冀教版2019-2020学年七年级上学期数学期末考试试卷G卷新版
- 格式:doc
- 大小:94.01 KB
- 文档页数:10
最新冀教版七年级数学上册期末考试【及参考答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是()A.2019 B.-2019 C.12019D.120192.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度3.下列说法正确的是()A.一个数的绝对值一定比0大 B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数 D.最小的正整数是14.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°5.如果3ab2m-1与9ab m+1是同类项,那么m等于( )A.2 B.1 C.﹣1 D.06.如图,直线AB ,CD 相交于点O ,射线OM 平分AOC ∠,ON OM ⊥,若30AOM ∠=︒,则CON ∠的度数为( )A .30︒B .40︒C .60︒D .50︒7.如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A .B .C .D .8.6的相反数为( )A .-6B .6C .16-D .16910+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间10.若x ﹣m 与x+3的乘积中不含x 的一次项,则m 的值为( )A .3B .1C .0D .﹣3二、填空题(本大题共6小题,每小题3分,共18分)1.若a ,b 互为相反数,则a 2﹣b 2=________.2.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是________千米/时.3.如图,给出了直线外一点作已知直线平行线的一种方法,它的依据是_________.4.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为______cm .5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=________.638-.三、解答题(本大题共6小题,共72分)1.(1)用代入法解方程组:3759x y x y -=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31x y x y ⎧+=⎪⎨⎪+-=⎩2.已知方程组351ax by x cy +=⎧⎨-=⎩,甲正确地解得23x y =⎧⎨=⎩,而乙粗心地把C 看错了,得36x y =⎧⎨=⎩,试求出a ,b ,c 的值.3.如图,AB ∥CD ,△EFG 的顶点F ,G 分别落在直线AB ,CD 上,GE 交AB 于点H ,GE 平分∠FGD ,若∠EFG=90°,∠E=35°,求∠EFB 的度数.4.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.6.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、A5、A6、C7、B8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、02、273、同位角相等,两直线平行4、225、316、﹣2.三、解答题(本大题共6小题,共72分)1、(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.2、a=3,b=﹣1,c=3.3、20°4、证明略5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.。
冀教版 七年级上册数学3.3 代数式的值基础闯关全练知识点代数式的值1.当x= -1时,代数式x 2+3x+2的值是 ( )A.-2B.-1C.0D.42.求下列代数式的值时,代入过程正确的是 ( ) A .当a=37时,13217222-⨯=-a B .当a=21时,2a+1=221+1 C .当a=331时,22122131022-⨯=-⎪⎭⎫ ⎝⎛a D .当a=3时,1313233222-+=-+⎪⎭⎫ ⎝⎛⨯a a 3.按图3-3-1所示的运算程序,输入一个数x ,便可输出一个相应的数y .若输入的x 为-3,则输出的y 的值为 ( )A.21B.1C.-9D.-14.若2x -y= -3,则代数式1-4x+2y 的值等于 ( )A.7B.-5C.5D.-45.当a=-23时,代数式3)1(2+a a 的值等于 . 6.小亮按图3-3-2所示的程序输入一个数10.最后输出的结果为 .7.若a 为最小的正整数,b 为a 的相反数的倒数,c 为相反数等于它本身的数,则( a+b) ×5+4c= .8.当a= -2,b=-3时,求下列各代数式的值.(1)b ab 2244a ++; (2))2(2b a +.能力提升全练1.当x=1时,代数式13++qx px 的值为2 018,则当x= -1时,代数式13++qx px 的值为 ( )A.2 017B.-2 016C.2 018D.-2 018 2.形如的式子叫做二阶行列式,它的运算法则用公式表示为=ad -bc ,则依此法则计算的结果为 ( ) A.11B.-11C.5D.-23.有一个数值转换器,原理如图3-3-3所示,若开始输入x 的值是3,可发现第1次输出的结果是10,第2次输出的结果是5,第3次输出的结果是16,第4次输出的结果是8,依次继续下去,……第2 018次输出的结果是 .4.(2017浙江嘉兴桐乡期中)当x=-1,y=21时,求下列代数式的值. ( 1)2y -x; (2) y x 23+;(3))(2y x -.5.(2019吉林延边州期末)如图3-3-4所示,一张边长为20的正方形纸片,剪去两个一样的小直角三角形和一个小长方形得到一个图案.设剪去的小长方形的长和宽分别为x 、y ,剪去的两个小直角三角形的两直角边长也分别为x 、y .(1)用含有x 、y 的代数式表示图中阴影部分的面积;(2)当x=8、y=6时,求该阴影部分的面积.三年模拟全练一、选择题1.(2019江苏苏州常熟期末,5,★☆☆)已知2a -3b=2,则8 - 6a+9b 的值是 ( )A .0B .2C .4D .9二、解答题2.(2019河北唐山路北期末,26,★★☆)某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元,“十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案. 方案一:买1台微波炉送1台电磁炉:方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉10台,电磁炉x 台(x>10).(1)该客户按方案一、方案二购买,分别需付款多少元?(用含x 的式子表示)(2)若x= 30,通过计算说明此时按哪种方案购买较为合算;(3)当x= 30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元, 五年中考全练一、选择题1.(2018贵州贵阳中考.1,★☆☆)当x= -1时,代数式3x+1的值是 ( )A .-1B .-2C .4D .-4二、填空题2.(2018湖北荆州中考,13,★★☆)如图3-3-5所示,是一个运算程序示意图.若第一次输入k 的值为125,则第2 018次输出的结果是 .三、解答题3.(2016浙江湖州中考,18,★☆☆)当a=3,b=-1时,求下列代数式的值.(1)(a+b)(a -b);(2)b ab 222a ++. 核心素养全练问题背景:小红同学在学习过程中遇到这样一道计算题,“计算28.314.32228.314.344+⨯⨯-⨯”,她觉得太麻烦,估计应该有可以简化计算的方法,就去请教崔老师,崔老师说:你完成下面的问题后就可能知道该如何简化计算啦!获取新知:请你和小红一起完成崔老师提供的问题:(1)填写下表:(2)观察表格,你发现A 与B 有什么关系?解决问题:(3)请结合上述的有关信息,计算28.314.32228.314.344+⨯⨯-⨯.答案基础闯关全练1.C解析:当x=-1时,02312)1(323)1(22=+-=+-⨯+=++-x x .故选C . 2.C 解析:37没有加括号,故A 错;代入数值时一定要注意添上代数式中原来省略的乘号,故B 错;运算顺序不能改变,故D 错.故选C .3.C解析:由题意知,当x=-3时,5(x+2) -4=5×(- 3+2)-4=5×(-1)-4= -5-4=-9,故选C .4.A解析:1-4x+2y=1-2(2x -y).当2x -y= -3时,原式=1-2×(-3)=7.故选A .5.答案21 解析21321331232323)1(2=⎪⎭⎫ ⎝⎛-⨯-=⎪⎭⎫ ⎝⎛+-⨯⎪⎭⎫ ⎝⎛-⨯=+a a 6.答案256解析:当x=10时,5x+1= 51<200,继续运行此程序,当x= 51时,5x+1= 256>200,所以输出的结果为256.7.答案0解析因为a 为最小的正整数,所以a=1,又因为b 为a 的相反数的倒数,所以b=-1,因为c 为相反数等于它本身的数,所以c=0.所以(a+b )×5+4c=(1-1)×5+4×0=0.8解析:(1)当a=-2,b=-3时,64362444)3()2(444)3()2(a2222=++=⨯+-⨯-⨯+=++--b ab . (2)当a= -2,b=-3时, ()[]()()6486232)2()2(2222====----⨯+-+b a . 能力提升全练1. B解析:将x=1代人13++qx px ,可得p+q+1=2018,∴p+q=2017,将x=-1代入13++qx px ,可得-p -q+1= -(p+q )+1= -2 017+1=-2 016.故选B .2. A解析:直接代入公式计算即可,= 2×4-1×(-3)= 11.3.答案4 解析:第3次输出的结果是16.第4次输出的结果是8.第5次输出的结果是21×8=4. 第6次输出的结果是21×4=2,第7次输出的结果是21×2=1,第8次输出的结果是3×1+1 =4, 所以,从第5次开始,每3次输出为一个循环组依次循环, (2 018-4)÷3=671┄┄1.所以,第2 018次输出的结果是4.4.(1)当x=-1,y=21时,原式=2x 21-(-1)=2. (2)当x=-1,y=21时,原式=21213⨯+-⨯)(=13+-=2.(3)当x=-1,y=21时,原式=492112=⎪⎭⎫ ⎝⎛--. 