单片机定时器的使用
- 格式:ppt
- 大小:271.50 KB
- 文档页数:63
51单片机定时器工作方式51单片机是一种非常常见的单片机,它具有多个定时器用来实现各种定时任务。
下面我们就来详细介绍一下51单片机的定时器工作方式。
首先,51单片机的定时器可以分为两种类型:定时/计数器0(T0)和定时/计数器1(T1),它们分别有不同的工作方式和控制寄存器。
一、定时/计数器0(T0)工作方式:定时/计数器0(T0)是一个8位的定时器/计数器,它可以进行定时或计数操作。
在定时模式下,它可以作为定时器在规定的时间段内进行计时;在计数模式下,它可以根据外部信号的脉冲计数。
在定时模式下,T0可以通过设置控制寄存器TCON的位4(TR0)来启动或停止计时操作。
当TR0为1时,定时器开始计时;当TR0为0时,定时器停止计时。
定时器的工作频率可以通过控制寄存器TMOD的位1和位0来设置。
在计数模式下,T0可以通过设置TCON的位5(CT0)来选择定时器或计数器操作。
当CT0为0时,定时器工作,当CT0为1时,计数器工作。
同时,在计数模式下,还需要通过设置控制寄存器TMOD的位1和位0来设置计数器的工作频率。
定时/计数器0还可以使用中断功能,通过设置控制器IE的位4(ET0)来开启或关闭中断。
当ET0为1时,当定时器溢出时会产生中断请求,可以在中断服务程序中处理相应的操作。
二、定时/计数器1(T1)工作方式:定时/计数器1(T1)也是一个8位的定时器/计数器,它可以进行定时或计数操作。
类似于T0,T1也可以在定时模式下作为定时器进行计时,或者在计数模式下根据外部信号的脉冲进行计数。
在定时模式下,T1可以通过设置TCON的位6(TR1)来启动或停止计时操作。
当TR1为1时,定时器开始计时;当TR1为0时,定时器停止计时。
定时器的工作频率可以通过设置TMOD的位3和位2来设置。
在计数模式下,T1可以通过设置TCON的位7(CT1)来选择定时器或计数器操作。
当CT1为0时,定时器工作;当CT1为1时,计数器工作。
151单片机定时器/计时器的使用步骤:1、 打开中断允许位:对IE 寄存器进行控制,IE 寄存器各位的信息如下图所示:EA : 为0时关所有中断;为1时开所有中断ET2:为0时关T2中断;为1时开T2中断,只有8032、8052、8752才有此中断 ES : 为0时关串口中断;为1时开串口中断 ET1:为0时关T1中断;为1时开T1中断 EX1:为0时关1时开 ET0:为0时关T0中断;为1时开T0中断 EX0:为0时关1时开2、 选择定时器/计时器的工作方式:定时器TMOD 格式CPU 在每个机器周期内对T0/T1检测一次,但只有在前一次检测为1和后一次检测为0时才会使计数器加1。
因此,计数器不是由外部时钟负边沿触发,而是在两次检测到负跳变存在时才进行计数的。
由于两次检测需要24个时钟脉冲,故T0/T1线上输入的0或1的持续时间不能少于一个机器周期。
通常,T0或T1输入线上的计数脉冲频率总小于100kHz 。
方式0:定时器/计时器按13位加1计数,这13位由TH 中的高8位和TL 中的低5位组成,其中TL 中的高3位弃之不用(与MCS-48兼容)。
13位计数器按加1计数器计数,计满为0时能自动向CPU 发出溢出中断请求,但要它再次计数,CPU 必须在其中断服务程序中为它重装初值。
方式1:16位加1计数器,由TH 和TL 组成,在方式1的工作情况和方式0的相同,只是计数器值是方式0的8倍。
2方式2:计数器被拆成一个8位寄存器TH 和一个8位计数器TL ,CPU 对它们初始化时必须送相同的定时初值。
当计数器启动后,TL 按8位加1计数,当它计满回零时,一方面向CPU 发送溢出中断请求,另一方面从TH 中重新获得初值并启动计数。
方式3:T0和T1工作方式不同,TH0和TL0按两个独立的8位计数器工作,T1只能按不需要中断的方式2工作。
