高中物理传送带专题
- 格式:doc
- 大小:89.50 KB
- 文档页数:4
第三章运动和力的关系第三章运动和力的关系微专题23“传送带”模型问题1.传送带问题:关键在于对物体摩擦力性质(静摩擦力还是滑动摩擦力)、方向及运动过程的判断。
当物体与传送带不共速时,一定为滑动摩擦力;当物体与传送带共速时,要假设接触面光滑看相对运动趋势,然后判断之后的运动方向。
2.当物体速度与传送带速度相同时,要通过受力分析和状态分析判定以后能否一起运动,物体的摩擦力可能突变。
1.(2023·广东省深圳中学阶段测试)如图所示,一水平的浅色长传送带上放置一质量为m 的煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。
初始时,传送带与煤块都是静止的。
现让传送带以恒定的加速度a 开始运行,当其速度达到v 后,便以此速度做匀速运行。
传送带速度达到v 时,煤块未与其共速,经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动,关于上述过程,以下判断正确的是(重力加速度为g )()A .μ与a 之间一定满足关系μ>a gB .煤块从开始运动到相对于传送带静止经历的位移为v 2μg C .煤块从开始运动到相对于传送带静止经历的时间为v μgD .黑色痕迹的长度为v 22μg答案C 解析根据牛顿第二定律得,煤块的加速度a ′=μg ,要发生相对滑动,传送带的加速度需大于煤块的加速度,即a >μg ,则μ<a g,故A 错误;煤块从开始运动到相对于传送带静止所需的时间为t =v a ′=v μg,此过程煤块的位移为x 1=v 22μg ,此过程传送带的位移为x 2=v 22a +v (v μg -v a )=v 2μg -v 22a ,煤块相对于传送带的位移即黑色痕迹的长度为Δx =x 2-x 1=v 22μg -v 22a ,故C 正确,B 、D 错误。
2.如图所示,一绷紧的水平传送带以恒定的速率v =10m/s 运行,某时刻将一滑块轻轻地放在传送带的左端,已知传送带与滑块间的动摩擦因数为0.2,传送带的水平部分A 、B 间的距离足够长,将滑块刚放上去2s 时突然停电,传送带立即做加速度大小a =4m/s 2的匀减速运动至停止(重力加速度取g =10m/s 2)。
传 送 带 问 题一、传送带问题中力与运动情况分析 1、水平传送带上的力与运动情况分析例1 水平传送带被广泛地应用于车站、码头,工厂、车间。
如图所示为水平传送带装置示意图,绷紧的传送带AB 始终保持v 0=2 m/s 的恒定速率运行,一质量为m 的工件无初速度地放在A 处,传送带对工件的滑动摩擦力使工件开始做匀加速直线运动,设工件与传送带间的动摩擦因数为μ=0.2 ,AB 的之间距离为L =10m ,g 取10m/s 2 .求工件从A 处运动到B 处所用的时间.例2: 如图甲所示为车站使用的水平传送带的模型,传送带长L =8m ,以速度v =4m/s 沿顺时针方向匀速转动,现有一个质量为m =10kg 的旅行包以速度v 0=10m/s 的初速度水平地滑上水平传送带.已知旅行包与皮带间的动摩擦因数为μ=0.6 ,则旅行包从传送带的A 端到B 端所需要的时间是多少?(g =10m/s 2 ,且可将旅行包视为质点.)例3、如图所示为车站使用的水平传送带装置的示意图,绷紧的传送带始终保持3.0m /s 的恒定速率运行,传送带的水平部分AB 距水平地面的高度为h=0.45m.现有一行李包(可视为质点)由A 端被传送到B 端,且传送到B 端时没有被及时取下,行李包从B 端水平抛出,不计空气阻力,g 取10 m/s 2(1) 若行李包从B 端水平抛出的初速v =3.0m /s ,求它在空中运动的时间和飞出的水平距离;(2) 若行李包以v 0=1.0m /s 的初速从A 端向右滑行, 包与传送带间的动摩擦因数μ=0.20,要使它从B 端飞出的水平距离等于(1)中所 求的水平距离,求传送带的长度L 应满足的条件?例4一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为 。