5.(1)阴影部分的面积=20×20-xy - 21xy ×2= 400-2xy . (2)当x=8、y=6时,阴影部分的面积=400-2xy=400-2×8×6= 304.三年模拟全练一、选择题1.B解析:∵2a -3b= 2,∴原式=8-3(2a -3b )=8-3×2=2.故选B .二、解答题2.(1)方案一:800×10+200(x -10)=(200x+6 000)元;方案二:( 800×10+200x) ×90%=(180x+7 200)元.(2)当x=30时,方案一:200×30+6 000= 12 000(元);方案二:180×30+7 200=12 600(元),所以按方案一购买较合算.(3)先按方案一购买10台微波炉送10台电磁炉,再按方案二购买20台电磁炉,共需付款10x800+200x20x90%=11 600(元).五年中考全练一、选择题1.B解析:把x=-1代入3x+1得3×(-1)+1= -3+1= -2,故选B .二、填空题2.答案5解析: ∵第1次输出的结果是25,第2次输出的结果是5,第3次输出的结果是1,第4次输出的结果是5,第5次输出的结果是1,……,∴第2n 次输出的结果是5,第(2n+1)次输出的结果是1(n 为正整数),∴第2 018次输出的结果是5.三、解答题3.(1)当a=3,b=-1时,原式=[3+(-1)]×[3-(-1)]-2×4=8.(2)当a=3,6=-1时,原式=32+2×3×(-1)+()12-=9-6+1=4. 核心素养全练(1)当x=3,y=2时,B=16234442342222=+⨯⨯-⨯=+-y x xy ; 当x=1,y=1时,B=1114441142222=+⨯⨯-⨯=+-y x xy ; 当x=5,y=3时,B=49354443542222=+⨯⨯-⨯=+-y x xy .故答案为16,1,49.(2)B=. (3)()928.314.34428.314.3228.314.3222==+⨯⨯-⨯-⨯.。
2022-2023学年冀教版七年级数学上册期末模拟试卷一.选择题(共16小题,满分32分,每小题2分)1.下列四个有理数中,其中最小的数是()A.﹣3B.﹣1C.0D.12.如图的几何体由5个相同的小正方体搭成.从正面看,这个几何体的形状是()A.B.C.D.3.下列各式中,代数式有()个(1)a+b=b+a(2)1 (3)2x﹣1 (4)(5)s=πr2(6)A.2B.3C.4D.54.下列各组单项式属于同类项的是()A.与B.﹣m3与m2C.a2b与2ab2D.2a2与3a25.已知M=﹣x+1,N=x﹣5,若M+N=20,则x的值为()A.﹣30B.﹣48C.48D.306.下列语句正确的有()①射线AB与射线BA是同一条射线②两点之间的所有连线中,线段最短③连接两点的线段叫做这两点的距离④欲将一根木棍固定在墙上,至少需要2个钉子A.1个B.2个C.3个D.4个7.若2x3y m与﹣x n y2是同类项,则m﹣n的值是()A.1B.﹣1C.5D.﹣58.若关于x的方程(m﹣3)x|m﹣2|﹣3=0是一元一次方程,则m值是()A.1或2B.1或3C.1D.39.下面的图形中,不是平面图形的是()A.角B.圆柱C.直线D.圆10.某商品原价为a元,因销量下滑,经营者连续两次降价,每次降价10%,后因供不应求,又一次提高20%,问现在这种商品的价格是()A.1.08a元B.0.88a元C.0.972a元D.0.968 a元11.对于有理数a、b,定义一种新运算“※”,规定:a※b=|a|﹣|b|﹣|a﹣b|,则2※(﹣3)等于()A.﹣2B.﹣6C.0D.212.如图,点C是AB的中点,点D是BC的中点,则下列等式中成立的有()①CD=AD﹣BD;②CD=AD﹣BC;③2CD=2AD﹣AB;④CD=ABA.①②B.②③C.①③D.②④13.甲、乙两水池共储水100吨,若甲池注进水20吨,乙池用去水30吨后,两池所储水量相等,设甲池原来有水x吨,则可列方程如下正确的是()A.x+20=(100﹣x)+30B.x﹣20=(100﹣x)﹣30C.x+20=(100﹣x)﹣30D.x﹣20=(100﹣x)+3014.数轴上,点A、B分别表示﹣1、7,则线段AB的中点C表示的数是()A.2B.3C.4D.515.代数式a2+2a+7的值是6,则4a2+8a+7的值是()A.3B.﹣3C.13D.﹣1316.已知甲、乙两地相距65km,小红从甲地先坐公交车出发,公交车以40km/h的速度行驶了1.5h,然后小红步行,共花了2.5h到达乙地,则小红步行速度是()A.2km/h B.3km/h C.4km/h D.5km/h二.填空题(共4小题,满分12分,每小题3分)17.若x=﹣1是关于x的一元一次方程1﹣2x=3m的解,则m的值是.18.一张正方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,若∠B′AD′=20°,则∠EAF=.19.已知a,b表示两个有理数,规定一种新运算:a*b=2(a﹣b),则(﹣5)*(﹣2)的值是.20.观察下列一组数的排列规律:,,,,,,,,,,,,,,,…那么,这一组数的第2019个数是.三.解答题(共6小题,满分56分)21.(8分)计算:(1)(2)22.(10分)解方程:﹣x=+.23.(8分)已知:A=x4﹣x3+x2﹣3x+1,B=﹣2﹣x+x2,求2A﹣[B﹣(B﹣A)].24.(10分)如图,∠AOB=90°,OC在∠AOB的内部,分别作∠AOC、∠BOC的平分线OM、ON.(1)若∠BOC=30°,求∠MON的度数;(2)若将OC绕点O顺时针旋转,使OC在∠AOB的外部且锐角∠BOC=2x°,仍然分别作∠AOC、∠BOC的平分线OM、ON,画出示意图,你能求出∠MON的度数吗?若能,求出其值,若不能,试说明理由;(3)若将OC绕点O逆时针旋转,使OC在∠AOB的外部且锐角∠AOC=2y°,仍然分别作∠AOC、∠BOC的平分线OM、ON,画出示意图,你还能求出∠MON的度数吗?若能,求出其值,若不能,说明理由.25.(10分)某市居民使用自来水按如下标准收费(水费按月缴纳)户月用水量单价不超过12m3的部分2元/m3超过12m3但不超过20m3的部分3元/m3超过20m3的部分4元/m3(1)某用户一个月用了14m3水,求该用户这个月应缴纳的水费(2)某户月用水量为n立方米(12<n≤20),该用户缴纳的水费是39元,列方程求n 的值(3)甲、乙两用户一个月共用水40m3,设甲用户用水量为xm3,且12<x≤28①当12<x≤20时,甲、乙两用户一个月共缴纳的水费为元(用含x的整式表示)②当20<x≤28时,甲、乙两用户一个月共缴纳的水费为元(用含x的整式表示)26.(10分)如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P 从A点出发,以每秒2cm的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE的面积会等于10?参考答案与试题解析一.选择题(共16小题,满分32分,每小题2分)1.解:﹣3<﹣1<0<1,故选:A.2.解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:A.3.解:(1)a+b=b+a,是等式,不是代数式;(2)1,是单项式,是代数式;(3)2x﹣1,是多项式,是代数式;(4),是分式,是代数式;(5)s=πr2,是等式,不是代数式;(6)﹣,是单项式,是代数式;所以代数式有4个,故选:C.4.解:2a2与3a2属于同类项,故选:D.5.解:∵M=﹣x+1,N=x﹣5,M+N=20,∴﹣x+1+x﹣5=20,去分母得:﹣4x+6+x﹣30=120,移项合并得:﹣3x=144,解得:x=﹣48.故选:B.6.解:①因为射线只有一个端点和一个方向,不可度量,所以射线AB与射线BA不是同一条射线,①说法不正确,故①不符合题意;②因为两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.所以②说法正确,故②符合题意;③因为连接两点间的线段的长度叫两点间的距离.所以③说法不正确,故③不符合题意;④因为经过两点有且只有一条直线,所以④说法正确,故④符合题意.所以正确的有②④共2个.故选:B.7.解:根据题意得:m=2,n=3,则m﹣n=2﹣3=﹣1.故选:B.8.解:∵关于x的方程(m﹣3)x|m﹣2|﹣3=0是一元一次方程,∴|m﹣2|=1且m﹣3≠0,解得m=1.故选:C.9.解:根据平面图形的定义可得,B圆柱不是平面图形.故选:B.10.解:根据题意,得a(1﹣10%)2(1+20%)=0.972a故选:C.11.解:∵a※b=|a|﹣|b|﹣|a﹣b|,∴2※(﹣3)=|2|﹣|﹣3|﹣|2﹣(﹣3)|=2﹣3﹣|2+3|=2﹣3﹣5=﹣6,故选:B.12.解:∵点C是AB的中点,点D是BC的中点,∴AC=BC=AB,CD=BD=BC,则CD=AD﹣AC=AD﹣BC,①不符合题意;②符合题意;2AD﹣AB=2AC+2CD﹣AB=2CD,③符合题意;CD=AB,④不符合题意;故选:B.13.解:设甲池原来有水x吨,则x+20=(100﹣x)﹣30.故选:C.14.解:线段AB的中点C表示的数为:=3,故选:B.15.解:∵a2+2a+7=6,∴a2+2a=﹣1,∴4a2+8a+7=4(a2+2a)+7=﹣1×4+7=3.故选:A.16.解:坐公交车行驶的路程+步行行驶的路程=甲、乙两地距离.设小红步行速度为xkm/h,得40×1.5+2.5x=65,解得x=2,小红步行速度为2km/h,故答案为:A.二.填空题(共4小题,满分12分,每小题3分)17.解:∵x=﹣1是关于x的一元一次方程1﹣2x=3m的解,∴1﹣2×(﹣1)=3m,∴3m=3,解得m=1.故答案为:1.18.解:∵AF、AE为折痕,∠B′AD′=20°,∴∠DAF=∠D′AF=∠FAB′+∠B′AD′=∠FAB′+20°,∠BAE=∠EAD′+∠B′AD′=∠EAD′+20°,∵四边形ABCD为正方形,∴∠BAD=90°,∴∠DAF+∠BAE+∠EAF=∠FAB′+20°+∠EAD′+20°+∠FAB′+20°+∠EAD′=90°,∴∠FAB′+∠EAD′=15°,∴∠EAF=∴∠FAB′+∠EAD′+∠B′AD′=15°+20°=35°.故答案为:35°.19.解:根据题中的新定义得:原式=2×(﹣5+2)=2×(﹣3)=﹣6.故答案为:﹣6.20.解:一列数为:,,,,,,,,,,,,,,,,…则这列数也可变为:,,,,,,,,,,,,,,,…由上列数字可知,第一个数的分母是1+21=3,这样的数有1个;第二个数的分母是1+22=5,这样的数有2个;第三个数的分母是1+23=9,这样的数有3个;…,∵1+2+3+…+63=2016<2019,∴这一组数的第2019个数是:,故答案为:.