数法。
例:若 ,则求 CB C A B A ⋅⋅=C B C A B A ÷÷=411=+b a bb a b ab a 7223-++-432c b a ==cb ac b a +++-5236. 分式的运算:1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
《分式方程》讲义一、分式方程的定义首先,咱们来聊聊啥是分式方程。
分式方程啊,就是指方程里含有分式,并且分母里含有未知数的方程。
比如说,像这样的方程:\(\frac{x}{x 1} = 2\),\(\frac{3}{x + 2} = 5\),这里的\(x 1\)、\(x + 2\)就是分母,而且里面都有未知数\(x\),所以它们就是分式方程。
那为啥要研究分式方程呢?因为在很多实际问题中,我们常常会遇到这种形式的方程,通过求解分式方程,就能找到问题的答案。
二、分式方程的解法接下来,重点讲讲分式方程咋解。
解分式方程的关键步骤就是去分母,把分式方程转化为整式方程。
举个例子,对于方程\(\frac{x}{x 1} = 2\),我们在方程两边同时乘以\(x 1\),得到\(x = 2(x 1)\)。
这时候就得到了一个整式方程,接下来就可以按照整式方程的解法来求解啦。
展开式子:\(x = 2x 2\),然后移项:\(2x x = 2\),解得\(x = 2\)。
但是,这里要特别注意!解完之后一定要检验!为啥要检验呢?因为在去分母的过程中,我们乘以了一个含未知数的式子,可能会产生增根。
所谓增根,就是使分母为\(0\)的根。
比如上面这个例子,把\(x = 2\)代入原方程的分母\(x1\),\(2 1 = 1\neq 0\),所以\(x = 2\)是原方程的根。
再看个例子,方程\(\frac{1}{x 2} + 3 =\frac{x 1}{x 2}\)。
先在方程两边同时乘以\(x 2\),得到\(1 + 3(x 2) = x1\)。
去括号:\(1 + 3x 6 = x 1\),移项:\(3x x = 1 1 + 6\),合并同类项:\(2x = 4\),解得\(x = 2\)。
检验一下,把\(x = 2\)代入原方程分母\(x 2\),\(2 2 = 0\),所以\(x = 2\)是增根,原方程无解。
三、分式方程的应用分式方程在实际生活中有很多用处呢。
第06讲 分式方程目 录一、考情分析 二、知识建构考点一 解分式方程题型01 判断分式方程 题型02 分式方程的一般解法 题型03 分式方程的特殊解法 类型一 分组通分法 类型二 分离分式法 类型三 列项相消法 类型四 消元法题型04 错看或错解分式方程问题 题型05 解分式方程的运用(新定义运算)题型06 根据分式方程解的情况求值题型07 根据分式方程有解或无解求参数题型08 已知分式方程有增根求参数 题型09 已知分式方程有整数解求参数考点二 分式方程的应用题型01 列分式方程题型02 利用分式方程解决实际问题 类型一 行程问题 类型二 工程问题 类型三 和差倍分问题 类型四 销售利润问题考点一解分式方程分式方程的概念:分母中含有未知数的方程叫做分式方程.增根的概念:在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.1.分式方程与整式方程的根本区别:分母中含有未知数,也是判断分式方程的依据.2. 去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项.3. 分式方程的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.4. 分式方程的增根是去分母后的整式方程的根,也是使分式方程的公分母为0的根,它不是原分式方程的根.5. 解分式方程可能产生使分式方程无意义的根,检验是解分式方程的必要步骤.6. 分式方程有增根与无解并非是同一个概念.分式方程无解,需分类讨论:可能是解为增根,也可能是去分母后的整式方程无解.题型01 判断分式方程题型02 分式方程的一般解法解分式方程方法:先通过方程两边同乘最简公分母将分式方程化为整式方程,再解整式方程,最后需要检验整式方程的解是不是分式方程的解.题型03 分式方程的特殊解法类型一分组通分法方法简介:如果整个方程一起通分,计算量大又易出错,观察方程中分母的特点可联想分组通分求解.类型二分离分式法方法简介:每个分式的分母与分子相差1,利用这个特点可采用分类分式法求解类型三列项相消法方法简介:根据分式方程的结果特点,依据公式“1n(n+1)=1n−1n+1”化积为差,裂项相消,简化难度.类型四消元法方法简介:当方程中的分式互为倒数,或不同分式中的分母互为相反式,或方程中分子、分母的二次项与一次项分别相同时,可考虑用换元法.题型04 错看或错解分式方程问题+1,其中x=先化简,再求值:3−xx−4⋅(x−4)+(x−4)解:原式=3−xx−4=3−x+x−4=−1题型05 解分式方程的运用(新定义运算)题型06 根据分式方程解的情况求值由分式方程的解的情况求字母系数的取值范围,一般解法是:①根据未知数的范围求出字母的范围;②把使分母为0的未知数的值代入到去分母后的整式方程中,求出对应的字母系数的值;③综合①②,求出字母系数的范围.题型07 根据分式方程有解或无解求参数已知分式方程的解确定字母参数,首先将分式方程化为整式方程,用含字母参数的代数式表x,再根据解的情况确定字母参数的取值. 同时要注意原分式方程的最简公分母不能为零.题型08 已知分式方程有增根求参数依据分式方程的增根确定字母参数的值的一般步骤:1)先将分式方程转化为整式方程;2)由题意求出增根;3)将增根代入所化得的整式方程,解之就可得到字母参数的值.题型09 已知分式方程有整数解求参数考点二分式方程的应用用分式方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解方程;验:考虑求出的解是否具有实际意义;+1)检验所求的解是否是所列分式方程的解.2)检验所求的解是否符合实际意义.答:实际问题的答案.与分式方程有关应用题的常见类型:题型01 列分式方程【例1】(2022·云南·中考真题)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该A.1.4−x=8 1.4+x=8 1.4−2x=8 1.4+2x=8题型02 利用分式方程解决实际问题类型一行程问题【例2】(2022·四川自贡·统考中考真题)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【变式2-1】(2023青岛市一模)小李从A地出发去相距4.5千米的B地上班,他每天出发的时间都相同.第一天步行去上班结果迟到了5分钟.第二天骑自行车去上班结果早到10分钟.已知骑自行车的速度是步行速度的1.5倍:(1)求小李步行的速度和骑自行车的速度分别为多少千米每小时;(2)有一天小李骑自行车出发,出发1.5千米后自行车发生故障.小李立即跑步去上班(耽误时间忽略不计)为了至少提前5分钟到达.