(完整版)分式及分式方程题型分类讲义
- 格式:doc
- 大小:202.81 KB
- 文档页数:11
八下数学第五章分式与分式方程5.1认识分式一般地,用,A B 表示两个整式,A B ÷可以表示成A B 的形式,如果B 中含有字母,那么称A B为分式,其中A 称为分式的分子,B 称为分式的分母,对于任意一个分式,分母都不能为零。
例1, 下列各式中哪些是整式?哪些是分式?211(1);;(3);(4);2242b a b x xy x y a x ++-+- (2) 分式的基本性质 分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值保持不变. 这一性质可以用式子表示为:,(0)b b m b b m m a a m a a m⋅÷==≠⋅÷。
把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.例2, 化简下列分式 2225(1);;20xy a ab x y b ab++ (2) 在化简的结果中,如果分子和分母已没有公因式,这样的分式称为最简分式,化简分式时,通常要使结果成为最简分式或是整式.5。
2分式的乘除法两个分式相乘,把分子相乘的积作为分子,把分母相乘的积作为分母;两个分式相除,把除式的分子和分母颠倒位置后在与被除式相乘。
这一法则可以用式子表示为:;b d bd b d b c bc a c ac a c a d ad⋅=÷=⋅= . 例3, 计算2222244(1);(4);2x xy xy x xy y x y x y x y x y+-+÷÷---+ (2) 5.3分式的加减法同分母的分式相加减,分母不变,把分子相加减。
这一法则可以用式子表示为:b c b c a a a±±=. 例4,计算222(1);(2);(3);22a b x y m n n n a b b a x y y x n m n m n m++++-------- 根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分,为了计算方便,异分母分式通分时,通常取最简单的公分母(最简公分母)作为它们的共同分母。
《分式方程》讲义一、什么是分式方程在我们学习数学的过程中,方程是一个非常重要的概念。
之前我们接触过一元一次方程、二元一次方程等,今天我们要来认识一种新的方程类型——分式方程。
那到底什么是分式方程呢?分式方程是指方程里含有分式,并且分母里含有未知数或含有未知数整式的有理方程。
比如说,像这样的方程:$\frac{x}{x-1} = 2$ ,$\frac{2}{x} + 3 = 5$ ,它们都是分式方程。
因为在这些方程中,分母中都含有未知数。
二、分式方程的解法接下来,我们重点来学习一下分式方程的解法。
解分式方程的一般步骤可以总结为以下几步:1、去分母这是解分式方程最为关键的一步。
我们要找到所有分式的最简公分母,然后将方程两边同时乘以这个最简公分母,把分式方程化为整式方程。
例如,对于方程$\frac{x}{x-1} = 2$ ,最简公分母是$x 1$ ,方程两边同时乘以$x 1$ ,得到$x = 2(x 1)$。
2、解整式方程完成去分母后,我们得到了一个整式方程。
接下来,按照解整式方程的方法求解这个方程。
就以上面得到的整式方程$x = 2(x 1)$为例,展开得到$x =2x 2$ ,移项可得$2x x = 2$ ,即$x = 2$ 。
3、检验这一步非常重要,却很容易被忽略。
我们将求得的解代入原分式方程的分母中,如果分母不为零,那么这个解就是原分式方程的解;如果分母为零,那么这个解就是增根,原分式方程无解。
还是以方程$\frac{x}{x-1} = 2$ 为例,把$x = 2$ 代入分母$x 1$ ,$2 1 = 1$ ,不为零,所以$x = 2$ 是原方程的解。
三、分式方程的增根在解分式方程的过程中,增根是一个需要特别关注的概念。
增根是分式方程化为整式方程后,产生的使分式方程的分母为零的根。
为什么会产生增根呢?这是因为在去分母的过程中,我们乘以了一个含有未知数的式子,这个式子有可能为零。
而等式两边同乘以零是不符合数学规则的,所以可能会产生额外的根,也就是增根。
第06讲 分式方程目 录一、考情分析 二、知识建构考点一 解分式方程题型01 判断分式方程 题型02 分式方程的一般解法 题型03 分式方程的特殊解法 类型一 分组通分法 类型二 分离分式法 类型三 列项相消法 类型四 消元法题型04 错看或错解分式方程问题 题型05 解分式方程的运用(新定义运算)题型06 根据分式方程解的情况求值题型07 根据分式方程有解或无解求参数题型08 已知分式方程有增根求参数 题型09 已知分式方程有整数解求参数考点二 分式方程的应用题型01 列分式方程题型02 利用分式方程解决实际问题 类型一 行程问题 类型二 工程问题 类型三 和差倍分问题 类型四 销售利润问题考点一解分式方程分式方程的概念:分母中含有未知数的方程叫做分式方程.增根的概念:在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.1.分式方程与整式方程的根本区别:分母中含有未知数,也是判断分式方程的依据.2. 去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项.3. 分式方程的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.4. 分式方程的增根是去分母后的整式方程的根,也是使分式方程的公分母为0的根,它不是原分式方程的根.5. 解分式方程可能产生使分式方程无意义的根,检验是解分式方程的必要步骤.6. 分式方程有增根与无解并非是同一个概念.分式方程无解,需分类讨论:可能是解为增根,也可能是去分母后的整式方程无解.