在方式3下的TH0和TL0是有区别的:TL0可以设定为定时器/计时器或计数器模式工作,仍由TR0控制,并采用TF0作为溢出中断标志;TH0只能按定时器/计时器模式工作,它借用TR1和TF1来控制并存放溢出中断标志。
单片机定时计数器工作方式实现方法本文介绍了单片机定时计数器的工作原理和四种工作方式的实现方法,包括初始化、定时器计数器结构的详细说明以及定时时间的计算公式。
下面是本店铺为大家精心编写的5篇《单片机定时计数器工作方式实现方法》,供大家借鉴与参考,希望对大家有所帮助。
《单片机定时计数器工作方式实现方法》篇1一、引言单片机定时计数器是单片机中的一个重要组成部分,它可以用于测量时间、控制程序流程等。
单片机定时计数器的工作方式有多种,每种工作方式都有不同的计数器结构和计时精度,因此需要根据具体应用场景选择合适的工作方式。
本文将详细介绍单片机定时计数器的工作原理和四种工作方式的实现方法。
二、定时计数器工作原理单片机定时计数器通常由一个或多个计数器和一些控制寄存器组成。
计数器用于计数外部时钟脉冲的数量,控制寄存器用于设置计数器的工作方式和初始值等。
定时计数器的工作原理如下:1. 初始化:在使用定时计数器之前,需要对其进行初始化,包括设置工作方式、计数器初始值和开启中断等。
2. 计时:定时计数器根据外部时钟脉冲的频率和计数器的位数计算时间,通常使用二进制计数法,计数器的每一位代表一个时间单位。
3. 中断:定时计数器可以根据计数器的溢出情况产生中断,中断服务程序可以根据具体应用场景进行时间处理和控制。
三、定时计数器工作方式实现方法单片机定时计数器有四种工作方式,分别为工作方式 0、工作方式 1、工作方式 2 和工作方式 3,每种工作方式都有不同的计数器结构和计时精度。
1. 工作方式 0:13 位定时器/计数器工作方式 0 是 13 位计数结构的工作方式,其计数器由 TH 的全部 8 位和 TL 的低 5 位构成,TL 的高 3 位没有使用。
以定时器0 为例,当 C/0 时,多路开关接通振荡脉冲的 12 分频输出,13 位计数器以此进行计数,这就是定时工作方式。
当 C/1 时,多路开关接通计数引脚(T0),外部计数脉冲由引脚 T0 输入,当计数脉冲发生负跳变时,计数器加 1,这就是计数工作方式。
单片机中的中断与定时器的原理与应用在单片机(Microcontroller)中,中断(Interrupt)和定时器(Timer)是重要的功能模块,广泛应用于各种嵌入式系统和电子设备中。
本文将介绍中断和定时器的基本原理,并探讨它们在单片机中的应用。
一、中断的原理与应用中断是指在程序执行过程中,当发生某个特定事件时,暂停当前任务的执行,转而执行与该事件相关的任务。
这样可以提高系统的响应能力和实时性。
单片机中的中断通常有外部中断和定时中断两种类型。
1. 外部中断外部中断是通过外部触发器(如按钮、传感器等)来触发的中断事件。
当外部触发器发生状态变化时,单片机会响应中断请求,并执行相应的中断服务程序。
外部中断通常用于处理实时性要求较高的事件,如按键检测、紧急报警等。
2. 定时中断定时中断是通过定时器来触发的中断事件。
定时器是一种特殊的计时设备,可以按照设定的时间周期产生中断信号。
当定时器倒计时完成时,单片机会响应中断请求,并执行相应的中断服务程序。
定时中断常用于处理需要精确计时和时序控制的任务,如脉冲计数、PWM波形生成等。
中断的应用具体取决于具体的工程需求,例如在电梯控制系统中,可以使用外部中断来响应紧急停车按钮;在家电控制系统中,可以利用定时中断来实现定时开关机功能。
二、定时器的原理与应用定时器是单片机中的一个重要模块,可以用于计时、延时、频率测量等多种应用。
下面将介绍定时器的工作原理和几种常见的应用场景。
1. 定时器的工作原理定时器是通过内部时钟源来进行计时的。
它通常由一个计数器和若干个控制寄存器组成。
计数器可以递增或递减,当计数值达到设定值时,会产生中断信号或触发其他相关操作。
2. 延时应用延时是定时器最常见的应用之一。
通过设定一个合适的计时器参数,实现程序的精确延时。