则跑步的速度至少为多少千米每小时?类型二工程问题【例3】(2023重庆市模拟预测)为方便群众出行,甲、乙两个工程队负责修建某段通往高铁站的快线,已知甲队每天修路的长度是乙队的1.5倍,如果两队各自修建快线600m,甲队比乙队少用4天.(1)求甲,乙两个工程队每天各修路多少米?(2)现计划再修建长度为3000m的快线,由甲、乙两个工程队来完成.若甲队每天所需费用为1万元,乙队每天所需费用为0.6万元,求在总费用不超过38万元的情况下,至少安排乙工程队施工多少天?【变式3-1】(2023·重庆渝中·重庆巴蜀中学校考一模)重庆市潼南区是中国西部绿色菜都,为全市人民提供了新鲜多样的蔬菜.今年,区政府着力打造一个新的蔬菜基地,计划修建灌溉水渠1920米,由甲、乙两,而乙施工队单独修建这个施工队合作完成.已知乙施工队每天修建的长度是甲施工队每天修建的长度的43项工程需要的天数比甲施工队单独修建这项工程需要的天数少4天.(1)求甲、乙两施工队每天各修建多少米?(2)若甲施工队每天的修建费用为13万元,乙施工队每天的修建费用为15万元,实际修建时先由甲施工队单独修建若干天,再由甲、乙两个施工队合作修建,恰好12天完成修建任务,求共需修建费用多少万元?类型三和差倍分问题【例4】(2022·广东深圳·深圳中学校考一模)2022年北京冬奥会吉祥物冰墩墩深受大家的喜欢.某商家两次购进冰墩墩进行销售,第一次用22000元,很快销售一空,第二次又用48000元购进同款冰墩墩,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进冰墩墩多少个?(2)若所有冰墩墩都按相同的标价销售,要求全部销售完后的利润率不低于20%(不考虑其他因素),那么每个冰墩墩的标价至少为多少元?【变式4-1】(2022·河南·统考中考真题)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需倍,用300元在市场上要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的54购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【变式4-2】(2021·山东济南·统考中考真题)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【变式4-3】(2022·山东烟台·统考中考真题)扫地机器人具备敏捷的转弯、制动能力和强大的自主感知、规划能力,深受人们喜爱.某商场根据市场需求,采购了A,B两种型号扫地机器人.已知B型每个进价比A型的2倍少400元.采购相同数量的A,B两种型号扫地机器人,分别用了96000元和168000元.请问A,B两种型号扫地机器人每个进价分别为多少元?类型四销售利润问题【例5】(2023梁山县三模)某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?【变式5-1】(2023银川市二模)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?。
第6讲分式方程模块一:分式方程及其解法知识精讲1、分式方程的概念分母中含有未知数的方程叫做分式方程.2、解分式方程的方法通过去分母把分式方程转化为整式方程,再求解.3、增根的概念分式方程在化整式方程求解过程中,整式方程的解如果使得分式方程中的分母为0,那么这个解就是方程的增根.4、解分式方程的一般步骤(1)方程两边都乘以最简公分母,去分母,化成整式方程;(2)解这个整式方程,求出整式方程的根;(3)检验.有两种方法:①将求得的整式方程的根代入最简公分母,如果最简公分母等于0,则这个根为增根,方程无解;如果最简公分母不等于0,则这个根为原方程的根,从而解出原方程的解;②直接代入原方程中,看其是否成立.如果成立,则这个根为原方程的根,从而解出原方程的解;如果不成立,则这个根为增根,方程无解.5、分式方程组的概念由两个或两个以上的分式方程构成的方程组叫做分式方程组.6、解分式方程组的方法找出分式方程组中相同的分式进行换元,将分式方程组转化为整式方程组,解方程组,然后进行检验.例题解析例1.(1)下列方程中,是分式方程的为( )A .12x -=B 1=C 10-=D 1=【答案】C【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【详解】A. 是整式方程,故选项错误;B. 是整式方程,故选项错误;分母中含有未知数x ,所以是分式方程,故选项正确;D. 是整式方程,故选项错误.故选C.【点睛】此题考查分式方程的判定,掌握分式方程的定义是解题的关键.(2)在3253x +=;11(1)(1)432x x ++-=;21x -=;2371x x x ++=-;1(37)x x-中,分式方程有().A .1个B .2个C .3个D .4个【难度】★【答案】B【解析】根据分式方程的定义,分母中含有未知数的方程是分式方程,(1)(2)两个方程分 母中不含未知数,(5)不是方程,(3)(4)满足定义,故选B .【总结】考查分式方程的定义,注意前提是方程,且方程分母中必含有字母.例2.(1)用换元法解分式方程251x x +21x x+-+1=0,如果设21x x +=y ,那么原方程可以化为( )A .2+y y -5=0B .2y -5y+1=0C .25y y 10++=D .25y 10y +-=【答案】D【分析】直接把21xx +换成y ,整理即可.【详解】解:设21xy x =+,则原方程化为1510y y -+=,去分母得,25y 10y +-=,故选:D .【点睛】本题考查的是换元法解分式方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.(2).用换元法解方程221165380x x x x æöæö+++-=ç÷ç÷èøèø,设1y x x =+,则方程变为()A .265380y y +-=B .265400y y +-=C .265260y y +-=D .265500y y +-=【难度】★【答案】D【解析】1y x x =+,则有22221122x x y x x æö+=+-=-ç÷èø,原方程即为()2625380y y -+-=,展开整理即为265500y y +-=,故选D .【总结】考查分式方程中换元法的应用,注意含有未知数部分的恒等变形转化.例3.分式方程2227381x x x x x +=+--的最简公分母是____________.【难度】★【答案】3x x -.【解析】分式方程中三个分母位置上分别为2x x +,2x x -,21x -,分解因式的结果分别为()1x x +,()1x x -,()()11x x +-,由此可得方程的最简公分母为()()311x x x x x +-=-.【总结】考查分式方程的最简公分母,将每个分母因式分解,取相同因式的最高次数乘积即为分式方程的最简公分母.例4.