题型01 判断分式方程题型02 分式方程的一般解法解分式方程方法:先通过方程两边同乘最简公分母将分式方程化为整式方程,再解整式方程,最后需要检验整式方程的解是不是分式方程的解.题型03 分式方程的特殊解法类型一分组通分法方法简介:如果整个方程一起通分,计算量大又易出错,观察方程中分母的特点可联想分组通分求解.类型二分离分式法方法简介:每个分式的分母与分子相差1,利用这个特点可采用分类分式法求解类型三列项相消法方法简介:根据分式方程的结果特点,依据公式“1n(n+1)=1n−1n+1”化积为差,裂项相消,简化难度.类型四消元法方法简介:当方程中的分式互为倒数,或不同分式中的分母互为相反式,或方程中分子、分母的二次项与一次项分别相同时,可考虑用换元法.题型04 错看或错解分式方程问题+1,其中x=先化简,再求值:3−xx−4⋅(x−4)+(x−4)解:原式=3−xx−4=3−x+x−4=−1题型05 解分式方程的运用(新定义运算)题型06 根据分式方程解的情况求值由分式方程的解的情况求字母系数的取值范围,一般解法是:①根据未知数的范围求出字母的范围;②把使分母为0的未知数的值代入到去分母后的整式方程中,求出对应的字母系数的值;③综合①②,求出字母系数的范围.题型07 根据分式方程有解或无解求参数已知分式方程的解确定字母参数,首先将分式方程化为整式方程,用含字母参数的代数式表x,再根据解的情况确定字母参数的取值. 同时要注意原分式方程的最简公分母不能为零.题型08 已知分式方程有增根求参数依据分式方程的增根确定字母参数的值的一般步骤:1)先将分式方程转化为整式方程;2)由题意求出增根;3)将增根代入所化得的整式方程,解之就可得到字母参数的值.题型09 已知分式方程有整数解求参数考点二分式方程的应用用分式方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解方程;验:考虑求出的解是否具有实际意义;+1)检验所求的解是否是所列分式方程的解.2)检验所求的解是否符合实际意义.答:实际问题的答案.与分式方程有关应用题的常见类型:题型01 列分式方程【例1】(2022·云南·中考真题)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该A.1.4−x=8 1.4+x=8 1.4−2x=8 1.4+2x=8题型02 利用分式方程解决实际问题类型一行程问题【例2】(2022·四川自贡·统考中考真题)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【变式2-1】(2023青岛市一模)小李从A地出发去相距4.5千米的B地上班,他每天出发的时间都相同.第一天步行去上班结果迟到了5分钟.第二天骑自行车去上班结果早到10分钟.已知骑自行车的速度是步行速度的1.5倍:(1)求小李步行的速度和骑自行车的速度分别为多少千米每小时;(2)有一天小李骑自行车出发,出发1.5千米后自行车发生故障.小李立即跑步去上班(耽误时间忽略不计)为了至少提前5分钟到达.则跑步的速度至少为多少千米每小时?类型二工程问题【例3】(2023重庆市模拟预测)为方便群众出行,甲、乙两个工程队负责修建某段通往高铁站的快线,已知甲队每天修路的长度是乙队的1.5倍,如果两队各自修建快线600m,甲队比乙队少用4天.(1)求甲,乙两个工程队每天各修路多少米?(2)现计划再修建长度为3000m的快线,由甲、乙两个工程队来完成.若甲队每天所需费用为1万元,乙队每天所需费用为0.6万元,求在总费用不超过38万元的情况下,至少安排乙工程队施工多少天?【变式3-1】(2023·重庆渝中·重庆巴蜀中学校考一模)重庆市潼南区是中国西部绿色菜都,为全市人民提供了新鲜多样的蔬菜.今年,区政府着力打造一个新的蔬菜基地,计划修建灌溉水渠1920米,由甲、乙两,而乙施工队单独修建这个施工队合作完成.已知乙施工队每天修建的长度是甲施工队每天修建的长度的43项工程需要的天数比甲施工队单独修建这项工程需要的天数少4天.(1)求甲、乙两施工队每天各修建多少米?(2)若甲施工队每天的修建费用为13万元,乙施工队每天的修建费用为15万元,实际修建时先由甲施工队单独修建若干天,再由甲、乙两个施工队合作修建,恰好12天完成修建任务,求共需修建费用多少万元?类型三和差倍分问题【例4】(2022·广东深圳·深圳中学校考一模)2022年北京冬奥会吉祥物冰墩墩深受大家的喜欢.某商家两次购进冰墩墩进行销售,第一次用22000元,很快销售一空,第二次又用48000元购进同款冰墩墩,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进冰墩墩多少个?(2)若所有冰墩墩都按相同的标价销售,要求全部销售完后的利润率不低于20%(不考虑其他因素),那么每个冰墩墩的标价至少为多少元?【变式4-1】(2022·河南·统考中考真题)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需倍,用300元在市场上要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的54购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【变式4-2】(2021·山东济南·统考中考真题)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【变式4-3】(2022·山东烟台·统考中考真题)扫地机器人具备敏捷的转弯、制动能力和强大的自主感知、规划能力,深受人们喜爱.某商场根据市场需求,采购了A,B两种型号扫地机器人.已知B型每个进价比A型的2倍少400元.采购相同数量的A,B两种型号扫地机器人,分别用了96000元和168000元.请问A,B两种型号扫地机器人每个进价分别为多少元?类型四销售利润问题【例5】(2023梁山县三模)某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?【变式5-1】(2023银川市二模)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?。