初始时,传送带与煤块都是静止的。
现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动,经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。
传送带-高中物理经典试题一、多选题1.如图,水平的皮带传送装置中,滑轮逆时针转动,皮带匀速移动。
此时把一重10N 的物体由静止放在皮带上的A 点,若物体和皮带间的动摩擦因数μ=0.4,则下列说法正确的()A .刚放上时,物体受到向左的滑动摩擦力4NB .刚放上时,物体受到向右的滑动摩擦力4NC .达到相对静止后,物体没有受到摩擦力D .达到相对静止后,物体受到的是静摩擦力是4N2.如图所示,水平传送带A 、B 两端相距 3.5m s =,工件与传送带间的动摩擦因数0.1μ=,工件滑上A 端瞬时速度4m/s A v =,到达B 端的瞬时速度设为B v ,则(g 取10m/s 2)()A .若传送带不动,则3m/sB v =B .若传送带以速度4m/s v =逆时针匀速转动,v B =4m/sC .若传送带以速度2m/s v =顺时针匀速转动,3m/s B v =D .若传递带以速度2m/s v =顺时针匀速转动,2m/sB v =3.如图,传送带的水平部分长为L ,传动速率为v ,在其左端无初速放一小木块,若木块与传送带间的动摩擦因数为μ,从左端运动到右端的时间为t ,重力加速度为g 。
下列说法正确的是()A .若02v gL μ<<,则2g Lv t vμ+=B.若02v gL μ<<,则2L v t v gμ=-C .若2v gL μ=,则2Lt gμ=D .若2v gL μ>,则2Lt gμ=4.应用于机场和火车站的安全检查仪,其传送装置可简化为如图所示的模型。
传送带始终保持v =0.4m/s 的恒定速率运行,行李与传送带之间的动摩擦因数μ=0.2,A 、B 间的距离为2m ,g 取10m/s 2。
旅客把行李(可视为质点)无初速度地放在A 处,则下列说法正确的是()A .行李到达B 处时速度大小为0.4m/s B .行李经过2s 到达B 处C .开始时行李的加速度大小为2m/s 2D .行李在传送一直加速5.如图所示,水平传送带以恒定速度逆时针方向运行,运行的速度大小为v ,小滑块以大小为v 0的初速度滑上传送带,经过时间t 小滑块最终离开传送带,小滑块前12t 时间内所受的滑动摩擦力大于零,后12t 时间内所受的摩擦力等于零。
传送带问题归类分析传送带是运送货物的一种省力工具,在装卸运输行业中有着广泛的应用,本文收集、整理了传送带相关问题,并从两个视角进行分类剖析:一是从传送带问题的考查目标(即:力与运动情况的分析、能量转化情况的分析)来剖析;二是从传送带的形式来剖析.(一)传送带分类:(常见的几种传送带模型)1.按放置方向分水平、倾斜和组合三种;2.按转向分顺时针、逆时针转两种;3.按运动状态分匀速、变速两种。
(二)传送带特点:传送带的运动不受滑块的影响,因为滑块的加入,带动传送带的电机要多输出的能量等于滑块机械能的增加量与摩擦生热的和。
(三)受力分析:传送带模型中要注意摩擦力的突变(发生在v物与v带相同的时刻),对于倾斜传送带模型要分析mgsinθ与f的大小与方向。
突变有下面三种:1.滑动摩擦力消失;2.滑动摩擦力突变为静摩擦力;3.滑动摩擦力改变方向;(四)运动分析:1.注意参考系的选择,传送带模型中选择地面为参考系;2.判断共速以后是与传送带保持相对静止作匀速运动呢?还是继续加速运动?3.判断传送带长度——临界之前是否滑出?(五)传送带问题中的功能分析1.功能关系:W F=△E K+△E P+Q。