三.解答题(共6小题,满分56分)21.解:(1)原式=﹣=;(2)原式=÷=×=.22.解:﹣x=+,﹣x=+﹣,﹣x=﹣,x=.23.解:∵A=x4﹣x3+x2﹣3x+1,B=﹣2﹣x+x2,∴原式=2A﹣B+B﹣A=A=x4﹣x3+x2﹣3x+1.24.解:(1)∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠CON=∠COB,∴∠MON=∠MOC+∠CON=∠AOC+∠COB=(∠AOC+∠COB),∵∠AOC+∠COB=∠AOB=90°,∴∠MON=(∠AOC+∠COB)=×90°=45°,∴∠MON的度数为45°;(2)如图所示,能,理由如下:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠CON=∠BOC,∵∠AOC=∠AOB+∠BOC,∠AOB=90°,∠BOC=2x°,∴∠MOC=(90°+2x°)=45°+x°,∠CON=×2x°=x°,∴∠MON=∠MOC﹣∠CON=45°+x°﹣x°=45°,∴∠MON的度数为45°;(3)如图所示,能,理由如下:∵OM平分∠AOC,ON平分∠BOC,∴∠COM=∠AOC,∠CON=∠COB,∵∠AOC=2y°,∠AOB=90°,∠COB=∠AOC+∠AOB,∴∠CON=×2y°,∠CON=×(2y°+90°)=y°+45°,∴∠MON=∠CON﹣∠COM=y°+45°﹣y°=45°,∴∠MON的度数为45°.25.解:(1)由题意可得:2×12+3×(14﹣12)=30元,答:该用户这个月应缴纳30元水费.(2)由题意可得,2×12+3(n﹣12)=39,解得n=17;(3)①∵12<x≤20,∴乙用户用水量20≤40﹣x<28,∴12×2+3(x﹣12)+12×2+3×8+4(40﹣x﹣20)=(116﹣x)元;②∵20<x≤28,∴乙用户用水量12≤40﹣x<20,∴12×2+3×8+4(x﹣20)+12×2+3(40﹣x﹣12)=(x+76)元;故答案为(116﹣x)元,(x+76)元.26.解:如图1,当点P在AB上,即0<t≤4时,∵四边形ABCD是矩形,∴AD=BC=6,AB=CD=8.∵AP=2t,∴S△APE=×2t×6=10,∴t=.如图2,当点P在BC上,即4<t≤7时,∵E是DC的中点,∴DE=CE=4.∵BP=2t﹣8,PC=6﹣(2t﹣8)=14﹣2t.∴S=(4+8)×6﹣×(2t﹣8)×8﹣(14﹣2t)×4=10,解得:t=7.5>7舍去;当点P在EC上,即7<t≤9时,PE=18﹣2t.∴S△APE=(18﹣2t)×6=10,解得:t=.总上所述,当t=或时△APE的面积会等于10.。
冀教版七年级数学上册期末考试题及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0B.1C.﹣1D.±12.下列图形中,不是轴对称图形的是()A.B.C.D.3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x4.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.点A在数轴上,点A所对应的数用21a+表示,且点A到原点的距离等于3,则a的值为()A.2-或1 B.2-或2 C.2-D.16.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣a|+|b ﹣c|的结果是________.2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4.若+x x -有意义,则+1x =___________.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程组4(1)3(1)2223x y y x y --=--⎧⎪⎨+=⎪⎩2.若不等式组0122x a x x +≥⎧⎨->-⎩①有解;②无解.请分别探讨a 的取值范围.3.如图①,△ABC 中,AB =AC ,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.4.如图,已知A、O、B三点共线,∠AOD=42°,∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD,求∠COE的度数.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.在做解方程练习时,学习卷中有一个方程“2y–12=12y+■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x=2时代数式5(x–1)–2(x–2)–4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、D5、A6、D7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、40°3、0.4、15、40°6、5三、解答题(本大题共6小题,共72分)1、23 xy=⎧⎨=⎩2、①a>-1②a≤-13、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.4、(1)∠BOD =138°;(2)∠COE=21°.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、略。
最新冀教版七年级数学上册期末考试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若a ≠0,b ≠0,则代数式||||||a b ab a b ab ++的取值共有( ) A .2个 B .3个 C .4个 D .5个2.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙3.如图,∠1=68°,直线a 平移后得到直线b ,则∠2﹣∠3的度数为( )A .78°B .132°C .118°D .112°4.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b ( )A .∠2=∠4B .∠1+∠4=180°C .∠5=∠4D .∠1=∠3 5.计算22222100-9998-972-1++⋅⋅⋅+的值为( )A .5048B .50C .4950D .50506.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .157.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.某车间有34名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大小齿轮,才能刚好配套?若设加工大齿轮的工人有x 名,则可列方程为( )A .3×10x =2×16(34﹣x)B .3×16x =2×10(34﹣x)C .2×16x =3×10(34﹣x)D .2×10x =3×16(34﹣x)9.温度由﹣4℃上升7℃是( )A .3℃B .﹣3℃C .11℃D .﹣11℃ 10.如图,宽为50cm 的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为( )A .400cm 2B .500cm 2C .600cm 2D .300cm 2二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.已知80AOB ∠=,40BOC ∠= ,射线OM 是AOB ∠平分线,射线ON 是BOC ∠ 平分线,则MON ∠=________ .4.若x 2+kx+25是一个完全平方式,则k 的值是__________.5.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M 对应的实数为________.6.计算:38-=________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)()()64233x x -+=- (2)2134134x x ---=2.已知x =3是方程3[(3x +1)+()14m x -]=2的解,n 满足关系式|2n +m |=1,求m +n 的值.3.如图,直线AB ∥CD,BC 平分∠ABD,∠1=65°,求∠2的度数.4.如图,已知∠A=∠ADE.(1)若∠EDC=3∠C,求∠C的度数;(2)若∠C=∠E.求证:BE∥CD.5.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出一个球,将“摸出黑球”记为事件A.请完成下列表格:事件A 必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出一个球是黑球的概率等于45,求m的值.6.某水果批发市场苹果的价格如表购买苹果(千克)不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元(1)小明分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,小明第一次购买苹果_____千克,第二次购买_____千克.(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问小强第一次,第二次分别购买苹果多少千克?(列方程解应用题)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、D5、D6、C7、B8、B9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、83、60°或20°4、±10.56、﹣2.三、解答题(本大题共6小题,共72分)1、()11x=;()24x=-.2、0或-13、50°.4、(1)45°;(2)详略.5、(1) 4;2或3;(2)m=2.6、(1)16,4;(2)第一次购买16千克苹果,第二次购买84千克苹果或第一次购买32千克苹果,第二次购买68千克苹果.。
2019~2020学年度第一学期期末教学质量监测七年级数学(冀教版S)考生注意:1.本试卷共8页,满分100分,考试时间90分钟。