直接写出下列分式方程的根:(1)11211x x x -=---:_________________;(2)11111x x x -=---:_________________;(3)2121x x -=-:_________________;(4)2111x x -=-:_________________.【难度】★【答案】(1)2x =;(2)无解;(3)无解;(4)0x =.【解析】(1)根据等式性质,两边同时加上分式部分,即得2x =, 检验得2x =是原分式方程的根;(2)根据等式性质,两边同时加上分式部分,即得1x =,检验得1x =为方程的增根, 即方程无解;(3)约分得12x +=,解得1x =,检验得1x =为方程的增根,即方程无解;(4)约分得11x +=,解得0x =,检验得0x =是原分式方程的根.【总结】考查根据等式的性质求解简单的分式方程,注意求解结果是否是增根.例5.解方程:(1)3363142x x -=-+;(2)43252x xx x =++;(3)23312222x x x x x ++=--+-.【难度】★★【答案】(1)123x =,29x =-;(2)10x =,267x =-;(3)无解.【解析】(1)方程两边同乘()()43123x x -+,得()()()()42312831x x x x +--+=-,整理得2325180x x +-=,解得123x =,29x =-,经检验,123x =,29x =-都是原方程的根;(2)方程两边同乘()()3252x x ++,得()()52432x x x x +=+,整理得2760x x +=,解得:10x =,267x =-,经检验,10x =,267x =-都是原方程的根;(3)方程两边同乘()()212x x +-,得()()()63221x x x ++-=+,整理得220x x --=,解得:11x =-,22x =,经检验,11x =-,22x =都是原方程的增根,即原方程无解.例6.解方程:(1)2213211x x x x -=+--; (2)24221422x x x x =++--+;(3)23211214124x x x x++=+--.【难度】★★【答案】(1)13x =-;(2)6x =;(3)54x =.【解析】(1)方程两边同乘21x -,得()221213x x x x +=-+-,整理得23210x x --=, 解得:113x =-,21x =,经检验,21x =是原方程的增根,即原方程的根为13x =-;(2)方程两边同乘24x -,得()()2442222x x x x =--++-,整理得24120x x --=,解得:16x =,22x =-,经检验,22x =-是原方程的增根,即原方程的根为6x =;(3)两边同乘()2241x -,得()()()2621421241x x x x -+-+=-,整理得281450x x -+=,解得:112x =,254x =,经检验,112x =是原方程的增根,即原方程的根为54x =.【总结】考查分式方程的解法,注意检验所求是否为增根.例7.已知关于x 的方程22312x m x x x +-=-+-有增根,求m 的值.【难度】★★【答案】12m =或3m =.【解析】分式方程两边同乘22x x +-,得()223x m +=-,分式方程有增根,由220x x +-=,解得:11x =,22x =-,即为原分式方程的增根,代入相应整式方程得39m -=或30m -=,解得12m =或3m =.【总结】考查分式方程的增根,代入相应的整式方程可使得方程成立且使得分式分母为0的未知数的值.例8.已知关于x 的方程7155x m xx x--=---无解,求m 的值.【难度】★★【答案】3m =.【解析】分式方程两边同乘5x -,得()75x x m x -=---,整理解得:2x m =+,因为原分式方程无解,则相应解应为分式方程的增根,即得25x m =+=,解得3m =.【总结】考查分式方程的无解,即由相应整式方程求得的解是分式方程的增根.例9.已知关于x 的方程301a xx +-=+的根是负数,求a 的取值范围.【难度】★★【答案】3a <且1a ≠.【解析】分式方程两边同乘1x +,得()310a x x +-+=,整理解得:32a x -=,方程的根是 负数,则有302a x -=<,得3a <,同时分式方程的根不能为相应增根,即312a x -=≠-, 得1a ≠,由此即得3a <且1a ≠.【总结】考查分式方程的解满足条件的求解,注意方程的解不能为相应的增根.例10.解方程:(1)2220383x x x x+-=+;(2)2191502x x x x æöæö+-++=ç÷ç÷èøèø.【难度】★★【答案】(1)15x =-,22x =,31x =-,42x =-;(2)11x =,22x =,312x =.【解析】(1)令23x x a +=,原方程即为208a a-=,两边同乘a 整理得28200a a --=,解得:110a =,22a =-;由2310x x +=,解得:15x =-,22x =;由232x x +=-,解得:11x =-,22x =-;经检验,15x =-,22x =,31x =-,42x =-都是原方程的根;(2)令1x a x +=,原方程即为29502a a -+=,解得12a =,252a =;由12x x+=,整理得2210x x -+=,解得:121x x ==;由152x x +=,整理得22520x x -+=,解得12x =,212x =;经检验,11x =,22x =,312x =都是原方程的根.【总结】考查用换元法求解具有特殊形式的分式方程,注意对方法的总结.例11.解方程:(1)225(16(1)1711x x x x +++=++);(2)2216104()933x x x x+=-.【难度】★★【答案】(1)1x =2x =(2)13x =,23x =,32x =-,46x =.【解析】(1)令211x a x +=+,原方程即为6517a a +=,两边同乘a 整理得251760a a -+=,解得:125a =,23a =;由21215x x +=+,整理得25230x x -+=,方程无解;由2131x x +=+,整理得2320x x --=,解得:1x 2x =经检验,1x =2x = (2)令43x a x -=,则有2222164889333x x a x x æö+=-+=+ç÷èø,原方程即为281033a a +=,整理得231080a a -+=,解得:12a =,243a =;由423x x-=,整理得26120x x --=,解得:13x =,23x =;由4433x x -=,整理得24120x x --=,解得:12x =-,26x =;经检验,13x =+23x =-,32x =-,46x =都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程.例12.