传送带的能量流向系统产生的内能、被传送的物体的动能变化,被传送物体势能的增加。
因此,电动机由于传送工件多消耗的电能就包括了工件增加的动能和势能以及摩擦产生的热量。
2.对W F 、Q 的正确理解(a )传送带做的功:W F =F·S 带 功率P=F× v 带 (F 由传送带受力平衡求得) (b )产生的内能:Q=f·S 相对(c )如物体无初速,放在水平传送带上,则在整个加速过程中物体获得的动能E K ,因为摩擦而产生的热量Q 有如下关系:E K =Q=2mv 21传 。
一对滑动摩擦力做的总功等于机械能转化成热能的值。
而且这个总功在求法上比一般的相互作用力的总功更有特点,一般的一对相互作用力的功为W =f 相s 相对,而在传送带中一对滑动摩擦力的功W =f 相s ,其中s 为被传送物体的实际路程,因为一对滑动摩擦力做功的情形是力的大小相等,位移不等(恰好相差一倍),并且一个是正功一个是负功,其代数和是负值,这表明机械能向内能转化,转化的量即是两功差值的绝对值。
3.10水平传送带教师一、单选题1.如图甲所示,一水平传送带沿顺时针方向旋转,在传送带左端A 处轻放一可视为质点的小物块,小物块从A 端到B 端的速度—时间变化规律如图乙所示,t =6s 时恰好到B 点,则( )A .AB 间距离为20mB .小物块在传送带上留下的痕迹是8mC .物块与传送带之间动摩擦因数为μ=0.5D .若物块速度刚好到4m/s 时,传送带速度立刻变为零,则物块不能到达B 端【答案】B【详解】A .由图可知,4s 后物体与传送带的速度相同,故传送带速度为4m /s ;图中图像与时间轴所围成的面积表示位移,故AB 的长度26416m 2x +⨯==() A 错误;B .小物体在传送带上留下的痕迹是44448m 2l ⨯=⨯-= B 正确;C .由图乙可知,加速过程的加速度2Δ41m/s Δ4v a t === 由牛顿第二定律可知mga g m μμ==联立解得0.1μ=C 错误;D .物块速度刚好到4m/s 时,传送带速度立刻变为零,物块由于惯性向前做匀减速直线A.B.C.D.运动的位移x =2A v v +t 1=5.75 m <8 m 则工件在到达B 端前速度就达到了13 m/s ,此后工件与传送带相对静止,因此工件先加速运动后匀速运动,根据牛顿第二定律可得合力F =ma 先不变后为零,故B 正确,A 、C 、D 错误。
故选B 。
3.如图所示,绷紧的水平传送带始终以恒定速度04m /s v =顺时针运行,小物块以16m /s v =的初速度从传送带右端滑上传送带。
已知物块与传送带间的动摩擦因数为0.2,传送带的长度为10m ,重力加速度210m /s g =,考虑小物块滑上传送带到离开传送带的过程,下列说法正确的是( )A .小物块从传送带左端滑离传送带B .小物块滑离传送带时的速度大小为6m /sC .小物块从滑上传送带到滑离传送带经历的时间为6.25sD .小物块在传送带上留下的划痕长度为17m【答案】C【详解】A .物块在传送带上的加速度22m/s a g μ==向左减速到零的时间113s ==v t a向左运动的最大距离 2119m 10m 2v x L a==<= 故物块不会从左端滑离传送带,故A 错误;B .物块向左减速到零后,向右加速,但只能加速到04m /s v =,故B 错误;C .物块向左加速到04m /s v =用时022s v t a==二、多选题4.如图所示,水平传送带A、B两端相距x=3.5m,工件与传送带间的动摩擦因数μ=0.1。
高中物理。
传送带模型。
典型例题(含答案)【经典】传送带专题难点形成的原因:传送带的物理问题存在许多难点,包括但不限于以下几个方面:1.对于物体和传送带之间的摩擦力产生条件、方向等基础知识模糊不清;2.对于物体在传送带上的运动方式的判断错误;3.对于物体在传送带上的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。