第十六章分式知识点和典型例习题【知识网络】【思想方法】 1.转化思想转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.第一讲 分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd ac ac •=,b c b d bda d a c ac÷=•= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;am●a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m= a mb n, (a m)n= amn7.负指数幂: a-p=1pa a 0=18.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)= a2- b 2 ;(a ±b)2= a 2±2ab+b 2(一)、分式定义及有关题型题型一:考查分式的定义(一)分式的概念: 形如AB(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.【例1】下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件:1、分母中字母的取值不能使分母值为零,否则分式无意义2、当分子为零且分母不为零时,分式值为零。
第五章分式与分式方程一认识分式知识点一分式的概念1、分式的概念从形式上来看,它应满足两个条件:(1)写成的形式(A、B 表示两个整式) (2)分母中含有这两个条件缺一不可2、分式的意义(1)要使一个分式有意义,需具备的条件是(2)要使一个分式无意义,需具备的条件是(3)要使分式的值为0,需具备的条件是知识点二、分式的基本性质分式的分子与分母都乘以(或除以)同一个分式的值不变用字母表示为AB=,A M A A MB M B B M⨯÷=⨯÷(其中M是不等于零的整式)知识点三、分式的约分1、概念:把一个分式的分子和分母中的公因式约去,这种变形称为分式的约分2、依据:分式的基本性质注意:(1)约分的关键是正确找出分子与分母的公因式(2)当分式的分子和分母没有公因式时,这样的分式称为最简分式,化简分式时,通常要使结果成为最简分式或整式。
(3)要会把互为相反数的因式进行变形,如:(x--y)2=(y--2)2二、分式的乘除法【巩固训练】1、(2013四川成都)要使分式51x-有意义,则x的取值范围是( )(A)x≠1 (B)x>1 (C)x<1 (D)x≠-12、(2013深圳)分式242xx-+的值为0,则x的取值是A.2x=-B.2x=±C.2x=D.0x=3、(2013湖南郴州)函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x≠﹣3 4.(2013湖南娄底,7,3分)式子有意义的x的取值范围是()A . x ≥﹣ 且x ≠1B . x ≠1C .5.(2013贵州省黔西南州,2,4分)分式的值为零,则x 的值为( ) A . ﹣1B . 0C . ±1D . 1 6.(2013广西钦州)当x= 时,分式无意义.7、(2013江苏南京)使式子1+1 x -1有意义的x 的取值范围是 。
8、(2013黑龙江省哈尔滨市)在函数3xy x =+中,自变量x 的取值范围是 .9、 (2013江苏扬州)已知关于x 的方程123++x nx =2的解是负数,则n 的取值范围为 . 10、(2013湖南益阳)化简:111x x x ---= . 11、(2013山东临沂,6,3分)化简212(1)211a a a a +÷+-+-的结果是( )A .11a -B .11a +C .211a -D .211a +12、 (2013湖南益阳)化简:111x x x ---= . 13、(2013湖南郴州)化简的结果为( )A . ﹣1B . 1C .D .14、(2013湖北省咸宁市)化简+的结果为 x .15、(2013·泰安)化简分式的结果是( )A .2B .C .D .-2考点:分式的混合运算.分析:这是个分式除法与减法混合运算题,运算顺序是先做括号内的加法,此时要先确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.16(2021年四川乐山).若m 为正实数,且13m m -=,221m m-则= 17(2013重庆市(A ))分式方程2102x x-=-的根是( ) A .x =1B .x =-1C .x =2D .x =-218、(2013湖南益阳)分式方程xx 325=-的解是( )A .x =3B .x =3-C .x =34D .x =34- 19、(2013白银)分式方程的解是( )A . x =﹣2B . x =1C . x =2D . x =320、(2013江苏扬州)已知关于x 的方程123++x nx =2的解是负数,则n 的取值范围为 . 【答案】2<n 且 1.5n ≠. 21.(2013山东临沂)分式方程21311x x x+=--的解是_________________. 22. (2013广东省)从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当a =6,b =3时该分式的值.23、(2013湖北孝感,19,6分)先化简,再求值:,其中,.考点: 分式的化简求值;二次根式的化简求值.24.(2013江苏苏州,21,5分)先化简,再求值:23111x x x x -⎛⎫÷+- ⎪--⎝⎭,其中x 32. 25.(2013贵州安顺,20,10分)先化简,再求值:12a)111(2++÷+-a a a ,其中a=3-1.6.(2013山东德州,18,6分)先化简,再求值:244412222+-÷⎪⎭⎫ ⎝⎛++--+-a a a a a a a a ,其中a=2-1.26、.(2013湖南永州,19,6分)先化简,再求值:22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭, 2.x =其中 【思路分析】先化简,再求值。