解方程组:(1)413538x y x y x y x y ì+=ï+-ïíï-=ï+-î;(2)132013251x y x y ì+=ï-ïíï-=-ï-î.【难度】★★【答案】(1)01x y =ìí=î;(2)565x y =ìïí=ïî.【解析】(1)令1a x y =+,1b x y =-,原方程组即为43538a b a b +=ìí-=î,解得:11a b =ìí=-î,由此可得11x y =+,11x y =--,由此得11x y x y +=ìí-=-î,解得:01x y =ìí=î,经检验,01x y =ìí=î是原分式方程的根;(2)令11a y =-,原方程组即为320235x a x a +=ìí-=-î,解得:55x a =ìí=î,由此可得:151y =-, 解得:65y =, ∴565x y =ìïí=ïî, 经检验,565x y =ìïí=ïî是原分式方程的根.【总结】考查利用换元法求分式方程组的解,注意解完之后要检验.例13.解方程组:(1)253489156x x x x +=+++++;(2)11212736x x x x x x ++-=-++++.【难度】★★【答案】(1)16x =,2334x =-;(2)92x =-.【解析】(1)对分式方程移项通分得()()()()()()()()21538495681569x x x x x x x x +-++-+=++++,展开即得2266231201554x x x x x x -+-+=++++,由此即得60x -+=或22231201554x x x x ++=++,解得:16x =,2334x =-, 经检验,16x =,2334x =-都是原分式方程的根; (2)对分式方程变形得1111112736x x x x --=--++++,由此得11112736x x x x +=+++++,两边分别通分即得222929914918x x x x x x ++=++++, 两边分母不同,则必有290x +=,解得92x =-,经检验,92x =-是原分式方程的根.【总结】考查特殊形式分式方程的解法,注意相应分母的关系,分组两边分别通分计算.例14.解方程:226205x x +-=+.【难度】★★【答案】11x =,21x =-.【解析】令25x a +=,则有25x a =-,原方程即为6520a a+--=,两边同乘a 整理,得2760a a -+=,解得:11a =,26a =;由251x +=,方程无解; 由256x +=,解得:11x =,21x =-;经检验,11x =,21x =-都是原方程的根.【总结】考查用换元法解分式方程,注意取值范围和增根.例15.a 为何值时,关于x 的方程211a a x +=+无解?【难度】★★【答案】12a =-或0a =.【解析】分式方程两边同乘1x +,得:()211a a x +=+,展开移项得1ax a =+,当0a =时,方程无解; 当0a ≠时,1a x a +=,方程无解,即得11a x a+==-,解得12a =-;综上,12a =-或0a =.【总结】考查分式方程的无解,即由相应整式方程求得的解是分式方程的增根,注意考虑未知项系数为0的情况.例16.已知关于x 的方程222022x x x k x x x x-+++=--只有一个解,求k 的值及这个解.【难度】★★★【答案】72k =-时,1212x x ==或4k =-时,1x =或8k =-时,1x =-.【解析】方程两边同乘22x x -,得()22220x x x k +-++=,展开整理得:22240x x k -++=,分式方程可能产生增根,即当相应整式方程有两解时,分式方程仅有一解,由此需进行 分类讨论:①当整式方程有两相等实数根时,()()224240k ∆=--⨯+=,解得:72k =-,此时方程为212202x x -+=,解得:1212x x ==,此时分式方程只有一个解,符合题意;②当整式方程有一根为分式方程增根0x =时,此时有40k +=,解得:4k =-,此时方程为2220x x -=,解得:10x =,21x =,此时分式方程只有一个解1x =,符合题意;③当整式方程有一根为分式方程增根2x =时,此时有2222240k ⨯-⨯++=,解得:8k =-,此时方程为22240x x --=,解得:12x =,21x =-,此时分式方程只有一个解1x =-,符合题意; 综上,72k =-或4k =-或8k =-.【总结】考查分式方程只有一个解的情况,方程为二次方程时,注意包含方程有一个根为分式方程的增根的情形.例17.解关于x 的方程:22112(3()1x x x x+-+= 【难度】★★★【答案】12x =,212x =.【解析】令1x a x +=,则有22221122x x a x x æö+=+-=-ç÷èø,原方程即为()22231a a --=,展开整理得22350a a --=,解得:11a =-,252a =;由11x x+=-,整理得210x x ++=,方程无解;由152x x +=,整理得22520x x -+=,解得:12x =,212x =; 经检验,12x =,212x =都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程,注意解完之后进行检验.例18.解关于x 的方程()()450b x a xa b b x a x+-=-+≠+-.【难度】★★★【答案】12a b x -=,245a bx -=.【解析】令a x kb x -=+,原方程即为45k k=-,两边同乘k 整理,得2540k k -+=,解得:11k =,24k =; 由1a x b x -=+,又0a b +≠,可解得:2a bx -=;由4a x b x -=+,又0a b +≠,可解得:45a bx -=;经检验,12a b x -=,245a bx -=都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程.例19.已知方程22222(1)21()x ax a a x a +-++=+有实数根,求实数a 的取值范围.【难度】★★★【答案】1122a -≤≤且0a ≠.【解析】展开得()()22222222121x ax a ax a a x a +--+++=+,根据等式性质移项得()()222220x ax a ax x a +-+=+,即为()20x a x a x a ⎡⎤+-=⎢⎥+⎣⎦,由此得()0xa x a x a+-=+, 移项得()2a x a x +=,展开整理得()223210ax a x a +-+=,当0a =时,方程有实数根0x =是分式方程的增根,应舍去;当0a ≠时,方程为一元二次方程,此时根据韦达定理可得2122112a x x a a a-+=-=-,可知1x 、2x 不可能同时为a -,分式方程有实数根,则相应的整式方程应满足()2232214410a a a a ∆=--⋅=-+≥,得1122a -≤≤;综上,实数a 的取值范围为:1122a -≤≤且0a ≠.