1.水平传送带的应用水平传送带在机场和火车站等场合得到广泛应用,如图所示,为一水平传送带装置示意图。
绷紧的传送带AB以恒定速率v=1m/s运行。
现将质量为m=4kg的行李无初速度地放在A 处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动。
已知行李与传送带之间的动摩擦因数为μ=0.1,A、B之间的距离L=2m,重力加速度g=10m/s^2.1) 求行李刚开始运动时所受滑动摩擦力的大小和加速度的大小;2) 求行李做匀加速直线运动的时间;3) 如果提高传送带的运行速率,行李就能被较快地传送到B处。
求行李从A处传送到B处的最短时间和传送带对应的最小运行速率。
解析:1) 行李刚开始运动时,受力如图所示,滑动摩擦力:F_f = μmg = 4N由牛顿第二定律得:F_f = ma解得:a = 1m/s^22) 行李达到与传送带相同速率后不再加速,则:v = at,解得t = 1s3) 行李始终匀加速运行时间最短,且加速度仍为a=1m/s^2.当行李到达右端时,有:v_min = 2aL解得:v_min = 2m/s故传送带的最小运行速率为2m/s,行李运行的最短时间为:t_min = 2L/v_min = 2s2.斜面传送带的问题如图所示,传送带与地面成夹角θ=37°,以10m/s的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5kg的物体,它与传送带间的动摩擦因数μ=0.9.已知传送带从A→B的长度L=50m,则物体从A到B需要的时间为多少?解析】物体放上传送带后,开始一段时间,其运动加速度为:a = μgcosθ - gsinθ = 1.2m/s^2这样的加速度只能维持到物体的速度达到10m/s为止,其对应的时间和位移分别为:t1 = v/10a = 8.33ss1 = 1/2at1^2 = 41.67m因此,物体在匀加速运动后以匀速运动到达B点,其匀速运动的时间为:t2 = (L - s1)/v = 0.83s因此,物体从A到B所需的总时间为:t = t1 + t2 = 9.16s3、如图所示,一条斜向上运动的传送带,夹角为30°,速度为2m/s。
专题五传送带问题和滑块—木板问题课题任务传送带问题1.传送带问题涉及摩擦力的判断、物体运动状态的分析和动力学知识的运用,重点考查学生分析问题和解决问题的能力。
主要有如下两类:(1)水平传送带问题当传送带水平运动时,应特别注意摩擦力的突变和物体运动状态的变化。
摩擦力的突变,常常导致物体的受力情况和运动性质的突变。
静摩擦力达到最大值,是物体和传送带恰好保持相对静止的临界状态;滑动摩擦力存在于发生相对运动的物体之间,因此两物体的速度达到相同时,滑动摩擦力要发生突变(滑动摩擦力为0或变为静摩擦力)。
(2)倾斜传送带问题当传送带倾斜时,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数μ和传送带倾斜角度θ对受力的影响,从而正确判断物体的速度和传送带速度相等时物体的运动性质。
2.倾斜传送带问题的两种情况倾斜传送带问题可分为倾斜向上传送和倾斜向下传送两种情况(物体从静止开始,传送带匀速运动且足够长):例1如图所示,水平传送带两端相距x =8m,工件与传送带间的动摩擦因数μ=0.6,工件向左滑上A 端时速度v A =10m/s,设工件到达B 端时的速度为v B 。
(g 取10m/s 2)(1)若传送带静止不动,求v B 。
(2)若传送带顺时针转动,工件还能到达B 端吗?若不能,说明理由;若能,则求出到达B 点的速度v B 。
(3)若传送带以v =13m/s 逆时针匀速转动,求v B 及工件由A 到B 所用的时间。
[规范解答](1)根据牛顿第二定律可知μmg =ma ,则a =μg =6m/s 2,且v 2B -v 2A =-2ax ,故v B =2m/s。