2.答卷前将密封线左侧的项目填写清楚。
3.答案须用蓝色、黑色字迹的钢笔、签字笔或圆珠笔书写。
一、选择题(本大题共14个小题,每小题2分,共28分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.小戴同学的微信钱包账单如图所示,+5.20表示收入5.20元,下列说法正确的是()A. -1.00表示收入1.00元B. -1.00表示支出1.00元C. -1.00表示支出-1.00元D.收支总和为6.20元2.计算下列各式,其结果为负数的是()--B.3-C.()33-D.()23-A.()33.如图,四个有理数在数轴上的对应点分别为M,P,N,Q.若点M,N表示的有理数互为相反数,则图中的点表示负数的有()A. 0个B. 1个C. 2个D. 3个4.某排球队检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数.下面是检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.=,则下列表示线段AC的式子中,错误的是()5.如图,A,B,C,D四点在一条直线上.若AB CDA . AC AD CD =-B . AC BD AB =- C . AC AB BC =+D . AC AD AB =-6. 在运用有理数加法法则求两个有理数的和时,下列的一些思考步骤中,最先进行的是( ) A . 求两个有理数的绝对值,并比较大小 B . 确定和的符号C . 观察两个有理数的符号,并作出一些判断D . 用较大的绝对值减去较小的绝对值7. 如图,将AOB ∆绕点O 逆时针旋转65︒得到COD ∆.若30AOB ∠=︒,则BOC ∠的度数是( )A . 60︒B . 45︒C . 35︒D . 30︒8. 小明跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们一共点了10份重庆小面,x 杯饮料,y 份沙拉,则他们点了几份A 餐?A . 10x -B . 10y -C . 10x y -+D . 10x y --9. 我国是最早认识负数,并进行相关运算的国家,在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图1表示的是计算()34+-的过程,按熙这种方法,图2表示的过程应是在计算( )A . ()()52-+-B . ()52-+A 餐:一份重庆小面B 餐:一份重庆小面加一杯饮料C 餐:一份重庆小面加一杯饮料和一份沙拉C . ()52+-D . 52+10. 如图,将一个三角板60︒角的顶点与另一个三角板的直角顶点重合,12741'∠=︒,2∠的余角的大小是( )A . 2741'︒B . 5741'︒C . 5819'︒D . 3219'︒11. 如图,用量角器度量几个角的度数,下列结论正确的有( )①60BOC ∠=︒; ②AOD ∠与BOC ∠互补; ③AOB DOE ∠=∠; ④AOB ∠是EOD ∠的余角. A . 1个 B . 2个 C . 3个D . 4个12. 我国古代的“九宫格”是由33⨯的方格构成的,每个方格内均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫格”的一部分,请你推算x 的值是( ) 2 51xA . 3B . 4C . 6D . 813. 如图1,从边长为4a +的正方形纸片中剪去一个边长为1a +的正方形(0a >),剩余部分沿虚线又剪拼成一个如图2所示的长方形ABCD (不重叠,无缝隙),则AD ,AB 的长分别是( )A . 3,22a +B . 5,28a +C . 5,23a +D . 3,25a +14. 设代数式212x a A +=+,代数式22ax B -=,a 为常数,x 的取值与A 的对应值如下表: x… 1 2 3 … A…456…小明观察上表并探究出以下结论:①5a =;②当4x =时,7A =;③当1x =时,1B =;④若A B =,则4x =.其中所有正确结论的编号有( ) A . ①③B . ②③C . ①②④D . ②③④二、填空题(本大题共4个小题,15~17题,每小题3分,18题4分,共13分)15. 写出所有大于125-的负整数:______. 16. 阅读框图,在五个步骤中,依据等式的性质2的步骤有______(只填序号).17. 小明用同一副七巧板先后拼成了正方形和“船形”两幅图案(如图1,2所示).若图1的正方形的边长为8cm ,则图2的“船形”中阴影部分的面积为______2cm .18. 公园内要铺设一段长方形步道,需用一些型号相同的灰色正方形地砖和一些型号相同的白色等腰直角三角形地砖按如图所示方式排列.(1)若排列正方形地砖40块,则需使用三角形地砖______块; (2)若排列三角形地砖2020块,则需使用正方形地砖______块.三、解答题(本大题共7个小题,共59分.解答应写出文字说明,证明过程或演算步骤)19. 计算下列各题. (1)()6721313⎛⎫⎛⎫-+--- ⎪ ⎪⎝⎭⎝⎭(2)()()3116248⎛⎫÷-+-⨯- ⎪⎝⎭(3)先化简,再求值:()()2223mn m mn m --+-,其中2m =-,3n =-. 20.(1)已知5x =是方程820ax a -=+的解,求a . (2)解方程:4121136x x +--=. 21. 如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图:(1)画射线AB ; (2)连接BC ;(3)延长BC 至D ,使得CD BC =; (4)在直线l 上确定点E ,使得AE CE +最小.22. 2019年小张前五个月每月的奖金变化情况如下表(正数表示比前一月多的钱数,负数表示比前一月少的钱数,单位:元):月份 一月 二月 三月 四月 五月 钱数变化+300-120+220-150+310若2018年12月份小张的奖金为a 元,(1)用代数式表示2019年二月份小张的奖金为______元; (2)小张五月份所得奖金比二月份多多少? 23. 数学课上,老师给出了如下问题:(1)以下是小刚的解答过程,请你将解答过程补充完整: 解:如图2,因为120AOB ∠=︒,OC 平分AOB ∠, 所以BOC ∠=______AOB ∠=______︒(角平分线的定义). 因为20COD ∠=︒, 所以BOD ∠=______︒.(2)小戴说:“我觉得这道题有两种情况,小刚考虑的是OD 在BOC ∠内部的情况,事实上,OD 还可能在AOC ∠的内部”.根据小戴的想法,请你在图1中画出另一种情况对应的图形,并直接写出....BOD ∠的度数:______.24. 京张高铁是2022年北京冬奥会的重要交通保障设施.如图所示,京张高铁起自北京北站,途经清河、沙河、昌平等站,终点站为张家口南站,全长174千米.(1)根据资料显示,京张高铁的客运价格拟定为0.4元/(人·千米),可估计京张高铁单程票价约为______元(结果精确到个位);如图1,120AOB ∠=︒,OC 平分AOB ∠.若20COD ∠=︒,请你补全图形,并求出BOD ∠的度数.(2)京张高铁建成后,将是世界上第一条设计时速为350千米/时的高速铁路.乘高铁从北京到张家口的时间将缩短至1小时.如果按此设计时速运行,那么每站(不计起始站和终点站)停靠的平均时间是多少分钟?(结果保留整数)25.七(1)班的学习小组学习“线段中点”内容时,得到一个很有意思的结论,请跟随他们一起思考.(1)发现:AB ,点C,E,F在线段AB上.当点E,F是线段AC和线段BC的中点时,线段EF 如图1,线段12的长为______;若点C在线段AB的延长线上,其他条件不变(请在图2中按题目要求将图补充完整),得到的线段EF与线段AB之间的数量关系为______.(2)应用:如图3,现有长为40米的拔河比赛专用绳AB,其左右两端各有一段(AC和BD)磨损了,增损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足20米.小明认为只利用麻绳AB和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF.小明所在学习小组认为此法可行,于是他们应用“线段中点”的结论很快做出了符合要求的专用绳EF,请你尝试着“复原”他们的做法:①在图中标出点E、点F的位置,并简述画图方法;②请说明①题中所标示E,F点的理由.。
河北省2019-2020学年上学期期末原创卷(二)七年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:冀教版七上全册。
第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在-12,0,-2,15,1这五个数中,最小的数为A .0B .-12C .-2D .152.据报道,人类首张黑洞照片于北京时间2019年4月10日子全球六地同步发布,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年.其中5500万用科学记数法表示为 A .55×106B .5.5×106C .0.55×108D .5.5×1073.解方程11322xx x-=---去分母得 A .()1132x x =--- B .()1132x x =--- C .()1132x x =--- D .()1132x x -=---4.下列合并同类项正确的是 A .3x +22x =53x B .22a b -2a b =1 C .-ab -ab =0D .-22xy +22xy =05.下列运算中,“去括号”正确的是 A .a +(b -c )=a -b -c B .a -(b +c )=a -b -c C .m -2(p -q )=m -2p +q D .x 2-(-x +y )=x 2+x +y6.下列判断正确的是 A .23a b 与2ba 不是同类项B .单项式32x y -的系数是–1 C .25m n 不是整式D .2235x y xy -+是二次三项式7.已知3a x a +=是关于x 的一元一次方程,则该方程的解为 A .x =1B .x =2C .x =3D .x =48.如果代数式2y 2-y +5的值为7,那么代数式4y 2-2y +1的值为 A .5B .4C .3D .29.如果单项式1b xy +-与2312a x y +是同类项,那么关于x 的方程0axb +=的解为 A .1x =B .1x =-C .2x =D .2x =-10.某工厂原计划用a 天生产b 件产品,由于技术革新实际比原计划少用x 天完成,则实际每天要比原计划多生产件. A .b b a a x -- B .a a xb b -- C .b b a x a-- D .a x ab b-- 11.