【总结】考查分式方程有实数根的情形,对分式方程整理变形满足相应的条件即可.模块二分式方程应用题知识精讲1、列方程(组)解应用题时,如何找“相等关系”(1)利用题目中的关键语句寻找相等关系;(2)利用公式、定理寻找相等关系;(3)从生活、生产实际经验中寻找相等关系.例题解析例1.要在规定日期内完成一项工程,如甲队单独做,刚好按期完成;如乙队单独做,则要超过规定时间3天才能完成;甲、乙两队合作2天,剩下的工程由乙队单独做,则刚好按期完成.那么求规定日期为x天的方程是().A.2213xx x-+=+B.233x x=+C.2213xx x++=+D.213xx x+=+【难度】★【答案】D【解析】设工作总量为“1”,则甲工作量+乙工作量=1,根据工作总量=工作效率×工作天数,乙工作天数为x天,由此可知选D.【总结】考查工程问题中的单位“1”,注意分清对应的工作效率和工作时间.例2.某车间加工300个零件,在加工80个以后,改进了操作方法,每天能多加工15个,一共用6天完成了任务.如果设改进操作后每天加工x个零件,那么下列根据题意列出的方程中,错误的是()A.8030080615x x-+=-B.30080615x-=-C.80(6)8030015xx-+=-D.8015300806xx-=--【难度】★【答案】B 【解析】略【总结】考查根据题意列方程的应用,根据工作量和工作效率、工作时间之间的相互关系进行列方程的应用.例3.甲、乙两个工程队合做一项工程,6天可以完成.如果单独工作,甲队比乙队少用5天完成.两队单独工作各需多少天完成?【难度】★★【答案】甲单独需10天完成,乙单独需15天完成.【解析】设甲单独需用x天完成,则乙单独需用()5x+天完成,依题意可得11615x xæö+=ç÷+èø,整理得27300x x--=,解得:13x=-,210x=,经检验,13x=-,210x=都是原方程的根,但13x=-不合题意应舍去,即得10x=,即甲单独需10天完成,乙单独需10515+=天完成.【总结】考查工程问题中的列方程解应用题,把工作总量当作单位“1”解题.例4.登山比赛时,小明上山时的速度为a米/分,下山的速度是b米/分,已知上山和下山的路径是一样的,求小明在全程中的平均速度?【难度】★★【答案】2aba b+.【解析】设小明上山的路程为sm,则整个过程中小明总行程为2sm,根据平均速度=总行程÷总时间,即得平均速度22s abvs s a ba b==++.【总结】考查平均速度的求取,平均速度==总行程÷总时间,与行程远近无关,注意平均速度的求法.例5.甲、乙两人分别从相距9千米的A、B两地同时出发,相向而行,1小时后相遇.相遇后,各自继续以原有的速度前进,已知甲到B地比乙到A地早27分钟,求两人的速度各是多少?【难度】★★★【答案】甲速度为5/km h,乙速度为4/km h.【解析】设甲速度为/xkm h,则乙速度为()9/x km h-,927min20h=,依题意可得999920x x-=-,整理得2311800x x+-=,解得:136x=-,25x=,经检验,136x=-,25x=都是原方程的根,但136x=-不合题意应舍去,即得5x=,即甲速度为5/km h,乙速度为954/km h-=.【总结】考查行程问题中的列方程解应用题,根据相遇问题的基本关系一个条件作设一个条件列式进行求解.例6.甲、乙两辆车同时从A地出发开往距A地240千米的B地,结果甲车比乙车早到了60分钟;第二次,乙车提速30千米/时,结果比甲车早到了20分钟,求第一次甲、乙两车的速度各是多少?【难度】★★★【答案】甲速度为80/km h,乙速度为60/km h.【解析】设甲车xh到达B地,60min1h=,120min3h=,依题意可得24024030113xx-=+-,整理得232330x x+-=,解得1113x=-,23x=,经检验,111 3x=-,23x=都是原方程的根,但111 3x=-不合题意应舍去,即得3x=,可得甲速度为24080/3km h=,乙速度为24060/31km h=+.【总结】考查行程问题中的列方程解应用题,根据行程问题的基本等量关系一个条件作设一个条件列式进行求解,注意本题中用时间作设速度列式解题更方便.例7.某服装厂接到一宗生产13万套衣服的业务,在生产了4万套后,接到了买方急需货物的通知,为满足买方的要求,该厂改进了操作方法,每月能多生产1万套,一共5个月完成了这宗业务.求改进操作方案后每月能生产多少万套衣服?【难度】★★★【答案】3万套.【解析】设改进操作方案后每月能生产x 万套衣服,则改进之前每月生产()1x -万套,依题意可得413451x x -+=-,整理得251890x x -+=,解得:135x =,23x =,经检验,135x =,23x =都是原方程的根,但135x =不合题意应舍去,即得:3x =,即改进操作方案后每月能生产3万套衣服.【总结】考查工作总量问题,一个条件作设一个条件列式进行求解.随堂检测1.已知方程:(1)2412x x -=-;(2)221x x =-;(3)11x x x æö-=ç÷èø;(43x -=,其中是分式方程的有_____________.【难度】★【答案】(1)、(2)、(3).【解析】根据分式方程的定义,分母中含有未知数的方程是分式方程,(1)、(2)、(3)满足 条件,(4)方程中不含有分式,故答案为(1)、(2)、(3).【总结】考查分式方程的定义,注意前提是方程,且方程分母中必含有字母.2.当x 取何值时,分式方程1112x x x +=--的最简公分母的值等于0?【难度】★【答案】1x =或2x =.【解析】分式方程的最简公分母为()()12x x --,最简公分母值为0,即()()120x x --=,解得:1x =或2x =.【总结】考查分式方程的最简公分母,将每个分母因式分解,取相同因式的最高次数乘积即为分式方程的最简公分母.3.分式方程22228(2)331112x x x x x x +-+=-+,如果设2221x xy x +=-,那么原方程可以化为关于y 的整式方程为 .【难度】★【答案】281130y y -+=.【解析】2221x x y x +=-,则有22112x x x y-=+,原方程即为3811y y +=,整理化作关于y 的整式方 程即为281130y y -+=.【总结】考查利用换元法对复杂形式的分式方程进行转化,注意最终要化成整式方程的形式.4.解方程:(1)26531111x x x x =++--+;(2)22161242x x x x +-=--+; (3)243455121760x x x x x x --+=---+.【难度】★★【答案】(1)9x =;(2)5x =-;(3)12x =,29x =.【解析】(1)方程两边同乘21x -,得()()2615131x x x x =--++-,整理得2890x x --=,解得:11x =-,29x =,经检验,11x =-是原方程的增根,即原方程的根为9x =;(2)方程两边同乘24x -,得()22162x x +-=-,整理得23100x x +-=,解得:12x =,25x =-,经检验,12x =是原方程的增根,即原方程的根为5x =-;(3)两边同乘21760x x -+,得()()()4123545x x x x ----=-,整理得211180x x -+=,解得“”12x =,29x =,经检验,12x =,29x =都是原方程的根.