(2)能。
当传送带顺时针转动时,工件受力不变,其加速度不发生变化,仍然始终减速,故工件到达B 端的速度v B =2m/s。
(3)开始时工件所受滑动摩擦力向左,加速度a =μmg m=μg =6m/s 2,假设工件能加速到13m/s,则工件速度达到13m/s 所用时间为t 1=v -v Aa=0.5s,匀加速运动的位移为x 1=v A t 1+12at 21=5.75m<8m,则工件在到达B 端前速度就达到了13m/s,此后工件与传送带相对静止,因此工件先加速后匀速。
牛顿运动定律的应用----传送带问题1.模型特征(1)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3 (1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v返回时速度为v0(2)倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2 (1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3 (1)可能一直加速(B点离开)(2)可能一直减速(B点离开)(3)可能一直匀速(B点离开)(4)可能先减速后反向加速(A点离开)(5)可能先减速后加速最后匀速(A点离开)2.模型动力学分析(1)传送带模型问题的分析流程3.传送带问题的解题思路题型练习一:水平传送带1:情景1(1)可能一直加速(2)可能先加速后匀速例题分析(1)先加速后匀速例1 . 水平传送带被广泛地应用于车站、码头,工厂、车间。
如图所示为水平传送带装置示意图,绷紧的传送带AB始终保持v0=2 m/s的恒定速率运行,一质量为m的工件无初速度地放在A处,传送带对工件的滑动摩擦力使工件开始做匀加速直线运动,设工件与传送带间的动摩擦因数为μ=0.2 ,AB 的之间距离为L =10m ,g 取10m/s 2 .求工件从A 处运动到B 处所用的时间.分析 工件无初速度地放在传送带上,由于传送带以2 m/s 的恒定速度匀速运动,工件在传送带上受到传送带给予的滑动摩擦力作用做匀加速运动,当工件加速到与传送带速度相等时,如果工件没有滑离传送带,工件在传送带上再不相对滑动,两者一起做匀速运动.解答 设工件做加速运动的加速度为a ,加速的时间为t 1 ,加速运动的位移为l ,根据牛顿第二定律,有:μmg=ma 代入数据可得:a =2 m/s 2工件加速运动的时间t 1=a v 0 代入数据可得: t 1=1s 此过程工件发生的位移l =12at 12 代入数据可得:l =1m由于l <L ,所以工件没有滑离传送带设工件随传送带匀速运动的时间为t 2 ,则t 2=vl L 代入数据可得:t 2=4.5s所以工件从A 处运动到B 处的总时间t =t 1+t 2=5.5 s(2)可能一直加速例 2. 水平传送带被广泛地应用于车站、码头,工厂、车间。
2024年高三物理二轮常见模型专题传送带模型特训目标特训内容目标1水平传送带模型(1T-5T)目标2倾斜传送带模型(6T-10T)目标3电磁场中的传送带模型(11T-15T)【特训典例】一、水平传送带模型1如图所示,足够长的水平传送带以v0=2m/s的速度沿逆时针方向匀速转动,在传送带的左端连接有一光滑的弧形轨道,轨道的下端水平且与传送带在同一水平面上,滑块与传送带间的动摩擦因数为μ=0.4。