下列说法:①经过三点中的两点画直线一定可以画三条直线;②两点之间,线段最短;③若点M 是AB 的中点,则MA =MB ;④同角的余角相等; 其中正确的说法有 A .4个B .3个C .2个D .1个12.如图,点C 在线段AB 上,点D 是AC 的中点,如果CD =4,AB =14,那么BC 长度为A .4B .5C .6D .6.513.一个角的补角比这个角的余角的3倍还多10°,则这个角的度数为A .140°B .130°C .50°D .40° 14.如图,△OAB 绕点O 逆时针旋转85°得到△OCD ,若∠A =110°,∠D =40°,则∠α的度数是A .35°B .45°C .55°D .65°15.一件夹克衫先按成本价提高60%标价,再将标价打7折出售,结果获利36元,设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是 A .0.7(1+0.6)x =x -36 B .0.7(1+0.6)x =x +36 C .0.7(1+0.6x )=x -36D .0.7(1+0.6x )=x +3616.观察下列各算式21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,根据上述算式的规律,你认为22019的末位数字应该是 A .8B . 6C .4D .2第Ⅱ卷二、填空题(本大题共3小题,共12分.17~18小题各3分;19小题有两个空,每空3分) 17.一个长方形的宽为 cm x ,长比宽的2倍多1cm ,这个长方形的周长为__________cm . 18.有理数a 、b 、c 在数轴上的位置如图所示,化简|a +b |–|a –c |+|b –c |的结果是__________.19.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x 的式子表示m =__________;(2)当y =-2时,n 的值为__________.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)解方程:(1)3x +7=32-2x ;(2)2157123y y ---=. 21.(本小题满分9分)已知x 、y 互为相反数,a 、b 互为倒数,c 的绝对值等于2,求202020192()()2x y ab c+--+的值.22.(本小题满分9分)化简或求值:(1)若A =–2a 2+ab –b 3,B =a 2–2ab +b3,求A –2B 的值.(2)先化简,再求值:5x 2y –3xy 2–7(x 2y –xy 2),其中x =2,y =–1.23.(本小题满分9分)如图,直线AB ,CD 相交于点O ,OE 平分∠BOC ,∠FOD =90°.(1)若∠AOF =50°,求∠BOE 的度数; (2)若∠BOD ∶∠BOE =1∶4,求∠AOF 的度数.24.(本小题满分10分)已知C 为线段AB 上一点,关于x 的两个方程()112x m +=与()23x m m +=的解分别为线段AC BC ,的长,(1)当2m =时,求线段AB 的长; (2)若C 为线段AB 的三等分点,求m 的值.25.(本小题满分10分)周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度;(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50米?26.(本小题满分11分)已知,A 、B 在数轴上对应的数分别用a 、b 表示,且2(5)|15|0a b ++-=.(1)数轴上点A 表示的数是__________,点B 表示的数是__________.(2)若一动点P 从点A 出发,以3个单位长度/秒速度由A 向B 运动;动点Q 从原点O 出发,以1个单位长度/秒速度向B 运动,点P 、Q 同时出发,点Q 运动到B 点时两点同时停止.设点Q 运动时间为t 秒.①若P 从A 到B 运动,则P 点表示的数为,Q 点表示的数为__________.(用含t 的式子表示) ②当t 为何值时,点P 与点Q 之间的距离为2个单位长度.2019-2020学年上学期期末原创卷七年级数学·全解全析1.【答案】C【解析】∵-2<12-<0<15<1,∴最小的数是-2,故选C .2.【答案】D【解析】5500万用科学记数法表示为5.5×107.故选D . 3.【答案】C【解析】方程两边都乘(x –2),得1=x –1–3(x –2).故选C . 4.【答案】D【解析】A 、原式不能合并,故错误;B 、原式=2a b ,故错误; C 、原式=–2ab ,故错误;D 、原式=0,故正确,故选D . 5.【答案】B【解析】A 、a +(b -c )=a +b –c ,错误;B 、a -(b +c )=a –b –c ,正确; C 、m -2(p -q )=m –2p +2q ,错误;D 、x 2-(-x +y )=x 2+x –y ,错误,故选B . 6.【答案】B【解析】A .23a b 与2ba 是同类项,故错误;B .单项式32x y -的系数是–1,故正确;C .25m n 是整式,故错误;D .2235x y xy -+是三次三项式,故错误.故选B .7.【答案】B【解析】∵x a+a =3是关于x 的一元一次方程,∴a =1,即方程为x +1=3, 解得:x =2.故选B . 8.【答案】A【解析】∵2y 2-y +5的值为7,∴2y 2-y =2, 则4y 2-2y +1=2(2y 2-y )+1=4+1=5. 故选A . 9.【答案】C【解析】根据题意得:a +2=1,解得:a =–1,b +1=3,解得:b =2,把a =–1,b =2代入方程ax +b =0得:–x +2=0,解得:x =2,故选C . 10.【答案】C【解析】根据题意知,原计划每天生产b a 件,而实际每天生产b a x-件, 则实际每天要比原计划多生产b ba x a--(件),故选C . 11.【答案】B【解析】①过同一平面上不共线的三点中的任意两点画直线,可以画三条直线,当这三点在同一条直线上时,只能作一条直线,故①错误;②两点之间,线段最短,是线段公理,故②正确; ③若点M 是AB 的中点,则MA =MB ,故③正确; ④同角的余角相等,故④正确.故选B .12.【答案】C【解析】∵点D 是AC 的中点,如果CD =4,∴AC =2CD =8, ∵AB =14,∴BC =AB -AC =6,故选C . 13.【答案】C【解析】设这个角为α,则它的余角为90°–α,补角为180°–α, 根据题意得,180°–α=3(90°–α)+10°, 180°–α=270°–3α+10°,解得α=50°.故选C . 14.【答案】C【解析】由题意可知:∠DOB =85°,∵△DCO ≌△BAO ,∴∠D =∠B =40°,∴∠AOB =180°–40°–110°=30°,∴∠α=85°–30°=55°,故选C . 15.【答案】B【解析】设这件夹克衫的成本价是x 元, 依题意,得:0.7(1+0.6)x =x +36.故选B . 16.【答案】A【解析】∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…, ∴这些数字的末尾数字依次以2,4,8,6出现, ∵20194=5043÷……,∴22019的末位数字是8,故选A . 17.【答案】(62)x +【解析】一个长方形的长比宽的2倍多1 cm ,若宽为x cm ,则长为:(2x +1)cm ,周长为:2(21)2(31)(62)(cm)x x x x ++=+=+,故答案为:(62)x +.18.【答案】–2a【解析】∵b <0,a >0,||||b a >,∴a +b <0. ∵c <0,a >0,∴a –c >0. ∵b >c ,∴b –c >0.∴||||||a b a c b c +--+-=–(a +b )–(a –c )+(b –c )=–a –b –a +c +b –c =–2a .故答案为:–2a . 19.【答案】3x ;1【解析】(1)根据上方相邻两数之和等于这两数下方箭头共同指向的数,则m =x +2x =3x .(2)由题知m =3x ,n =2x +3,y =m +n ,则y =3x +2x +3=5x +3,把y =–2代入,–2=5x +3,解得x =–1,则n =2×(–1)+3=1.故答案为:3x ;1.20.【解析】(1)3x +7=32-2x ,移项得:3x +2x =32-7, 合并得:5x =25, 解得:x =5.(4分)(2)2157123y y ---=. 去分母得:3(2y -1)-6=2(5y -7), 去括号得:6y -3-6=10y -14, 移项:6y -10y =-14+6+3, 合并得:-4y =-5, 解得:y =54.(8分) 21.【解析】根据题意得:x +y =0,ab =1,c =2或-2,(4分)∵当c =2或–2时,2=4c , 则原式=0+1+4=5.(9分)22.【解析】(1)∵A =–2a 2+ab –b 3,B =a 2–2ab +b 3,∴A –2B =–2a 2+ab –b 3–2(a 2–2ab +b 3)=–2a 2+ab –b 3–2a 2+4ab –2b 3=–4a 2+5ab –3b 3.(4分) (2)原式=5x 2y -3xy 2-7x 2y +7xy 2=-2x 2y +4xy 2,(7分)当x =2,y =-1时,原式=-2×22×(-1)+4×2×(-1)2=8+8=16.(9分) 23.【解析】(1)∵COF ∠与DOF ∠是邻补角,∴18090COF DOF ∠=︒-∠=︒. ∵AOC ∠与AOF ∠互为余角,∴90905040AOC AOF ∠=︒-∠=︒-︒=︒.(2分) ∵AOC ∠与BOC ∠是邻补角,∴180********COB AOC ∠=︒-∠=︒-︒=︒. ∵OE 平分BOC ,∠ ∴1702BOE BOC ∠=∠=︒.(4分) (2)14BOD BOE ∠∠=∶∶, 设4BOD AOC x BOE COE x ∠=∠=∠=∠=,, ∵AOC ∠与BOC ∠是邻补角, ∴180AOC BOC ∠+∠=︒,(6分) 即44180x x x ++=︒, 解得20x =︒,∵AOC ∠与AOF ∠互为余角,∴90902070AOF AOC ∠=︒-∠=︒-︒=︒.(9分) 24.【解析】(1)当2m =时,有()1122x +=,()2223x +=, 由方程()1122x +=,解得3x =,即3AC =. 