分式与分式方程【知识框架】【知识点&例题】知识点一:分式的基本概念一般地,如果,表示两个整式,并且中含有字母,那么式子B A 叫做分式,为分子,为分母。
知识点二:分式的基本性质 分式的分子和分母同乘(或除以)一个不等于的整式,分式的值不变。
字母表示:C B C••=A B A,C B C÷÷=A B A ,其中、、是整式,。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即B B AB B --=--=--=AAA注意:在应用分式的基本性质时,要注意这个限制条件和隐含条件B ≠0。
知识点三:分式的乘除法法则分式乘分式:用分子的积作为积的分子,分母的积作为积的分母。
式子表示为:db c a d c b a ••=•分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。
式子表示为cc ••=•=÷bd a d b a d c b a 分式的乘方:把分子、分母分别乘方。
式子n n nb a b a =⎪⎭⎫ ⎝⎛巩固练习:1.若分式的值为0,则x 的值为 .2.当= 时,分式的值为零.3.计算x xy y xy y xy y x xy y22222222++-÷+-+4.先化简,再求值:其中.242x x --x 26(1)(3)x x x x ----2291333x x x x x ⎛⎫-⋅ ⎪--+⎝⎭13x =5.先化简,再求值:,其中.6、先化简,再求值:,其中7、解下列方程:(1)(2)(3) (4)532224x x x x -⎛⎫--÷ ⎪++⎝⎭3x 22144(1)1a a a a a-+-÷--1a =-3522x x =-223444x x x x =--+22093x x x +=-+35012x x -=+9、在年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地千米.抢修车装载着所需材料先从供电局出发,分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的倍,求这两种车的速度。
分式方程及其应用一、基本概念1.分式方程:分母中含有 的方程叫分式方程。
2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程; (2)解这个整式方程;(3)验根,把整式方程的根代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3。
用换元法解分式方程的一般步骤:① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列 ;(2)检验所求的解是否 。
二、题型分类考点一:分式方程题型(一)分式方程去分母 1、解分式方程22311x x x时,去分母后变形为( )。
A .()()1322-=++x xB .()1322-=+-x xC .()()x x -=+-1322D .()()1322-=+-x x 2、下列方程是分式方程的是( )A .0322=--x xB .13-=x x C .x x =1 D .12=-πx题型(二)解分式方程用常规方法解下列分式方程:25211111 332552323x x x x x x x x x -+=+==+---++();(2);();题型(三)分式方程的解 1。
已知方程261=311xax a x -=+-的解与方程的解相同,则a 等于( ) A .3 B .-3 C. 2 D .-22。
方程13462232622+++++++x x x x x x -5=0的解是( )A 。
无解 B. 0 , 3 C 。
—3 D 。
0, ±33。
如果)2)(1(3221+-+=++-x x x x B x A 那么A-B 的值是( ) A .34 B 。
35C. 41 D 。
09 分式与分式方程专题总结【思维导图】【知识要点】知识点一:分式的基础概念:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子A叫做分式,A为分子,B为分母。
B【注意】判断式子是不是分式是从原始形式上去看,而不是从化简后的结果上去看。
与分式有关的条件:1.无论a取何值时,下列分式一定有意义的是()A.a2+1a2B.a+1a2C.a2−1a+1D.a−1a2+1【答案】D【解析】当a=0时,a2=0,故A、B中分式无意义;当a=-1时,a+1=0,故C中分式无意义;无论a取何值时,a2+1≠0,故选D.2.若代数式x+1x−3有意义,则实数x的取值范围是()A.x=−1B.x=3C.x≠−1D.x≠3【答案】D【解析】∵代数式x+1x−3有意义,∴x−3≠0,∴x≠3故选:D.3.在1,1,x2+1,3xy,,a+1m中分式的个数有()A.2 个B.3 个C.4 个D.5 个【答案】B【解析】解:12,x 2+12,3xy π中的分母中均不含有字母,因此它们是整式,而不是分式;1x ,3x+y ,a +1m 中的分母中含有字母,因此是分式; 故选:B .题型一 分式值为0的判断方法 例1.分式x 2+2x−3|x |−1的值为0,则x 的取值为( )A .x=-3B .x=3C .x=-3或x=1D .x=3或x=-1【答案】A 【解析】 ∵原式的值为0, ∴{x 2+2x −3=0|x |−1≠0,∴(x -1)(x+3)=0,即x=1或x=-3; 又∵|x|-1≠0,即x≠±1. ∴x=-3. 故选:A . 跟踪训练一 1.当式子|x |−5x 2−4x−5的值为零时,x 的值是( )A .±5B .5C .−5D .5或1【答案】C 【解析】由题意,得:|x |−5=0,且x 2−4x −5≠0; 由|x |−5=0,得:x =±5;由x 2−4x −5≠0,得:x ≠5,x ≠−1; 综上得:x =−5, 故选C. 2.若分式x 2−1x+1的值为0,则x 的值为( )A .0B .1C .﹣1D .±1【答案】B【解析】∵分式x 2−1x+1的值为零,∴{x2−1=0x +1≠0,解得:x=1, 故选B .知识点二:分式的运算(重点)基本性质(基础):分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