例如,在蜂鸣器控制中,可以使用定时器来生成特定频率和持续时间的方波信号,从而产生不同的声音效果。
3. 频率测量应用定时器还可以用于频率测量。
单片机定时器的原理及应用概述单片机定时器是单片机的一种重要功能模块,它能够实现精确的时间计量和控制,广泛应用于各种自动化设备和工业控制系统中。
本文将详细介绍单片机定时器的原理和应用。
单片机定时器的原理单片机定时器的原理主要基于计数器的工作原理。
计数器是一种能够按照一定规律自动加(或减)1的电子装置。
单片机定时器通常使用定时/计数器模块来实现。
在单片机中,定时器模块通常由一个或多个8位或16位的寄存器组成,用于保存计数值。
定时器模块还包含一组控制寄存器,用于配置定时器的工作模式、计数方式等。
单片机的定时器工作过程如下: 1. 初始化定时器:配置定时器的工作模式、计数方式等参数。
2. 启动定时器:将定时器的计数值清零,并开始计数。
3. 定时器计数:根据设定的计数方式和工作模式,定时器将自动进行计数,并根据计数规则更新计数值。
4. 定时器溢出:当定时器的计数值达到设定的最大值时,定时器将溢出并触发相应的中断或事件。
5. 定时器复位:定时器溢出后,可以选择自动清零计数值或保持当前计数值不变,然后重新开始计数。
单片机定时器通常支持多种工作模式,如定时模式、计数模式、PWM模式等。
具体的工作模式和计数方式根据不同的单片机型号而有所差异。
单片机定时器的应用单片机定时器的应用非常广泛,以下是一些常见的应用场景:实时时钟单片机定时器可以用于实现实时时钟功能。
通过定时器的计数功能,可以精确地测量经过的时间,并能够提供秒、分、时、日期等各种时间单位的计量。
实时时钟广泛应用于各种计时、计量和时间戳等场景。
脉冲产生定时器可以用来产生各种脉冲信号,例如方波、矩形波、脉冲串等。
通过定时器的计数规则和工作模式设置,可以控制脉冲的频率、占空比等参数,实现精确的波形生成。
周期性任务调度单片机定时器可以用于周期性任务的调度。
通过设置定时器的计数值和溢出中断,可以实现定时触发中断,从而执行一些周期性的任务,例如数据采集、数据上传、状态刷新等。
单片机定时器的使用方法在嵌入式系统的开发中,定时器是一种非常重要且常用的功能模块,它能够为我们提供时间计数和计时的功能,对于许多实时应用来说,定时器更是必不可少的。
本文将介绍单片机定时器的使用方法,帮助读者更好地掌握该功能。
一、概述定时器是单片机中的一个计数器,它能够按照一定的时钟源频率进行计时。
单片机中的定时器一般包括一个或多个计数寄存器以及相关的控制寄存器。
通过设置不同的参数,我们可以实现不同的定时功能。
二、定时器的基本操作流程1. 初始化:在使用定时器之前,首先需要对定时器进行初始化设置。
这包括选择时钟源、设置定时器的工作模式、设置计数器初值等。
具体的初始化步骤和寄存器配置会根据不同的单片机型号而有所不同,因此在使用前需要查阅相关的芯片手册。
2. 启动定时器:初始化完成后,我们需要将定时器启动,开始执行计时功能。
启动定时器的方式也会因芯片而异,有的需要设置特定的控制位,有的则是通过特定的命令来启动。
3. 定时中断处理:在定时器工作期间,当计数器的值达到设定的阈值时,定时器会触发中断。
这个中断可以用于执行用户自定义的操作,比如数据处理、状态更新等。
在中断服务程序中,我们需要进行相应的处理,并清除中断标志位,以确保下一次定时正常触发。
4. 停止定时器:当我们不再需要定时器时,可以通过相应的操作将其停止。
这样可以节省系统资源和功耗。
三、定时器的常见应用单片机的定时器功能非常灵活,可以应用于各种实际场景。
以下是一些常见的应用示例:1. 延时函数:通过定时器可以实现精确的延时功能,比如延时100毫秒后再执行某个操作。
这对于需要进行时间控制的任务非常有用。
2. 脉冲宽度调制(PWM):定时器可以通过设置不同的计数值和占空比,生成不同周期和占空比的脉冲信号。
这在控制电机、调光、音频发生器等场景中非常常见。