由方程()2223x +=,解得1x =,即1BC =.因为C 为线段AB 上一点,所以4AB AC BC =+=.(4分) (2)解方程()112x m +=,得21x m =-, 即21AC m =-.解方程()23x m m +=,得2m x =, 即2mBC =.(6分)①当C 为线段AB 靠近点A 的三等分点时,则2BC AC =,即()2212m m =-,解得47m =. ②当C 为线段AB 靠近点B 的三等分点时, 则2AC BC =,即2122mm -=⋅,解得1m =. 综上可得,47m =或1.(9分) 25.【解析】(1)设小明的骑行速度为x 米/分钟,则爸爸的骑行速度为2x 米/分钟,根据题意得:2(2x –x )=400,(2分) 解得:x =200, ∴2x =400.答:小明的骑行速度为200米/分钟,爸爸的骑行速度为400米/分钟.(5分)(2)设爸爸第一次追上小明后,在第二次相遇前,再经过y 分钟,小明和爸爸跑道上相距50米, ①爸爸第一次追上小明后,在第二次相遇前,爸爸又比小明多骑了50米, 根据题意得:400y –200y =50, 解得:y =14;(7分) ②爸爸第一次追上小明后,在第二次相遇前,爸爸又比小明多骑了350米, 根据题意得:400y –200y =350, 解得:y =74. 答:第二次相遇前,再经过14或74分钟,小明和爸爸跑道上相距50米.(10分) 26.【解析】(1)−5;15.(4分)∵2(5)|15|0a b ++-=, ∴a +5=0,b −15=0, 解得a =−5,b =15,∴A 表示的数是−5,B 表示的数是15. 故答案为:−5;15. (2)①t .(7分)若P 从A 到B 运动,则P 点表示的数为−5+3t ,Q 点表示的数为t . ②若点P 在Q 点左侧,则−5+3t +2=t ,得:32t =,(9分) 若点P 在Q 点右侧,则−5+3t −2=t , 得:72t =, 综上所述,32t =或72.(11分)。
第二章《有理数》检测试题一、选择题(每题2分,共20分)1,在数轴上表示-10的点与表示-4的点的距离是( )A.6B.-6C.10D.-42,在有理数中,绝对值等于它本身的数有( )A.1个B.2个C. 3个D.无穷多个3,若a 是有理数,则4a 与3a 的大小关系是( )A.4a >3aB.4a =3aC.4a <3aD.不能确定 4,下列各对数中互为相反数的是( )A.32与-23B.-23与(-2)3C.-32与(-3)2D.(-3×2)2与23×(-3) 5,当a <0,化简a aa -得( )A.-2B.0C.1D.26,下列各项判断正确的是( )A.a+b 一定大于a -bB.若-ab <0,则a 、b 异号C.若a 3=b 3,则a =bD.若a 2=b 2,则a =b7,下列运算正确的是( )A.-22÷(-2)2=1B.3123⎛⎫- ⎪⎝⎭=-8127 C.-5÷13×35=-25 D.314×(-3.25)-634×3.25=-32.5 8,若a =-2×32,b =(-2×3)2,c =-(2×)2,则下列大小关系中正确的是( )A.a >b >0B.b >c >aC.b >a >cD.c >a >b9,若│x│=2,│y│=3,则│x+y│的值为( )A.5B.-5C.5或1D.以上都不对10,有理数依次是2,5,9,14,x ,27,……,则x 的值是( )A.17B.18C.19D.20二、填空题(每题2分,共20分)11,如果盈利350元,记作:+350元,那么-80元表示__________.12,某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降11℃,这时气温是___.13,一个数的相反数的倒数是-113,这个数是________. 14,如图1所示,数轴的一部分被墨水污染,被污染的部分内含有的整数为 .15,同学们已经学习了有理数的知识,那么全体有理数的和是___.16,-2的4次幂是______,144是____________的平方数.17,若│-a│=5,则a =________.18,绝对值小于5的所有的整数的和_______.19,用科学记数法表示13040000应记作_____,若保留3个有效数字,则近似值为______.20,定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n +5;②当n 为偶数时,结果为k n 2(其中k 是使k n 2为奇数的正整数),并且运算重复进行.例如,取n =26,则:若n =449,则第449次“F 运算”的结果是___.三、解答题(共60分)21,计算:(1)1-2;(2)223261(3)(0.2)23(1)254-⎡⎤⎡⎤--++-⨯-÷⎣⎦⎢⎥⎣⎦; (3)2223333(2)0.12512( 1.25)32248⎡⎤⎛⎫-÷-+-⨯+÷÷⨯--⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦; (4)24811313(1)1232442834⎛⎫⎛⎫⎛⎫-÷-⨯--+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 图1 26 13 44 11 第一次 F ② 第二次 F ① 第三次 F ② …22,若│a│=2,b=-3,c是最大的负整数,求a+b-c的值.23,邮递员小王从邮局出发,向南走2km到达M家,继续向前1km到N家,然后折回头向北走4km到Z家,最后回到邮局.(1)Z家和M家相距多远?(2)小王一共走了多少千米?24,下表是某商店四个季度的盈亏状况(盈利为正,单位:万元)季度一二三四盈利+128.5 -140 -95.5 +280 求这个商店该年的盈亏状况.25,有6箱苹果,每箱标准质量为25kg,过秤的结果如下(单位:kg):24,24,26,26,25,25.请设计一种简单的运算方法,求出它们的总质量.26,某学校在一次数学考试中,记录了第三小组八名学生的成绩,以60分为及格,高于60分记正数,不足60分记负数,这八名学生的成绩分别为:+3分,+5分,0分,-6分,-2分,-3分,+8分,+6分,总计超过或不足多少分?这八名学生的总分是多少?27,A,B,C,D在数轴上对应的点分别是3,1,-1,-2,先画出数轴,然后回答下列问题:(1)求A和B之间的距离;(2)求C和D之间的距离;(3)求A和D之间的距离;(4)求B和C之间的距离;(5)两个点之间的距离与这两个点所对应的数差的绝对值是什么关系?28,检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8、-9、+4、+7、-2、-10、+18、-3、+7、+5回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?四、拓展题(共20分)29,如图2所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A 表示数-3,将点A 向右移动7个单位长度,那么终点B 表示的数是____,A ,B 两点间的距离是_______.(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是_______,A ,B 两点间的距离为_________.(3)如果点A 表示数-4,将A 点向右移动168个单位长度,再向左移动256 个单位长度,那么终点B 表示的数是_______,A ,B 两点间的距离是________.(4)一般地,如果A 点表示的数为m ,将A 点向右移动n 个单位长度,再向左移动p 个单位长度,那么请你猜想终点B 表示什么数?A ,B 两点间的距离为多少?30,我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.例如,求1+2+3+4+…+n 的值,其中n 是正整数.对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n 的奇偶性进行讨论.如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n 的值,方案如下:如图3,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n 个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n 的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n 行,每行有(n +1)个小圆圈,所以组成平行四边形小圆圈的总个数为n (n +1)个,因此,35-5-443210-1-2-3图2组成一个三角形小圆圈的个数为21)(+n n ,即1+2+3+4+…+n =21)(+n n .(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n -1)的值,其中 n 是正整数(要求:画出图形,并利用图形做必要的推理说明).(2)试设计另外一种图形,求1+3+5+7+…+(2n -1)的值,其中n 是正整数(要求:画出图形,并利用图形做必要的推理说明).参考答案:一、1,A ;2,D ;3,D ;4,C ;5,A ;6,C ;7,D ;8,C ;9,C ;10,D.二、11,亏损80元;12,评析:负数的意义,升高和降低是一对意义相反的量,借助数轴可以准确无误地得出正确结果-1℃,数无数不形象,形无数难入微,数形结合是数学的基本思想,在新课标中有重要体现,是中考命题的重要指导思想,多以综合高档题出现,占分比例较大;13,评析:利用逆向思维可知本题应填34;14,满足条件-1.3<x <2.6的整数x 的值,从而得到正确的答案是:-1,0,1,2;15,0;16,16、±12;17,±5;18,0;19,用科学记数法表示一个数,要把它写成科学记数的标准形式a×10n ,这里的a 必须满足1≤a <10条件,n 是整数,n 的确定是正确解决问题的关键,在这里n 是一个比位数小1的数,因为原数是一个8位数,所以可以确定n =7,所以13040000=1.304×107,对这个数按要求取近似值,显然不能改变其位数,只能对其中的a 取近似值,保留3个有效数字为1.30×107,而不能误认为1.30,通过这类问题,学生可概括出较大的数取近似值的基本模式应是:先用科学记数法将其表示为a×10n (1≤a <10,n 是整数),然后按要求对a 取近似值,而n 的值不变;20,因为n 为奇数时,结果为3n +5,n 为偶数时,结果为kn 2,所以当n =449时,则有如下的运算程序:图3 449 1352 169 522 第一次 F ① 第二次 F ② 第三次 F ① …所以分别有下列运算结果:输入499→1352→169→522→261→788→197→598→149→452→133→344→17→56→77→26→13→44→11→36→9→32→1→8→1→8→1→8→…,由此我们还发现:当进行第奇数次运算时,其结果是偶数,当进行到第偶数次运算时其结果为奇数.