八年级上册期末复习——第十五章分式及分式方程复习讲义班级: 姓名: .考点1:分式有无意义、值为0的条件1.分式一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式.其中A 叫做分子,B 叫做分母. 要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B ≠0时,分式A B才有意义.1.若分式242x x -+有意义,则x 的取值范围是( ) A .2x ≠B .=2xC .=-2xD .2x ≠- 答案:D解析:20,2x x +≠≠与分子无关2.当x ________时,分式11x -没有意义. 答案:x=1解析:当,即=1时,分式11x -没有意义 3.若分式242x x --的值等于零,则=_______; 答案:=-2;解析:由=0,得. 当=2时-2=0,所以=-2; 考点2:分式的概念与基本性质 1.分式的基本性质 (M 为不等于0的整式).2.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.1.在中,分式的个数是( ) A.2 B.3 C.4 D.5答案:C ;解析:21(1)31,,,x x a x x x y m+++为分式,注意:π是数字,并不是字母 2.把分式2x y x y+的x,y 都扩大为原来的3倍,则分式的值( ) 10x -=x x x 24x -2x =±x x x ma y x xy x x x x 1,3,3,)1(,21,12+++πA.不变B.扩大为原来的3倍C.扩大为原来的9倍D.扩大为原来的2倍答案:C 解析:222(3)3279333()x y x y x y x y x y x y==+++,为原来的9倍 3.下列运算正确的( )A .a a a b a b =----B .0.220.33a b a b a b a b ++=++C .221b a a b a b-=--+ D .22a b a b a b +=-+ 答案:C解析:A:a a a b a b =---+,B:0.22100.3310a b a b a b a b++=++,C:正确,D :22a b a b ++不能再化简约分 4.下列分式是最简分式是( )A .22x x y +B .23x xy xy -C .224x x +-D .2121x x x --+答案:A解析:B .23(3)3x xy x x y x y xy xy y ---==,C .22214(2)(2)2x x x x x x +-==--++,D .2211121(1)1x x x x x x --==--+-- 考点3:分式的基本运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算a b a b c c c±±= ;同分母的分式相加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算 ,其中是整式,. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 ,其中是整式,. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.a c acb d bd⋅=a b c d 、、、0bd ≠a c a d ad b d b c bc÷=⋅=a b c d 、、、0bcd ≠(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.A .1m -B .+1mC .1m +D .1m - 答案:D 解析:2211111(1)(1)(1)(1)1m m m m m m m m m -=+=---+-+- 2.计算:2222132(1)441x x x x x x x -++÷-⋅++-.答案:22(1)(2)(1)x x x +-+- 解析:222222132(1)(1)1(2)(1)(1)441(2)(1)1x x x x x x x x x x x x x x -+++-++÷-⋅=⋅⋅++-+-- 22(1)(2)(1)x x x +=-+-. 3.计算: (1)332212b b a a ab ⎛⎫⎛⎫⎛⎫-÷-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)2224222a a a a a a ⎛⎫⨯- ⎪+--⎝⎭; (3)6333a a a a a a ⎛⎫-÷ ⎪-+-⎝⎭.答案:(1)822a b (2)a (3)13a + 解析:(1)3322326331122b b b b a a ab a a a b ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-÷-÷=-÷-÷ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭268233322b a a b a b a b ⎛⎫⎛⎫=--⨯= ⎪⎪⎝⎭⎝⎭; (2)2222244(2)(2)222(2)222a a a a a a a a a a a a a a a a ⎛⎫-+-⨯-=⨯=⨯ ⎪+--+-+-⎝⎭ (2)2a a a a =⨯+=+; (3)6333a a a a a a ⎛⎫-÷ ⎪-+-⎝⎭= (3)a(3)3(3)(3)6a a a a a a a+---⨯+-, 631(3)(3)63a a a a a a -=⨯=+-+.4.