3. 计时功能:定时器可以用于实现计时功能,比如计算程序执行时间、测量信号的周期等。
这在需要精确时间测量的场景中非常有用。
单片机的定时器模式
单片机的定时器模式有以下几种:
1. 定时/计数模式(T/C mode):定时器用作定时器或者计数器,在设定时间或者计数到设定值后触发中断或者输出信号。
2. 输入捕获模式(Input Capture mode):定时器用于测量输入信号的脉冲宽度或者周期,在每次捕获到输入信号时记录定时器的值。
3. 输出比较模式(Output Compare mode):定时器用于与某个参考值进行比较,当定时器的值与参考值相等时,可以触发中断或者产生输出信号。
4. 脉冲宽度调制模式(PWM mode):定时器通过改变输出信号的占空比来生成脉冲宽度可调的方波,用于控制电机速度、LED亮度等应用。
5. 脉冲计数模式(Pulse Count mode):定时器用于计数输入信号的脉冲个数,在达到设定的脉冲数后触发中断或者产生输出信号。
这些定时器模式可以根据单片机的型号和品牌的不同而略有差异,具体的定时器模式可以参考单片机的技术手册或者开发工具的相关文档。
STC15F2K60S2单片机定时器编程一、STC15F2K60S2 单片机定时器概述STC15F2K60S2 单片机内部集成了 5 个定时器,分别是 2 个 16 位的定时器/计数器 T0 和 T1,2 个 8 位的定时器 T2 和 T3,以及 1 个独立波特率发生器定时器T4。
这些定时器都具有不同的特点和应用场景。
T0 和 T1 是传统的 16 位定时器/计数器,可以工作在定时模式和计数模式。
在定时模式下,通过设置定时器的初值和溢出周期,可以实现精确的定时功能;在计数模式下,可以对外部脉冲进行计数。
T2 和 T3 是 8 位定时器,具有自动重载功能,使用起来更加方便。
T4 是独立波特率发生器定时器,主要用于串行通信中的波特率设置。
二、定时器的工作模式1、定时模式在定时模式下,定时器对内部的系统时钟进行计数。
通过设置定时器的初值和溢出周期,可以实现不同时长的定时功能。
例如,如果系统时钟频率为 12MHz,要实现 1ms 的定时,我们可以计算出定时器的初值为 65536 1000,然后将初值写入定时器的寄存器中。
2、计数模式在计数模式下,定时器对外部引脚输入的脉冲进行计数。
当计数值达到设定的阈值时,产生溢出中断。
三、定时器的相关寄存器1、定时器控制寄存器(TCON)TCON 寄存器用于控制定时器的启动、停止、溢出标志等。
例如,TR0 和 TR1 位分别用于控制 T0 和 T1 的启动和停止,TF0 和 TF1 位则分别表示 T0 和 T1 的溢出标志。
2、定时器模式寄存器(TMOD)TMOD 寄存器用于设置定时器的工作模式和计数方式。
例如,可以通过设置 TMOD 寄存器的某些位来选择定时器是工作在定时模式还是计数模式,以及是 8 位模式还是 16 位模式。
3、定时器初值寄存器(TH0、TL0、TH1、TL1、TH2、TL2、TH3、TL3)这些寄存器用于存储定时器的初值。
在定时模式下,通过设置初值可以控制定时器的溢出周期;在计数模式下,初值则决定了计数的阈值。
stc单片机定时器应用范例
STC单片机定时器是单片机中非常重要的一个模块,它可以用于各种定时、计数和延时操作。
下面我将从多个角度为你介绍一些STC单片机定时器的应用范例。
1. 延时控制,STC单片机定时器可以用于控制延时操作,比如控制LED灯的闪烁频率。
通过设置定时器的计数值和工作模式,可以实现不同的延时效果。
2. 定时采集,在一些数据采集系统中,STC单片机定时器可以用于定时采集传感器数据,比如温度、湿度等,并将数据发送到其他设备或者进行处理。
3. 蜂鸣器控制,STC单片机定时器可以用于控制蜂鸣器的鸣叫时长和频率,实现声音信号的发声控制。
4. PWM输出,定时器可以用于产生PWM信号,可以用于控制电机的转速、LED的亮度调节等。
5. 定时中断,定时器可以用于产生定时中断,实现定时任务的