【总结】考查分式方程的解法,注意检验所求是否为增根.5.解方程:221313x x x x ++=+.【难度】★★【答案】11x =,21x =+.【解析】令1x a x =+,原方程即为2133a a +=,整理即为231060a a -+=,解得:1a =2a =由1x x =+,解得:1x =;由1x x =+,解得:1x =+经检验11x =,21x =【总结】考查利用换元法解分式方程.6.解方程组311332412463324x y x y x y y x ì+=ï+-ïíï-=ï+-î【难度】★★【答案】1011711x y ì=ïïíï=ïî.【解析】令132a x y =+,14b x y =-,原方程组即为13312463a b a b ì+=ïíï+=î,解得:1413a b ì=ïïíï=ïî,由此可得113241143x y x y ì=ï+ïíï=ï-î, 去分母得32443x y x y +=ìí-=î,解得:1011711x y ì=ïïíï=ïî,经检验,1011711x y ì=ïïíï=ïî是原分式方程的根.【总结】考查用换元法解有特殊形式的分式方程组,注意验根.7.若分式方程22111x m x x x x x++-=++产生增根,求m 的值.【难度】★★【答案】2m =-或1m =.【解析】方程两边同乘2x x +,得()()22211x m x -+=+,展开整理得2220x x m ---=,分式方程产生增根,即当相应整式方程有两解时,分式方程仅有一解,由此需进行分类 讨论:①整式方程有一根为分式方程增根0x =时,此时有20m --=,解得:2m =-;②整式方程有一根为分式方程增根1x =-时,此时有()()212120m --⨯---=,解得:1m =;综上,2m =-或1m =.【总结】考查分式方程有增根的情况,即对应的整式方程有一个根为分式方程的增根.8.甲、乙两地间铁路长400千米,现将火车的行驶速度每小时比原来提高了45千米,因此,火车由甲地到乙地的行驶时间缩短了2小时.求火车原来的速度.【难度】★★【答案】75/km h .【解析】设火车原来的速度为/xkm h ,依题意可得400400245x x -=+,整理得24590000x x +-=,解得:1120x =-,275x =,经检验,1120x =-,275x =都是原方程的根,但1120x =-不合题意应舍去,即得75x =,即可得火车原来速度为75/km h .【总结】考查行程问题中的列方程解应用题,根据行程问题的基本等量关系一个条件作设一个条件列式进行求解.9.某市为了美化环境,计划在一定的时间内完成绿化面积200万亩的任务,后来市政府调整了原定计划,不但绿化面积要在原计划的基础上增加20%,而且要提前1年完成任务.经测算,要完成新的计划,平均每年的绿化面积必须比原计划多20万亩,求原计划平均每年的绿化面积.【难度】★★★【答案】原计划平均每年绿化面积40万亩.【解析】设原计划平均每年的绿化面积为x 万亩,则新计划每年()20x +万亩,依题意可得()200120%200120x x ⨯+-=+,整理得26040000x x +-=,解得:1100x =-,240x =,经检验,1100x =-,240x =都是原方程的根,但1100x =-不合题意应舍去,即得40x =,即原计划平均每年的绿化面积为40万亩.【总结】考查工作量的问题,根据相应的等量关系式列方程求解.10.解方程:221114(4)12()12433x x x -=-++.【难度】★★★【答案】11x =+,21x =,33x =+,43x =【解析】方程两边同乘12展开得22364881616x x x x-+=--+,根据等式的性质移项变形得2668120x x x x æöæö---+=ç÷ç÷èøèø,因式分解得:66260x x x x æöæö----=ç÷ç÷èøèø,由此可得620x x --=或660x x --=;由620x x--=,整理得2260x x --=,解得:11x =+21x =-;由660x x --=,整理得2660x x --=,解得:13x =+23x =经检验,11x =21x =-33x =43x =-都是原方程的根.【总结】考查用整体思想先对分式方程变形,然后求解分式方程的根,注意对方法的总结.11.解方程:596841922119968x x x x x x x x ----+=+----.【难度】★★★【答案】12314x =.【解析】对分式方程变形得1155514219968x x x x -++=++-----,根据等式的性质可变形得115519986x x x x -=-----,两边分别通分即得221010281711448x x x x =-+-+,由此可得22281711448x x x x -+=-+, 解得:12314x =,经检验,12314x =是原分式方程的根.【总结】考查特殊形式分式方程的解法,注意相应分母的关系,分组两边分别通分计算.12.已知关于x 的方程21221232a a x x x x ++=---+有增根,求a .【难度】★★★【答案】32a =-或2a =-.【解析】方程两边同乘232x x -+,得()2122x a x a -+-=+,展开整理得()134a x a +=+,当10a +≠,即1a ≠-时,得341a x a +=+,分式方程可能产生增根,由此进行分类讨论:①整式方程根为分式方程增根1x =时,此时有3411a a +=+,解得32a =-;②整式方程有一根为分式方程增根2x =时,此时有3421a a +=+,解得2a =-;综上,32a =-或2a =-.【总结】考查分式方程有增根的情况,即对应的整式方程根为分式方程的增根.13.已知:关于x 的方程227()72120a a x x a x x+--++=只有一个实数根,求a .【难度】★★★【答案】94a =或4a =.【解析】整理原方程得27120a a x x x x æöæö+-++=ç÷ç÷èøèø,因式分解得340a a x x x x æöæö+-+-=ç÷ç÷èøèø,由此可得30a x x +-=或40a x x +-=,分别整理得:230x x a -+=和240x x a -+=,两方程根的判别式分别为194a ∆=-,2164a ∆=-.因为方程仅有一实数根,所以940a -=或1640a -=,解得:94a =或4a =.【总结】考查分式方程的根与对应整式方程的根相结合的问题,根据实际题目进行问题的分析转化,解决问题.。
《分式方程》分式PPT免费课件(第1课时)
人教版八年级数学上册《分式方程》分式PPT免费课件(第1课时),共31页。
素养目标
1.了解分式方程的概念.