先化简再求值:2222111a a a a a --⎛⎫-÷ ⎪+⎝⎭,其中2a =答案:原式=1a a -,当2a =时,原式=11=2a a -解析: 222222111(1)(1)=(1)(1)1a a a a a a a a a a a a a--⎛⎫-÷ ⎪+⎝⎭⎡⎤-+⎢⎥+-⎣⎦-=当2a =时,原式=11=2a a - 考点4:分式方程 1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.1.把分式方程311x x x -=+化为整式方程,去分母正确的事( ) A .23(1)1x x +-=B .23(1)(1)x x x x +-=+C .23(1)+1x x +=D .23(1)(1)x x x x -+=+ 答案:B 解析:23113(1)(1)x x x x x x x -=+⇒+-=+2.如果关于x 的分式方程2122m x x x -=--无解,那么m 的值为( ) A .4B .-4C .2D .-2 答案:A 解析:2122m x x x-=--解方程得:2x m =--,因为方程无解,所以22x m =--=,则4m = 3.如果关于x 的分式方程62033x m x x --=--有增根,则m 的值是( ) A .32 B .32- C .3 D .3- 答案:A 解析:62033x m x x --=--,解方程得:62x m =-,因为有增根,所以623x m =-=,则32m =4.从-1,0,1,2,3,4,5,这7个数中随机抽取一个数,记为a ,若数a 使关于x 的不等式1253x a x x-<⎧⎨+≤⎩无解,且使关于x 的分式方程122x a x -=-的解为非负数,那么这7个数中所有满足条件的a 的值之和是( ) A .6B .8C .9D .10 答案:A解析:解不等式组得:15x a x <+⎧⎨≥⎩,因为不等式组无解,所以51,4a a ≥+≤, 分式方程解得:2222,233a a x --=≠且,所以:14a a ≥≠且 综上所述41a >≥,所以1,2,3a =,故答案选A5.解方程(1)23222x x x -=+- (2)()1231244x x x -=---答案:(1)27x =,(2)32x =- 解析:(1)解:23222x x x -=+- 方程两边同乘以()()22x x -+,得()()()()2232222x x x x x --+=+--72x =-27x =检验: 当27x =时,最简公分母()()22x x -+≠0, ∴27x =是原方程的解. (2)解: 方程两边同乘以()24x -,得()()12422332x x x =---=-∴ 检验:当32x =-时,最简公分母()240x -≠, ∴32x =-是原方程的解. 考点5:分式方程实际应用1.县城建局对某一条街的改造工程要限期完成,甲工程队独做可以提前一天完成,乙工程队独做要延期6天,现由两个工程队合做4天后,余下的由乙工程队独做,正好如期完成,若设工程期限为x 天,则所列方程正确的是( )A .4116x x x +=+- B .416x x x =-+ C .4116x x x +=-- D .4116x x x +=-+答案:D 解析:设总工作总量为1,工程期限为x 天,所以可列方程:4116x x x +=-+ 2.A 、B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程为( )A .3636944x x +=+- B .3636944x x +=+- C .3649x += D .3636944x x -=+-答案:A解析:设轮船在静水中速度为x ,可列方程的:3636944x x +=+- 3.小明家、王老师家、学校在同一条路上,并且小明上学要路过王老师家,小明到王老师家的路程为3 km ,王老师家到学校的路程为0.5 km ,由于小明的父母战斗在抗震救灾第一线,为了使他能按时到校、王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是他步行速度的3倍,每天比平时步行上班多用了20 min ,王老师步行的速度和骑自行车的速度各是多少?答案:王老师步行的速度为5km/h ,他骑自行车的速度为15km/h .解析:解:设王老师步行的速度为x km/h ,则他骑自行车的速度为3x km/h . 根据题意得:230.50.520360x x ⨯+=+. 解得:5x =.经检验5x =是原方程的根且符合题意.当5x =时,315x =.答:王老师步行的速度为5km/h ,他骑自行车的速度为15km/h .4.“抗击疫情,八方支援”截止2020年2月19日,全国已有278支医疗队、32395名医务人员从各地驰援湖北,小明和爸爸经过商量打算用自己的压岁钱购买A 、B 俩两种品牌消毒酒精捐赠当地医院,已知A 品牌消毒酒精每桶的价格比B 品牌消毒酒精每桶的价格多20元,用3000元购进A 品牌消毒酒精个用1800元购进B 品牌消毒酒精的数量相同.(1)A 品牌消毒酒精每桶的价格和B 品牌消毒酒精的每桶的价格各是多少元?(2)小明计划用不超过1560元的压岁钱购进A 、B 两种品牌消毒酒精共40桶,其中A 品牌的消毒酒精的数量不低于B 品牌的消毒酒精数量的一半,小明有几种购买方案?答案:(1)A :50,B :30(2)共5中方案。
分式专题讲解 知识点一、分式的概念: 一般地,如果A 、B 表示两个整式,并且除式B 中含有字母,那么式子叫分式。