所以第449次“F 运算”的结果是8.三、21,(1)-1.(2)49-.(3)-2.(4)2;22,因为│a│=2,所以a =±2,c 是最大的负整数,所以c =-1,当a =2时,a+b -c =2-3-(-1)= 0;当a =-2时,a+b -c =-2-3-(-1)=-4;23,(1)3(km).(2)8(km);24,173(万元);25,150(kg);26,总计超过11分,总分为491分;27,如图:(1)A 和B 之间的距离为3-1=2=31-,(2)C 和D 之间的距离为-1-(-2)=1=(1)(2)---,(3)A 和D 之间的距离为3-(-2)=5=3(2)--,(4)B 和C 之间的距离为1-(-1)=2=1(1)--,(5)两个点之间的距离等于这两个点对应的数的差的绝对值;28,(1)因为8-9+4+7-2+10+18-3+7+5=8+4+7+18+7+5-9-10-2-3=25,所以在A 处的东边25米处.(2)因为│8│+│-9│+│4│+│7│+│-2│+│-10│+│18│+│-3│+│7│+│5│=73千米,而73×0.3=21.9升,所以从出发到收工共耗油21.9升.四、29,(1)4、7,(2)1、2,(3)-92、88,(4)(m+n -p)、│n-p│;30,(1)如图1,因为组成此平行四边形的小圆圈共有n 行,每行有[(2n -1)+1]个,即2n 个,所以组成此平行四边形的小圆圈共有(n ×2n )个,即2n 2个.所以1+3+5+7+…+(2n -1)=2112〕)—〔(+⨯n n =n 2.(2)如图2.因为组成此正方形的小圆圈共有n 行,每行有n 个,所以共有(n ×n )个,即n 2 个.所以1+3+5+7+…+(2n -1)=n ×n =n 2. ……图1图2。
2.5有理数的加法A 组1、计算:(1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4)(+6)+(+9);(5)67+(-73); (6)(-84)+(-59); (7)33+48; (8)(-56)+37;2、计算:(1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3; (4)3.92+1.78;(5)7+(-3.04); (6)(-2.9)+(-0.31); (7)(-9.18)+6.18; (8)4.23+(-6.77);3、计算: (1)52+(-53); (2)(-31)+(-32); (3)(-31)+52; (4)(-65)+(-83); (5)21+(-232); (6)(-21)+(-131); (7)(-131)+(-261); (8)341+(-1121);4、计算:(1)(-8)+10+2+(-1);(2)5+(-6)+3+9+(-4)+(-7);(3)(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5; (4) 21+(-32)+54+(-21)+(-31);5、计算:(1)(-17)+59+(-37); (2)(-18.65)+(-6.15)+18.15+6.15; (3)(-432)+(-331)+621+(-241); (4)(-0.5)+341+2.75+(-521)6、当a=-11,b=8,c=-14时,求下列代数式的值: (1)a+b ; (2)a+c ; (3)a+a+a ; (4)a+b+c ;7、飞机飞行高度是1000m ,上升300m ,又下降500m ,这时飞机的高度是多少?8、存折中有450元,取出80元,又存入150元以后,存折中还有多少钱?9、一天早晨的气温是-7℃,中午上升了11℃,半夜又下降了9℃,半夜的气温是多少?10、小吃店一周中每天的盈亏情况如下(盈余为正):128.3元,-25.6元,-15元,27元,-7元,36.5元,98元,一周总的盈亏情况如何?11、8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:1.5,-3,2,-0.5,1,-2,-2,-2.5,8筐白菜的总重量是多少?B组1、填空:(1)_____+11=27;(2)7+___=4;(3)(-9)+_____=9;(4)12+___=0;(5)(-8)+_____=-15;(6)_____+(-13)=-6;2、用“>”或“<”号填空:(1)如果a>0,b>0,那么a+b____0;(2)如果a<0,b<0,那么a+b______0;(3)如果a>0,b<0,|a|>|b|,那么a+b_____0;(4)如果a<0,b>0,|a|>|b|,那么a+b_____0;3、分别根据下列条件,利用|a|与|b|表示a 与b 的和: (1)a >0,b >0;(2)a <0,b <0; (3)a >0,b >0,|a|>|b|; (4)a >0,b <0,|a|<|b|;同步练习答案A 组1、 (1)-4 (2)8 (3)-12 (4)15(5)-6(6)-143 (7)81 (8)-192、(1)-3.6 (2)-4.6 (3)2.5 (4)5.7(5)3.96(6)-3.21 (7)-3 (8)-2.54 3、 (1)-51 (2)-1 (3)151 (4)-2429(5)-261(6)-165 (7)-321 (8)2614、(1)(-8)+10+2+(-1) (2)5+(-6)+3+9+(-4)+(-7) =(10+2)+[(-8)+(-1)] =(5+3+9)+[(-6)+(-4)+(-7)] =12+(-9) =17+(-17) =3=0(3)(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5 =(1.2+0.8+3.5)+[(-0.8)+(-0.7)+(-2.1)]=5.5+(-3.6) =1.9或:原式=[(-0.8)+0.8]+(1.2+3.5)+[(-0.7)+(-2.0)]=0+4.7+(-2.8)=1.9(4)21+(-32)+54+(-21)+(-31)=(21+54)+[(-32)+(-21)+(-31)]=1013+(-121) =-51或:原式=[21+(-21)]+54+[(-32)+(-31)]=0+54+(-1)=-515、 (1)(-17)+59+(-37) (2)(-18.65)+(-6.15)+18.15+6.15 =[(-17)+(-37)]+59 =[(-6.15)+6.15]+[(-18.65)+18.15] =(-54)+59 =0+(-0.5) =5 =-0.5(3)(-432)+(-331)+621+(-241) (4)(-0.5)+341+2.75+(-521) =[(-432)+(-331)+(-241)]+6 =[(-0.5)+(-521)]+(341+2.75) =(-1041)+621=-6+6=-343 =06、 解:当a=-11,b=8,c=-14时 (1)a+b=(-11)+8=-3 (2)a+c=(-11)+(-14)=-25(3)a+a+a=(-11)+(-11)+(-11)=-33(4)a+b+c=(-11)+8+(-14)=[(-11)+(-14)]+8=(-25)+8=-177、解:1000+300+(-500) 8、解:450+(-80)+150=1300+(-500) =(450+150)+(-80) =800 =600+(-80)答:这时飞行高度是800m。
2022-2023学年数学冀教版七年级上册期末模拟卷一.选择题(共16小题,满分42分)1.(3分)如果﹣(﹣a)为正数,则a为()A.正数B.负数C.0D.任意有理数2.(3分)图中的几何体(圆锥)是由下列()平面图形绕轴旋转一周得到的.A.B.C.D.3.(3分)下列运算正确的是()A.﹣(﹣3)2=9B.﹣|﹣3|=3C.(﹣2)3=6D.(﹣2)3=﹣8 4.(3分)若n是整数,则n+1,n+3表示()A.两个奇数B.两个偶数C.两个整数D.两个正整数5.(3分)如果A、B、C三点在同一直线上,且线段AB=4cm,BC=2cm,那么AC两点之间的距离为()A.2cm B.6cm C.2或6cm D.无法确定6.(3分)如果收入3万元,记作+3万元,那么﹣2万元表示()A.收入2万元B.支出﹣2万元C.支出2万元D.利润是2万元7.(3分)下列代数式中,单项式共有()a,﹣2ab,,x+y,x2+y2,﹣1,A.2个B.3个C.4个D.5个8.(3分)某超市有线上和线下两种销售方式.去年10月份该超市线下销售额比线上销售额多a元.与去年相比,该超市今年10月份线上销售额增长35%,线下销售额减少10%.若该超市今年10月份的销售总额比去年10月份的销售总额增加了10%,则今年10月份线上销售额与当月销售总额的比为()A.B.C.D.9.(3分)把弯曲的河道改直,这样能缩短航程,这样做的道理是()A.线段有两个端点B.线段可以比较大小C.两点之间线段最短D.两点确定一条直线10.(3分)如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠AA′C′的度数是()A.15°B.20°C.25°D.30°11.(2分)元旦,是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春”.中国古代曾以腊月、十月等的月首为元旦.1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,人民商场举行促销活动,促销的方法是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x元(x>100),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣20B.80%(x﹣20)C.20%x﹣20D.20%(x﹣20)12.(2分)经过任意三点中的两点共可以画出的直线的条数是()A.1条或3条B.3条C.2条D.1条13.(2分)完成下列填空:﹣=0.6,解:化简,得:2.5x﹣()=0.6.括号内填入的应该是()A.B.0.75﹣0.5x C.D.0.75+0.5x 14.(2分)下列各数中,与﹣5的乘积得0的数是()A.5B.﹣5C.0D.115.