酒杯中的解析几何问题
- 格式:pptx
- 大小:97.27 KB
- 文档页数:11
抛物线型酒杯中的数学问题
这类酒杯形状的几何特征是一个抛物线,可以是平方曲线、三次抛物线或更高阶的抛物线。
因此,我们可以把数学问题抽象为寻找对应的曲线方程。
一种思路:
1.先拟合出图形,然后根据拟合出的曲线以及曲线的特性(例如拐点,顶点,曲线因式分解等等)来确定出该曲线的方程;
2.使用尝试/试验方法,根据已知条件推测出该酒杯形状可能对应的曲线方程;
3.使用数值解方法来求解出对应抛物线的曲线方程;
4.通过更具体的数学问题来计算,如果需要计算直径、角度等,可以转换为求解抛物线的两个点之间的距离的问题;
5.使用离散/隐式抛物线方程,使用一些已知的条件准确地推断出该抛物线的曲线方程;
6.使用回归分析方法,找出这种抛物线形状的曲线方程;
7.使用图形处理方法,计算出抛物线的曲线方程。
初中物理实验题讲解:“没底”的酒杯你把水注满到杯子的边上,杯子里完全装满了水。
在杯子旁边有一些大头针。
或许,杯子里还可能找得出一点点地方来安放一二枚大头针吧?试试看。
请你把大头针一枚一枚投进杯子里去,数着你投进去的数目。
投大头针的时候要谨慎小心:要小心地把针尖放进水里,然后轻轻把手放开,不让有一点震动,也不加一点压力。
你默默地数着:1枚、2枚、3枚,已经有3枚落到杯子底上了──可是水面并没有变动。
10枚、20枚、30枚了,杯里的水并没有溢出。
50枚、60枚、70枚……已经是整整100枚大头针丢在杯底了,可是杯里的水仍旧没有溢出一点来。
而且,还不只是没有水溢出来,甚至看不到水面有显著高出杯口的情形。
再加多些大头针看看。
200枚、300枚、400枚大头针已经沉到杯底了,可是,仍旧没有一滴水从杯口溢出来;只是现在已经可以看到水面比杯口略略高起一些了。
原来,这个奇怪现象的解答正在水面高起这一点。
玻璃只要略沾些油污,便很难沾水;在我们杯口的边上,也跟一切常用的器具一样,难免由于人手的接触留下一些油脂的痕迹。
杯口的边上既然不会沾水,那么,被杯里的大头针所排出的水就只好形成一个高起的凸面。
这个凸面的高出程度很不显著,这只要花一点时间算出一枚大头针的体积来,拿它跟这个高起部分的体积比较一下,就知道大头针的体积只有高起部分的体积的几百分之一,因此在这个装满水的杯子里才能找出容纳几百枚大头针的地方。
用的杯子杯口越大,可以容纳的大头针也越多,因为杯口越大,高起部分的体积也越大。
要更清楚地了解这个问题,让我们做一个计算,一枚大头针大约25毫米长、毫米粗。
这样一个圆柱体的体积不难依照几何学上的公式算出,等于53毫米。
再加上大头针的头,总体积大约不超过毫米。
现在来算一算杯口上高起部分的体积,假定杯口直径是9厘米。
这样的圆面积大约等于6400平方毫米。
如果我们把高起的水层的厚度算作1毫米,那么它的体积就是6400立方毫米,这就有大头针体积的1200倍。
形杯问题物理形杯问题是物理学中一个经典的问题,涉及到液体在不同形状的杯子中的高度和压强的关系。
在本文中,我们将探讨形杯问题的原理和相关理论。
形杯问题中的杯子可以是各种形状,如圆锥形、圆柱形、矩形等。
我们以圆锥形杯子为例进行分析。
假设圆锥形杯子的顶部是封闭的,底部是一个半径为R的圆形底部。
我们希望研究在不同高度处的液体压强与底部的关系。
我们需要了解液体的压强是如何产生的。
液体的压强是由于液体分子间的相互作用力造成的。
液体分子在受到重力的作用下,会受到上方液体层的压力,从而向下传递。