解读:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;分式A/B 有意义,则B =0(2)分式的分母的值不能等于零.若分母的值为零,则分式无意义;反之,若分式A/B 无意义,则B =0(3)当分子等于零而分母不等于零时,分式的值才是零.反之,若分式A/B=0,则A =0,且B ≠0例题1、下列各式中,哪些是整式?哪些是分式?a ab 2,x 1,3s ,b a a --,πy x +,)(21b a -,)(1z x y -,a-31练习:这些代数式中x -,π4,x a ,y x y x -+2,a 5-,71,2ba -,x -3中,是分式的有( )。
A.3个B.4个C.5个D.6个练习:已知的值。
,求x x x 011=--练习:的值是的值为零,则b 32122---b b b ( ) A.1 B.-1 C.1± D.2练习:写出一个含字母x 的分式,使得不论x 取何值,分式都有意义。
练习:若0y 3y 21,322是)为负数()为正数;()(为何值时,y x xx y -=探索题型:观察下列各等式:323112=+,434122=+,545132=+,656142=+,......,设n 为正整数,试用含n 的等式表示这个规律。
1、分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB MA MB M A B A ÷÷=⨯⨯=(其中M 是不等于0的整式).特别提示:(1)在解题过程中,分母不为0是作为隐含条件给出的.若是分式,则说明分母中的字母一定能满足使分母不为0;(2)在运用分式的基本性质时,一定要重点强调分母不为0这个条件,没有给出的,要讨论是否等于0.例题1:下列运算中,错误的是( ).A.2b ab b a =B.b ab ab =2 C.b a b a b a b a 321053.02.05.0-+=-+ D .bc acb a =2、分式的约分根据分式的基本性质,把一个分式的分子和分母分别除以它们的公因式叫做分式的约分。
分式方程及其应用一、基本概念1.分式方程:分母中含有 的方程叫分式方程. 2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程; (2)解这个整式方程;(3)验根,把整式方程的根代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤: ① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列 ;(2)检验所求的解是否 .二、题型分类考点一:分式方程题型(一)分式方程去分母 1、解分式方程时,去分母后变形为( )。
A .()()1322-=++x x B .()1322-=+-x x C .()()x x -=+-1322 D .()()1322-=+-x x 2、下列方程是分式方程的是( )A .0322=--x x B .13-=x x C .x x =1 D .12=-πx 题型(二)解分式方程用常规方法解下列分式方程:25211111 332552323x x x x x x x x x -+=+==+---++();(2);();题型(三)分式方程的解 1.已知方程261=311xax a x -=+-的解与方程的解相同,则a 等于( ) A .3 B .-3 C. 2 D .-22.方程13462232622+++++++x x x x x x -5=0的解是( )A. 无解B. 0 , 3C. -3D. 0, ±322311x x x3. 如果)2)(1(3221+-+=++-x x x x B x A 那么A-B 的值是( ) A .34 B. 35 C. 41D. 24(C )关于x 的方程c c x x 22+=+的两个解是c x c x 2,21==,则关于x 的方程1212-+=-+a a x x 的两个解是( ) A .a a 2,B .12,1--a a C .12,-a a D . 11,-+a a a题型(四)用换元法解分式方程1.用换元法解分式方程152--x x +510102--x x =7时,如果设152--x x =y,那么原方程可化为( )A. y+710=y B. y+71=y C. 10y+71=yD. y+10y 2=7 2.解方程 (1)06)2(5)2(2=+---x x x x ; (2)解方程xx x x 32543222+=-+.题型(五)解分式方程组1.解方程组:11131129x y x y ⎧-=⎪⎪⎨⎪⋅=⎪⎩题型(六)增根 1. 若解分式方程2111x x m x x x x+-++=+产生增根,则m 的值是( ) A. --12或 B. -12或 C. 12或D. 12或-2. 若方程323-=--x kx x 会产生增根,试求k 的值题型(七)求待定常数的值或取值范围1.关于x 的分式方程1131=-+-xx m 的解为正数,求m 的取值范围;2.若关于x 的分式方程的解为非负数,则a 的取值范围是( )A .a ≥1B .a >1C .a ≥1且a ≠4D .a >1且a ≠43.若分式方程xmx x -=--221无解,求m 的值。