2.会用去分母的方法解可化为一元一次方程的简单的分式方程,体会化归思想和程序化思想.
3.了解解分式方程根需要进行检验的原因.
探究新知
分式方程的概念
分母中都含有未知数.
分母中含有未知数的方程叫做分式方程.
分式方程的特征:分母中含有未知数.
解分式方程
这些解法的共同特点是先去分母,将分式方程转化为整式方程,再解整式方程.
归纳总结
(1)分母中含有未知数的方程,通过去分母就化为整式方程了.
(2)利用等式的性质,可以在方程两边都乘同一个式子——各分母的最简公分母.
检验的方法主要有两种:
(1)将整式方程的解代入原分式方程,看左右两边是否相等;
(2)将整式方程的解代入最简公分母,看是否为0.
基本思路:将分式方程化为整式方程.
一般步骤:
(1)去分母;(2)解整式方程;(3)检验.
注意:由于去分母后解得的整式方程的解不一定是原分式方程的解,所以
需要检验.
解分式方程的一般步骤:
1.在方程的两边都乘最简公分母,约去分母,化成整式方程.
2.解这个整式方程.
3.把整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解,必须舍去.
4.写出原方程的解.
课堂小结
分母中含有未知数的方程叫做分式方程.
... ... ...
关键词:分式方程PPT课件免费下载,分式PPT下载,.PPTX格式;。
教学情况记录表课程类别□同步□串讲□其他(请注明类别:_____________________)本次课授课目标了解分式的有关概念,能利用分式的基本性质进行灵活的化简、计算活求值,能建立方程解决实际问题教学重点1、分式的基本性质2、分式的化简教学难点分式方程的实际应用教学步骤及内容一、错题回顾二、知识总结1、分式的概念(例1)一般地,我们把形如BA的代数式叫做分式,其中 A,B都是整式,且B含有字母。
A叫做分式的分子,B叫做分式的分母,对于任意一个分式,分母B都不能为0.注意:(1)分式BA中,A,B是两个整式,BA是两个整式相除的商,分数线有括号和除号两个作用,如nmnm-+可以表示)()(nmnm-÷+;(2)分式BA中,B一定含有字母,而A可以含有字母,也可以不含字母;(3)只有当0≠B时,分式BA才有意义。
2、分式有(无)意义及分式值为零的条件(例2、3、4)分式有意义的条件是分母不为零,分式无意义的条件是分母等于零。
分式的值等于零的条件是分式的分母不为零且分子为零。
即对于分式BA,当0=B时,分式无意义;当0≠B时,分式有意义;当00≠=BA且时,分式的值为零。
注意:解决有关分式的值为零的问题,由分子等于零求出字母的取值后,一定要代入分母中进行检验,保证分母不等于零。
3、分式的基本性质(例5)分式的分子和分母同乘(或除以)同一个不等于0的整式,分式的值不变。
用式子表示:MBMABAMBMABA÷÷=⨯⨯=,。
其中,M是不等于0的整式。
注意:(1)“M是不等于0的整式”是基本性质的一个约束条件。
(2)分式的基本性质是分式变形的根据。
4、分式的约分和最简分式(例6)(1)约分:把分式中分子和分母的公因式约去,叫做分式的约分。
(2)最简分式:分子和分母没有公因式的分式叫做最简分式。
注意:(1)当分式的分子与分母都是单项式时,可直接约分;(2)当分式的分子或分母是多项式时,先对多项式进行因式分解,再约去它们的公因式;(3)当分式的分子或分母的系数是负数时,可利用分式的基本性质,先把负号提到分式的前面,再约分;(4)约分的结果应是最简分式或整式。
分式方程1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。
1)分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。
2)分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。
3)分式的值为零的条件:分子为零且分母不为零2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
用式子表示 其中A 、B 、C 为整式(0≠C ) 注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。
(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。
(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。
3. 分式的通分和约分:关键先是分解因式1)分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。
2)最简分式:分子与分母没有公因式的分式 3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。
4)最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。
4. 分式的符号法则分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。
用式子表示为注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。
5. 条件分式求值1) 整体代换法:指在解决某些问题时,把一些组合式子视作一个“整体”,并把这个“整体”直接代入另一个式子,从而可避免局部运算的麻烦和困难。
例:已知 ,则求2)参数法:当出现连比式或连等式时,常用参数法。
例:若 ,则求 CB C A B A ⋅⋅=C B C A B A ÷÷=411=+b a bb a b ab a 7223-++-432c b a ==cb ac b a +++-5236. 分式的运算:1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
3)分式乘方法则: 分式乘方要把分子、分母分别乘方。
4)分式乘方、乘除混合运算:先算乘方,再算乘除,遇到括号,先算括号内的,不含括号的,按从左到右的顺序运算5)分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,变为同分母分式,然后再加减,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。
1) 增根:分式方程的增根必须满足两个条件:(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的根。