现将一质量为m=1kg的滑块(可视为质点)从弧形轨道上高为h=0.8m的地方由静止释放,重力加速度大小取g=10m/s2,则()A.滑块刚滑上传送带左端时的速度大小为4m/sB.滑块在传送带上向右滑行的最远距离为2.5mC.滑块从开始滑上传送带到第一次回到传送带最左端所用的时间为2.5sD.滑块从开始滑上传送带到第一次回到传送带最左端的过程中,传动系统对传送带多做的功为12J【答案】AD【详解】A.滑块刚滑上传送带左端时的速度大小为v=2gh=2×10×0.8m/s=4m/s选项A正确;B.滑块在传送带上向右滑行做减速运动的加速度大小为a=μg=4m/s2向右运动的最远距离为x m=v22a=422×4m=2m选项B错误;C.滑块从开始滑上传送带到速度减为零的时间t1=va =1s位移x1=v2t1=2m然后反向,则从速度为零到与传送带共速的时间t2=v0a=0.5s位移x2=v02t2=0.5m然后匀速运动回到传送带的最左端的时间t3=x1-x2v0=0.75s滑块从开始滑上传送带到第一次回到传送带最左端所用的时间为t=t1+t2+t3=2.25s选项C错误;D.滑块从开始滑上传送带到第一次回到传送带最左端的过程中,传动系统对传送带多做的功等于传送带克服摩擦力做功W=μmg(v0t1+v0t2)=12J选项D正确。
故选AD。
2如图甲所示,一足够长的水平传送带以某一恒定速度顺时针转动,一根轻弹簧一端与竖直墙面连接,另一端与工件不拴接。
传送带问题归类分析传送带是运送货物的一种省力工具,在装卸运输行业中有着广泛的应用,本文收集、整理了传送带相关问题,并从两个视角进行分类剖析:一是从传送带问题的考查目标(即:力与运动情况的分析、能量转化情况的分析)来剖析;二是从传送带的形式来剖析.(一)传送带分类:(常见的几种传送带模型)1.按放置方向分水平、倾斜和组合三种;2.按转向分顺时针、逆时针转两种;3.按运动状态分匀速、变速两种。
(二)传送带特点:传送带的运动不受滑块的影响,因为滑块的加入,带动传送带的电机要多输出的能量等于滑块机械能的增加量与摩擦生热的和。
(三)受力分析:传送带模型中要注意摩擦力的突变(发生在v物与v带相同的时刻),对于倾斜传送带模型要分析mgsinθ与f的大小与方向。
突变有下面三种:1.滑动摩擦力消失;2.滑动摩擦力突变为静摩擦力;3.滑动摩擦力改变方向;(四)运动分析:1.注意参考系的选择,传送带模型中选择地面为参考系;2.判断共速以后是与传送带保持相对静止作匀速运动呢?还是继续加速运动?3.判断传送带长度——临界之前是否滑出?(五)传送带问题中的功能分析1.功能关系:W F=△E K+△E P+Q。
传送带的能量流向系统产生的内能、被传送的物体的动能变化,被传送物体势能的增加。
因此,电动机由于传送工件多消耗的电能就包括了工件增加的动能和势能以及摩擦产生的热量。
2.对W F 、Q 的正确理解(a )传送带做的功:W F =F·S 带 功率P=F× v 带 (F 由传送带受力平衡求得) (b )产生的内能:Q=f·S 相对(c )如物体无初速,放在水平传送带上,则在整个加速过程中物体获得的动能E K ,因为摩擦而产生的热量Q 有如下关系:E K =Q=2mv 21传 。
一对滑动摩擦力做的总功等于机械能转化成热能的值。
而且这个总功在求法上比一般的相互作用力的总功更有特点,一般的一对相互作用力的功为W =f 相s 相对,而在传送带中一对滑动摩擦力的功W =f 相s ,其中s 为被传送物体的实际路程,因为一对滑动摩擦力做功的情形是力的大小相等,位移不等(恰好相差一倍),并且一个是正功一个是负功,其代数和是负值,这表明机械能向内能转化,转化的量即是两功差值的绝对值。
传送带问题知识特点传送带上随行物受力复杂,运动情况复杂,功能转换关系复杂。
基本方法解决传送带问题要特别注重物理过程的分析和理解,关键是分析传送带上随行物时一般以地面为参照系。
1、对物体受力情况进行正确的分析,分清摩擦力的方向、摩擦力的突变。
当传送带和随行物相对静止时,两者之间的摩擦力为恒定的静摩擦力或零;当两者由相对运动变为速度相等时,摩擦力往往会发生突变,即由滑动摩擦力变为静摩擦力或变为零,或者滑动摩擦力的方向发生改变。
2、对运动情况进行分析分清物体的运动过程,明确传送带的运转方向。
3、对功能转换关系进行分析,弄清能量的转换关系,明白摩擦力的做功情况,特别是物体与传送带间的相对位移。