4.设c b a 、、是三个互不相同的正数,如果abb ac b c a =+=-,那么( ). A .c b 23= B .b a 23= C .c b =2 D .b a =2变式1:已知123421+=-=+x x y y x ,则)(323x y -的值是______________.变式2:已知d c b a 、、、为正整数,且cd a b c d a b )1(71,74-=+-=,则a c 的值是_________;b d的值是___________.对应练习: 一、选择题1、关于x 的方程的解是正数,则a 的取值范围是( )A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-22.若解分式方程xx x x m x x 11122+=++-+产生增根,则m 的值是( ) A. --12或 B. -12或 C. 12或D. 12或-3、已知,511ba b a +=+则b a a b +的值是( )A 、5B 、7C 、3D 、314、若x 取整数,则使分式1-2x 36x +的值为整数的x 值有 ( ) A 3个 B 4个 C 6个 D 8个 5、已知xBx A x x x +-=--1322,其中A 、B 为常数,那么A +B 的值为( ) A 、-2 B 、2 C 、-4 D 、4 二、填空题 1、若分式方程x m x x -=--2524无解,那么m 的值应为__________,若已知132112-+=-++x x x B x A (其中A 、B 为常数),则A=__________,B=__________;2、___________,a +b +c ≠0,则k 的值为 . 3、方程的解是_____________已知关于x 的方程只有整数解,则整数a 的值为_____________ 4、已知d c b a 、、、为正整数,且cd a b c d a b )1(71,74-=+-=,则a c 的值是_________;b d的值是___________.5、设m >n >0,m 2+n 2=4mn ,则22m n mn-的值为___________,若与互为倒数,则x=__________.三、解答题1、解下列分式方程(1)x x 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++45352、解下列方程(1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x211x a x +=-121-x )4(31+x3、若关于x 的分式方程3132--=-x mx 有增根,求m 的值.4、若分式方程122-=-+x ax 的解是正数,求a 的取值范围.5、解关于x 的方程)0(≠+=--d c dcx b a x 提示:(1)d c b a ,,,是已知数;(2)0≠+d c .6、若分式方程xmx x -=--221无解,求m 的值。
7、若关于x 的方程11122+=-+-x xx k x x 不会产生增根,求k 的值。
8、若关于x 分式方程432212-=++-x x k x 有增根,求k 的值。
9、若关于x 的方程1151221--=+-+-x k xx k xx 有增根1=x ,求k 的值。
10、m 为何值时,关于x 的方程22432x mx x x -+-=+2会产生增根?当a 为何值时, )1)(2(21221+-+=+----x x ax x x x x 的解是负数?考点二:分式方程的实际应用 题型(一)行程问题 (1)一般行程问题1.某次列车平均提速20km/h ,用相同的时间,列车提速前行驶400km ,提速后比提速前多行驶100km ,设提速前列车的平均速度为xkm/h ,下列方程正确的是( )A.=B.=C.=D.=2.从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的告诉公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
(2)水流问题1、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
2、一船自甲地顺流航行至乙地,用5.2小时,再由乙地返航至距甲地尚差2千米处,已用了3小时,若水流速度每小时2千米,求船在静水中的速度.题型(二)工程问题1.施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=22、某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?3、某车间加工1200个零件,采用新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10小时,采用新工艺前后每时分别加工多少个零件?题型(三)利润(成本、产量、价格、合格)问题例1、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。
小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,(1)这个八年级的学生总数在什么范围内?(2)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人(3)这个八年级的学生总数在什么范围内?若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?1.某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;(2)若购买的两种球拍数一样,求x2.某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
3. 某商品的标价比成本高p%,当该商品降价出售,为了不亏本,降价幅度不得超过d%,请用p表示d。
4.一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。
小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,(1)这个八年级的学生总数在什么范围内?(2)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?题型四:其他类型1、为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。