执行,比如定时检测按键状态、定时发送数据等。
6. 计时应用,STC单片机定时器可以用于计时应用,比如秒表、计时器等功能的实现。
总的来说,STC单片机定时器可以应用于各种需要时间控制和
定时操作的场景,通过合理的配置和应用,可以实现丰富的功能和
应用。
希望以上范例能够帮助你更好地理解STC单片机定时器的应用。
单片机定时器计数器使用方法单片机作为嵌入式系统开发的核心部件之一,其定时器计数器具有重要的作用。
定时器计数器可以帮助我们实现时间控制、精确计时等功能。
本文将介绍单片机定时器计数器的使用方法,包括计数模式的设置、时钟选择和定时器中断的应用。
一、计数模式设置单片机定时器计数器可以分为定时计数和事件计数两种模式。
定时计数模式是根据设定的时间间隔进行计数,而事件计数模式是在外部事件触发下进行计数。
下面是单片机定时器计数器初始化的基本步骤:1. 确定计数模式:根据实际需求确定是使用定时计数模式还是事件计数模式。
2. 设置计数器初始值:根据所需的计数时间或计数事件的频率,设置计数器的初始值。
3. 配置计数器控制寄存器:设置计数器的计数模式、时钟源以及其他需要的参数。
4. 启动计数器:使能定时器计数器工作。
二、时钟选择单片机定时器计数器的时钟源可以选择内部时钟或外部时钟。
一般来说,内部时钟具有较高的精度和稳定性,使用起来更为方便。
以下是两种常见的时钟选择方式:1. 使用内部时钟:选择单片机内部提供的时钟源作为定时器计数器的时钟,通过设置寄存器来配置时钟源的频率。
2. 使用外部时钟:当需要更高的计数精度时,可以选择外部时钟源,将外部时钟接入到单片机的引脚,并在寄存器中配置外部时钟源。
三、定时器中断的应用定时器中断是单片机定时器计数器的重要应用之一,可以帮助我们实现精确的时间控制和任务调度。
下面是使用定时器中断的基本步骤:1. 配置中断向量表:为定时器中断向量分配一个唯一的中断向量地址,并将中断处理函数与之关联。
2. 配置中断优先级:如果系统中存在多个中断,需要根据实际情况为定时器中断配置适当的优先级。
3. 设置定时器计数器的中断触发条件:根据需求设置定时器计数器中断触发的条件,可以是定时完成或者达到指定的计数值。
4. 编写中断处理函数:编写定时器中断处理函数,完成需要执行的任务。
5. 启用定时器中断:使能定时器中断,将定时器计数器中的中断触发条件与中断处理函数关联起来。
单片机定时器的使用一、单片机定时器的基本原理定时器通常由一个时钟源提供脉冲信号来计数,这个时钟源可以是外部时钟源、内部时钟源或者其他外设提供的时钟源。
定时器以一个指定的时钟周期开始计数,并在达到预设的计数值时产生一个中断信号或触发一个相关事件。
二、单片机定时器的使用方法1.定时器的预分频设置在使用单片机的定时器之前,我们需要根据具体的应用需求设置定时器的预分频值。
预分频值的设置将影响定时器的计数速度。
常用的预分频值有1、2、4、8和16等,这意味着在一个计数周期内,定时器模块将接收几个时钟脉冲。
通过设置不同的预分频值,我们可以调整定时器的计数速度,从而实现不同的时间精度。
2.定时器计数值的设定在设置定时器的计数值之前,我们需要确定定时器的计数频率和所需的定时时间。
计数频率是由定时器的时钟源和预分频值决定的,而所需的定时时间是根据具体应用而确定的。
定时器计数值的设定通常是通过写入特定的寄存器来实现的。
根据单片机型号的不同,定时器计数值的位数可能有所不同。
一般来说,定时器的计数值越大,可以计时的时间就越长。
3.中断的使能与处理在使用定时器进行定时操作时,通常会设置一个中断服务程序,在定时器达到预设的计数值时触发中断。
中断服务程序中可以添加一些需要在定时器到达指定时间时执行的代码。
为了使中断能够正常工作,我们需要合理地设置中断向量、ISR(Interrupt Service Routine)等。
同时,我们也需要在程序的其他部分进行相关的中断控制设置,如打开或关闭中断、配置中断优先级等。