一.基础练习【示例1】一水平传送带长度为20m ,以2m /s 的速度做匀速运动,已知某物体与传送带间动摩擦因数为0.1,则从把该物体由静止放到传送带的一端开始,到达另一端所需时间为多少?解:物体加速度a=μg=1m/s 2,经t 1=v a=2s 与传送带相对静止,所发生的位移 S 1=12 at 12=2m,然后和传送带一起匀速运动经t 2=l-s 1v=9s ,所以共需时间t=t 1+t 2=11s 【讨论】1、在物体和传送带达到共同速度时物体的位移,传送带的位移,物体和传送带的相对位移分别是多少?(S 1=12vt 1=2m ,S 2=vt 1=4m ,Δs=s 2-s 1=2m ) 2、若物体质量m=2Kg ,在物体和传送带达到共同速度的过程中传送带对物体所做的功,因摩擦而产生的热量分别是多少?(W 1=μmgs 1=12mv 2=4J ,Q=μmg Δs=4J ) 情景变换一、当传送带不做匀速运动时【示例2】一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。
初始时,传送带与煤块都是静止的。
现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动。
传送带问题
难点:
1、判断物体与传送带之间是否存在摩擦力。
如果存在,是滑动摩擦力还是静摩擦力,摩擦力的大小如何计算,方向如何判断。
2、判断物体相对地面、相对传送带分别做什么样的运动。
1.受力分析:力的正交分解法
2.力和运动的关系:力是改变物体运动状态的根本原因。
水平传送带问题:
轻轻放在水平传送带上的物体在传送带上只有两种运动情况:(轻轻放意味着物体的初速度为0)
1.传送带足够长。
物体先做初速度为0的匀加速直线运动,加速度g a μ=,当物体与传送带共速之后,以传送带的速度做匀速直线运动。
2.传送带不够长。
物体一直做匀加速直线运动,加速度g a μ=,物体的速度还咩有达到与传送带共速,便送传送带滑落出去。
例一、水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查.如图1所示为一水平传送带装置示意图,绷紧的传送带AB 始终保持v=1m/s 的恒定速率运行,一质量为m=4kg 的行李无初速地放在A 处,设行李与传送带间的动摩擦因数μ=0.1,AB 间的距离l=2m ,g 取10m/s2.
(1)从A 运动到B 的时间以及物体在皮带上留下的滑痕长度;
(2)如果提高传送带的运行速率,行李就能被较快地传送到B 处,求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率.
例二、一水平传送带以2.0m/s 的速度顺时针传动,水平部分长为2.0m ,其右端与一倾角为θ=37°的光滑斜面平滑相连,斜面长为0.4m ,一个可视为质点的物块无初速度地放在传送带最左端,已知物块与传送带间动摩擦因数μ=0.2,试问:
(1)物块到达传送带右端的速度。
(2)物块能否到达斜面顶端?若能则说明理由,若不能则求出物块上升的最大高度。
(sin37°
=0.6,g 取l0 m/s 2)
A
B v 图1 图2
若物体不是轻轻放在传送带上,而是有初速度,那么分为两种情况。
1.传物v v <,物体做有初速度匀加速直线运动,g a μ=
2.传物v v >,物体做有初速度匀减速直线运动,g a μ-=
若传送带足够长,这两种情况物体最后的状态都是与传送带共速,做匀速直线运动。
例三、水平传送带被广泛地应用于车站、码头,工厂、车间。
如图所示为水平传送带装置示意图, 绷紧的传送带AB 始终保持v 0=2 m/s 的恒定速率运行,一质量为m 的工件无初速度地放在A 处,传送带对工件的滑动摩擦力使工件开始做匀加速直线运动,设工件与传送带间的动摩擦因数为μ=
0.2 ,AB 的之间距离为L =10m ,g 取10m/s 2 .求工件从A 处运动到B 处所用的时间.