2)分式方程的解法:(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.考点呈现考点1. 分式的概念1、下列各有理式 πy y x y x y x x y xy y x x x ,31),(23,,53,81,4,23,822++-+---中,分式的个数是( )A. 3个B. 4个C. 5个D. 6个考点2. 分式的意义 分式:BA (A ,B 都是整式,且B 中含有字母,B ≠0) ① 分式有意义⇔ ;② 分式无意义⇔ ;③ 分式值为零⇔1、若分式32-x 有意义,则x__________ 2、 要使分式)5)(32(23-+-x x x 有意义,则( ) bc ad c d b a d c b a bd ac d c b a =⋅=÷=⋅;n nn ba b a =)(A. x ≠23-B. x ≠5C. x ≠23-且x ≠5D. x ≠23-或x ≠5 3、 当a 为任意有理数时,下列分式一定有意义的是( )A . 112++a a B. 12+a a C. 112++a a D. 21aa + 4、分式324x x +-当x 时有意义;当x 时分式没有意义;当x 时分式的值为零。
5、当x 时,分式252++x x 的值是零;当x 时,分式242--x x 的值是零; 当x 时,分式x x -+22的值是零 考点3、最简公分母、最简分式1、分式ac b bc a abc 3,2,2--的最简公分母是 ;分式13x ,11x x +-,225(1)xy x -的最简公分母为________2、下列分式中是最简分式的是( ) A. 122+x x B. x 24 C. 112--x x D. 11--x x 3、下列分式中是最简分式的是( ) A. 222)(y x y x -- B. 2x xy - C. xy x y x ++2 D. 22-+x x考点4、分式的基本性质1. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。
(1)y x y x 32213221-+; (2)b a b a -+2.05.03.0 2、把分式xyy x +中的分子、分母的x 、y 同时扩大2倍,那么分式的值( ) A. 扩大2倍 B. 缩小为原来的21 C. 不变 D. 缩小为原来的413、约分(1)4322016xy y x -= ;(2)44422+--x x x =4、通分(1)b a 21,21ab; (2)y x -1,y x +1; (3)221y x -,xy x +21.考点5、计算1、(1)222222x b yz a z b xy a ÷= ;(2)493222--⋅+-x x x x = ;(3)43222)1.().()(aba b b a --= (4) x x x x x x 362996222+-÷-+- (5)ab a b a a b a b a --+-2224. (6)(7)xy y x xy y x 22)()(--+ (8)22y x x --22x y y - (9)(11)211a a a --- (12)⎪⎭⎫ ⎝⎛---÷--225262x x x x2、先化简)2(2222a b ab a aba b a ++÷--,当b= —1时,请你为 a 选一个适当的数代入求值22212(1)441x x x x x x x -+÷+⨯++-1624432---x x aa a +--22214)10(3、(1)如果2-=y x ,那么分式222222223yxy x y xy x +-+-的值为 ; (2)如果,211=+y x 那么分式yxy x y xy x 22323+-+-的值为 (3)已知122432+--=--+x B x A x x x ,其中A 、B 为常数,则A -B 的值为 (4)某人上山的速度为a ,下山的速度为b ,则他上山、下山的平均速度(假设按原路返回)为____________考点6、零指数幂与负整指数幂计算:(1)221-⎪⎭⎫ ⎝⎛= ;(2)220)2()21()2(---+--= ; (3)013)13()31()2(16-+--÷- = (4)(8×105)÷(-2×104)=(5)()()23323a b ab ----⨯(结果只含正整数指数幂)=考点7、分式方程的概念下列关于x 的方程是分式方程的是( ) A. 23356x x ++-= B. 324x =π C. x a b x a b a b-=- D. 2(1)11x x -=-考点8、分式方程的解1、当x= 时,125x x x x+--与互为相反数 2、若分式方程14733x x x -+=--有增根,增根为 ;当k=_____时,分式方程0111x k x x x x +-=--+有增根。
3、已知关于x 的分式方程xx a x 311=---无解,则a = 4、关于x 的方程112=-+x a x 的解是正数,则a 的取值范围是考点9、解分式方程(1)x x 321=- (2)1132422x x +=-- (3)21212339x x x -=+--(4)x x x -+=-3231 (5)1262=++-x x x (6)2123442+-=-++-x x x x x考点10、分式方程的应用题1、某人生产一种零件,计划在30天内完成,若每天多生产6个,则25天完成且还多生产10个,问原计划每天生产多少个零件?设原计划每天生产x 个,列方程式是( ) A. 3010256x x -=+ B. 3010256x x +=+ C. 3025106x x =++ D. 301025106x x +=-+ 2、某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力使挖出的土能及时运走且不窝土,解决此问题可设派x 人挖土,其它人运土,列方程:①x+3x=72,②72-x=3x ,③7213x x -=, ④372x x=-.上述所列方程正确的( ) A. 1个 B. 2个 C. 3个 D. 4个3、某工程需要在规定日期内完成,如果甲工程队独做,恰好如期完成; 如果乙工作队独做,则超过规定日期3天,现在甲、乙两队合作2天,剩下的由乙队独做,恰好在规定日期完成,求规定日期.如果设规定日期为x 天,下面所列方程中错误的是( )A. 213xx x+=+B.233x x=+C.1122133xx x x-⎛⎫+⨯+=⎪++⎝⎭D.113xx x+=+4、某人骑自行车比步行每小时快8千米,坐汽车比骑自行车每小时快16千米,此人从A 地出发,先步行4千米,然后乘坐汽车10千米就到在B地,他又骑自行车从B 地返回A地,结果往返所用的时间相等,求此人步行的速度.。