(2分)下列时刻,时针与分针的夹角为直角的是()A.3时30分B.9时30分C.8时55分D.6时分16.(2分)绵阳市中学生足球联赛共8轮(即每队需要比赛8场),胜一场得3分,平一场得一分,负一场不得分,在2019足球联赛中,三台县中学生足球代表队踢平的场数是负场数的2倍,共得17分,三台足球队胜了()场.A.4B.5C.2D.不确定二.填空题(共3小题,满分15分)17.(3分)若单项式2x4y n与﹣3x m y2可以合并同类项,则m n=.18.(6分)在每个口内填入“+、﹣、×、÷”中的某一个符号(可重复使用),使得“1口2口3﹣6”计算所得数最小,则这个最小数是.19.(6分)图(1)是棱长为1的小正方体,图(2)、图(3)是由这样的正方体摆放而成,按照这样的方法继续摆放,自上而下分别叫第1层、第2层…第n层,第n层小正方体个数记为S,如表.l1234…S13610…当n=100 时,S=.三.解答题(共6小题,满分47分)20.(9分)计算:(1)27﹣8×(﹣5)﹣(﹣1)4;(2);(3)化简:3x2﹣3(﹣x2﹣2x+1)+4;(4)先化简,再求值,其中x=﹣1,y=﹣2:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy];(5)2y﹣1=1﹣3y;(6)=﹣x.21.(6分)已知将一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠COD=30°)如图1摆放,点O、A、C在一条直线上.将直角三角板OCD绕点O逆时针方向转动,变化摆放如图位置(1)如图1,当点O、A、C在同一条直线上时,则∠BOD的度数是多少?(2)如图2,若要OB恰好平分∠COD,则∠AOC的度数是多少?(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON 平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.22.(8分)杭州地铁2号线是杭州市第二条建成运营的地铁线路,大致呈西北﹣东南走向,西北起良渚站,东南至朝阳站,共设33个地下车站,其中东南段15个站点如图所示.某一天王红同学从振宁路站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向朝阳站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站是哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?23.(8分)化简:(1)﹣3a+2ab﹣4ab+2a;(2)4(2x2y﹣xy﹣1)﹣2(4x2y﹣2xy+3).24.(8分)全球赖氏的精神家园、中原“根亲文化”的示范性工程﹣﹣古赖国文化园坐落在河南省三大历史名镇之一的息县包信镇,近些年世界各地赖氏宗亲都会到河南息县参加赖氏祭祖活动.为使活动更有意义,举办方决定购买甲、乙两种品牌的文化衫,已知购买4件甲品牌文化衫和2件乙品牌文化衫需230元;购买8件甲品牌文化衫和6件乙品牌文化衫需530元.(1)求甲、乙两种品牌文化衫的单价;(2)根据需要,举办方决定购买两种品牌的文化衫共2000件,且甲品牌文化衫的件数超过乙品牌文化衫件数的2倍.请你设计出最省钱的购买方案,并说明理由.25.(8分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着再把面积为的一个长方形分成两个面积为的长方形,再把面积为的一个长方形分成两个面积为的长方形,如此进行下去.(1)第8次等分所得的一个小长方形面积为多少?(2)试利用图形揭示的规律计算:+++++++.。
冀教版2019-2020学年七年级上学期数学期末考试试卷G卷姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分)﹣3的倒数是()
A . 3
B . ﹣3
C .
D .
2. (2分)(2017·荆州) 中国企业2016年已经在“一带一路”沿线国家建立了56个经贸合作区,直接为东道国增加了180 000个就业岗位.将180 000用科学记数法表示应为()
A . 18×104
B . 1.8×105
C . 1.8×106
D . 18×105
3. (2分)如图所示的几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的()
A .
B .
C .
D .
4. (2分) (2018七上·长葛期中) 单项式的系数和次数分别是()
A .
B .
C .
D . ,2
5. (2分) (2019七上·西安月考) 下列说法中,错误的是()
A . 经过一点可以作无数条直线
B . 经过两点只能作一条直线
C . 射线AB和射线BA是同一条射段
D . 两点之间,线段最短
6. (2分)己知﹣2xn﹣3my3与3x7ym+n是同类项,则mn的值是()
B . 1
C . ﹣4
D . ﹣1
7. (2分)下列变形中,错误的是()
A . 若x=y,则x+5=y+5
B . 若 = ,则x=y
C . 若﹣3x=﹣3y,则x=y
D . 若x=y,则 =
8. (2分) (2019七上·萧山期末) 如图示一副特制的三角板,用它们可以画出一些特殊角,在下列选项中,不能画出的角度是()
A . 18°
B . 55°
C . 63°
D . 117°
9. (2分)关于的方程3x+5=0与3x+3k=1的解相同,则k=().
B .
C . 2
D . -
10. (2分)如图,OA⊥OB,∠BOC=30°,OD平分∠AOC,则∠BOD的度数是()度。
A . 40
B . 60
C . 20
D . 30
11. (2分) (2019九下·巴东月考) 为配合恩施州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?()
A . 140元
B . 150元
C . 160元
D . 200元
12. (2分)下列四个命题,正确的有()个.
①有理数与无理数之和是有理数;②有理数与无理数之和是无理数;③无理数与无理数之和是无理数;④无理数与无理数之积是无理数.
A . 1
B . 2
C . 3
D . 4
二、填空题 (共6题;共6分)
13. (1分) (2016七上·临海期末) 写出一个在﹣1 和1 之间的整数________.
14. (1分) (2019七上·利辛月考) 代数式4x2m-1y与-x5-my的和是单项式,则m=________。
15. (1分) (2018七上·岳池期末) 已知∠α与∠β互余,且∠α=35°18′23″,则∠β=________.
16. (1分)计算: =________.
17. (1分) (2017七上·丹东期中) 在数轴上,与表示的点距离为3的点所表示的数是________.
18. (1分) (2017七上·江都期末) 如图,一个正方体的表面上分别写着连续的6个整数,且每两个相对面上的两个数的和都相等,则这6个整数的和为________.
三、解答题 (共8题;共75分)
19. (5分) (2018七上·宜兴期中) 计算与化简:
(1)﹣15+(﹣8)﹣(﹣11)﹣12
(2) (﹣36)×( 1 )
(3)﹣14+(﹣2)3+|2﹣5|﹣6×().
20. (5分) (2019七上·椒江期末) 如图,已知平面上四个点A、B、C、D,请按要求作出相应的图形.
①画直线AB;
②连接BC并反向延长线段BC;
③作射线DC;
④作出到A、B、C、D四个点距离之和最小的点P.
21. (10分)解方程:
(1) 0.5x+0.6=6﹣1.3x
(2) 1+ = .
22. (15分) (2016七上·仙游期末) 如图,已知点O在线段AB上,点C,D分别是
AO,BO的中点
(1) AO=________CO;BO=________DO;
(2)若CO=3cm,DO=2cm,求线段AB的长度;
(3)若线段AB=10,小明很轻松地求得CD=5.他在反思过程中突发奇想:若点O在线段AB的延长线上,原有的结论“CD=5”是否仍然成立呢?请帮小明画出图形分析,并说明理由.
23. (5分)(2018七上·武昌期末) 先化简,再求值:
,其中x=﹣2,y=﹣1.
24. (15分) (2019七上·萧山月考) 国庆全国放假七日,高速公路免费通行,各地风景区游人如织。
其中,闻名于世的黄山风景区,在9月30日的游客人数为0.9万人,接下来的七天中,每天的游客人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)。
日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日
人数变化
+3.1+1.78-0.58-0.8-1-1.6-1.15
(万人)
(1) 10月3日的人数为________万人。
(2)七天假期里,游客人数最多的是10月________日,达到________万人。
游客人数最少的是10月________日,达到________万人。
(3)请问黄山风景区在这八天内一共接待了多少游客?
25. (5分) (2018七上·玉田期中) 题目:在同一平面上,若∠AOB=75°,∠BOC=15°,求∠AOC的度数.
下面是七(2)班马小虎同学的解题过程:
解:根据题意画出图形,如图所示,
∵∠AOC=∠AOB-∠BOC=75°-75°=60°
∴∠AOC=60°
若你是老师,会判马小虎满分吗?若会,说明理由;若不会,请指出错误之处,并给出你认为正确的解法.
26. (15分) (2018七上·鄂托克旗期末) 某校一间阶梯教室,第1排的座位数为12,从第2排开始,•每一排都比前一排增加a个座位.
(1)请在下表的空格里填写一个适当的代数式.
第1排座位数第2排
座位数
第3排
座位数
第4排
座位数
…第n排
座位数
1212+a________________…________
(2)已知第15排座位数是第5排座位数的2倍,列方程为________.
参考答案
一、单选题 (共12题;共24分)
1、答案:略
2、答案:略
3、答案:略
4、答案:略
5、答案:略
6、答案:略
7、答案:略
8、答案:略
9、答案:略
10、答案:略
11、答案:略
12、答案:略
二、填空题 (共6题;共6分)
13、答案:略
14、答案:略
15、答案:略
16、答案:略
17、答案:略
18、答案:略
三、解答题 (共8题;共75分)
19、答案:略
20、答案:略
21、答案:略
22、答案:略
23、答案:略
24、答案:略
25、答案:略
26、答案:略。