倾斜传送带:
由于传送带倾斜,在对物体进行受力分析的时候就要考虑重力沿传送带方向的分力,并且重力垂直于传送带的力也发生了改变。
受力分析依然是最有利的工具,但需要充分考虑每一个力,特别是摩擦力!
例四(1)、如图4所示,传送带与地面成夹角θ=37°,以10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A →B 的长度L=16m ,则物体从A 到B 需要的时间为多少?
例四(2)、如图4所示,传送带与地面成夹角θ=37°,以10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.6,已知传送带从A →B 的长度L=16m ,则物体从A 到B 需要的时间为多少?
A
B 图4 图4
例四(2)、如图4所示,传送带与地面成夹角θ=37°,以10m/s的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.7,已知传送带从A→B的长度L=16m,则物体从A到B需要的时间为多少?
图4
传送带与曲线运动:
例五、如图5所示为车站使用的水平传送带的模型,它的水平传送带的长度为,传送带的皮带轮的半径为,传送带的上部距地面的高度为,现有一个旅行包(视为质点)以的初速度水平地滑上水平传送带.已知旅行包与皮带之间的动摩擦因数为,。
试讨论下列问题:
(1)若传送带静止,旅行包滑到B端时,人若没有及时取下,旅行包将从B端滑落,则包的落地点距B端的水平距离为多少?
(2)设皮带轮顺时针匀速转动,并设水平传送带长度仍为,旅行包滑上传送带的初速度恒为。
当皮带的角速度值在什么范围内,旅行包落地点距B端的水平距离始终为(1)中所求的距离?若皮带的角速度,旅行包落地点距B端的水平距离又是多少?
传送带与动量:
例六、如图4所示,水平传送带AB 长=8.3m ,质量为=1kg 的木块随传送带一起以=2m/s的速度向左匀速运动(传送带的传送速度恒定),木块与传送带间的动摩擦因数=0.5.当木块运动
至最左端A点时,一颗质量为=20g 的子弹以=300m/s水平向右的速度正对射入木块并穿出,穿出速度=50m/s,以后每隔1s就有一颗子弹射中木块,设子弹射穿木块的时间极短,且每次射入点各不相同,g取10m/s2。
求:
(1)第一颗子弹射入木块并穿出时,木块速度多大?
(2)在被第二颗子弹击中前,木块向右运动离A点的最大距离?
练习一、如图,传送带与水平方向夹37°角,AB 长为L=16m 的传送带以恒定速度v=10m/s 运动,在传送带上端A 处无初速释放质量为m=0.5kg 的物块,物块与带面间的动摩擦因数μ=0.5,
(sin37°=0.6,cos37°=0.8,取g=10 m/s2)求:
(1)当传送带顺时针转动时,物块从A 到B 所经历的时间为多少?
(2)当传送带逆时针转动时,物块从A 到B 所经历的时间为多少?
练习二、如图所示,AB是一段位于竖直平面内的光滑轨道,高度为h,末端B处的切线方向水平。
一个质量为m的小物体P从轨道顶端A处由静止释放,滑到B端后飞出,落在地面上的C点,轨迹如图中虚线BC所示,已知它落地时相对于B点的水平位移OC=L。
现在轨道下方紧贴B点安装一水平传送带,传送带的右端与B 点的距离为
2
L
,当传送带静止时,让小物体P再次从A点静止释放,它离开轨道并在传送带上滑行后从右端水平飞出,仍然落在地面上的C点。
当驱动轮转动而带动传送带以速度v匀速向右运动时(其他条件不变),物体P的落地点为D。
不计空气阻力,问传送带速度v的大小满足什么条件时,点O、D之间的距离s有最小值?这个最小值为多少?
图。