因此,在液体中的任何一点,都存在着液体分子对该点的压强。
根据形杯问题的假设条件,液体的密度是恒定的,并且液体是静止的。
根据静力学的原理,液体在不同高度处的压强与液体的高度以及液体的密度有关。
我们来推导液体在圆锥形杯子中的压强与高度的关系。
假设液体的高度为h,液体的密度为ρ。
我们知道,液体的压强等于液体的密度乘以重力加速度g再乘以液体的高度。
即P = ρg h。
根据圆锥形杯子的几何关系,我们可以得出液体在不同高度处的压强与底部的关系。
由于液体的密度和重力加速度都是恒定的,所以液体在不同高度处的压强只与液体的高度有关。
当液体的高度为0时,液体的压强为0。
当液体的高度为H时,液体的压强为P = ρgH。
在这之间的任何高度h处,液体的压强都可以用线性插值的方式计算。
即P = ρgh/H。
除了圆锥形杯子,其他形状的杯子也可以使用类似的方法进行分析。
不同形状的杯子会导致液体在不同高度处的压强与底部的关系不同。
因此,形杯问题在物理学中具有一定的复杂性。
形杯问题不仅在理论上有一定的研究价值,而且在实际生活中也有一定的应用。
例如,在工程设计中,我们需要考虑液体在不同形状的容器中的分布情况和压强分布情况,以确保容器的结构安全和液体的稳定性。
总结起来,形杯问题涉及到液体在不同形状的杯子中的高度和压强的关系。
通过分析液体的压强与液体的高度、液体的密度以及重力加速度的关系,我们可以得出液体在不同高度处的压强与底部的关系。
喝酒也要用到几何:让你看上去喝得更多把缸子里的水倒进一个细杯子里,水位明显上升了,小孩子们便会手舞足蹈地说,哇,水变多了耶!不过,实际经验告诉我们,成年人似乎也好不到哪儿去。
在感知不同形状的物体体积时,人们似乎有一种天生的障碍。
20 世纪,心理学家Jean Piaget 曾提出了著名的认知发展理论。
他发现,小孩儿明显缺乏对物体体积的认知能力。
把缸子里的水倒进一个细杯子里,水位明显上升了,小孩子们便会手舞足蹈地说,哇,水变多了耶!不过,实际经验告诉我们,成年人似乎也好不到哪儿去。
在感知不同形状的物体体积时,人们似乎有一种天生的障碍。
如果用一个横截面积更小的杯子来喝酒,别人或许会真的以为你喝得更多呢!细而高的杯子看上去就是大些问题的关键在于半径与体积的关系上:半径扩大到原来的n 倍,横截面积会扩大到原来的n 2倍。
为了让圆柱体的体积保持不变,它的高度必须要缩小到原来的1/n 2 。
同样地,把一个圆柱体的半径缩小1/10,看上去似乎是微不足道的;然而,要想让圆柱体的体积保持不变,高度必须要增加到原来的1/(0.9*0.9),大约是1.23 倍。
从视觉上看,23% 的高度变化要比10% 的半径变化明显得多,于是乍看上去体积似乎变大了。
左边那个圆柱体的体积看上去是不是更大一些呢?其实,这三个圆柱体的体积是相同的。
杯子上部的空间比你想象的更大下图是一个酒杯,里面的酒没有倒满。
那么,你认为酒的体积占整个酒杯容积的百分之多少?如果酒杯没有装满的话,你可以少喝多少酒?为了解决这个问题,我们需要知道圆台体积的计算公式:因此,整个杯子的容积为:但液面高度只达到整个酒杯高度的5/6,因此液体体积为:两者一除,答案简直让人不敢相信:酒的体积竟然只有整个酒杯容积的73.74%,也就是说这样便能少喝超过1/4 的酒!可是,为什么仅仅少了1/6 的高度,就能少喝1/4 的酒呢?这仍然是半径与体积的关系在作怪。
人们总是关注酒杯液面的高度,却忽视了倾斜的杯壁对体积的影响。