三、单片机定时器的常见应用案例1.时钟显示器时钟显示器是单片机定时器的一个常见应用案例,通过使用定时器和LED数码管等外设,可以实现一个精确计时的时钟显示器。
定时器以一定的频率计数,并在计数到一定值时触发中断,中断服务程序中可以更新数码管的显示值。
2.交通信号灯交通信号灯是城市道路交通管理中常用的设备,定时器可以用于控制交通信号灯的时序。
51单片机的定时器应用解析定时器是一种多功能的外设,可以在嵌入式系统中广泛应用。
在 51 单片机中,定时器分为两种:定时/计数器和串行接口定时器(SIT)。
这篇文档将着重介绍定时/计数器的应用。
定时器基础定时器由两个 8 位定时器(Timer0 和 Timer1)和一个 16 位定时器(Timer2)组成。
定时器通过计数器实现定时功能,计数器钟频为定时器输入时钟的一半。
定时器的定时时间可以通过改变计数器初始值和时钟源分频系数来实现。
定时器应用延时定时器可以用来实现延时功能,常见的延时方式是使用定时器产生中断,在中断服务程序中完成延时操作。
PWM定时器可以用来实现脉冲宽度调制(PWM)功能,PWM 的输出占空比可以通过改变计数器初始值和重载值来实现。
计数器定时器也可以作为计数器使用。
在计数器模式下,定时器向计数器输入信号计数,并将计数值存入寄存器中。
定时器使用示例中断延时void init_timer0(unsigned int ms){TMOD &= 0xF0;TMOD |= 0x01;TH0 = ( - FOSC / 1000 * ms) >> 8;TL0 = ( - FOSC / 1000 * ms) & 0xFF;ET0 = 1;TR0 = 1;}void timer0_isr() __interrupt (1){static unsigned char cnt = 0;TH0 = ( - FOSC / 1000 * ms) >> 8;TL0 = ( - FOSC / 1000 * ms) & 0xFF;if(cnt++ >= 20){cnt = 0;// do something every 20 ms}}PWMvoid init_timer1(unsigned int freq, unsigned char duty_cycle) {TMOD &= 0x0F;TMOD |= 0x10;TH1 = ( - FOSC / freq / 2) >> 8;TL1 = ( - FOSC / freq / 2) & 0xFF;// calculate duty cycleunsigned int reload = (unsigned int)(FOSC / freq * duty_cycle / 100 / 2);// set duty cycleRCAP2H = reload >> 8;RCAP2L = reload & 0xFF;TR1 = 1;}结论定时器是 51 单片机中常用的外设之一,可以实现延时、PWM 等多种功能。
51单片机定时器设置51单片机,也被称为8051微控制器,是一种广泛应用的嵌入式系统。
它具有4个16位的定时器/计数器,可以用于实现定时、计数、脉冲生成等功能。
通过设置相应的控制位和计数初值,可以控制定时器的启动、停止和溢出等行为,从而实现精确的定时控制。
确定应用需求:首先需要明确应用的需求,包括需要定时的时间、计数的数量等。
根据需求选择合适的定时器型号和操作模式。
设置计数初值:根据需要的定时时间,计算出对应的计数初值。
计数初值需要根据定时器的位数和时钟频率进行计算。
设置控制位:控制位包括定时器控制寄存器(TCON)和中断控制寄存器(IE)。
通过设置控制位,可以控制定时器的启动、停止、溢出等行为,以及是否开启中断等功能。
编写程序代码:根据需求和应用场景,编写相应的程序代码。
程序代码需要包括初始化代码和主循环代码。
调试和测试:在完成设置和编程后,需要进行调试和测试。
可以通过观察定时器的状态和输出结果,检查定时器是否按照预期工作。
计数初值的计算要准确,否则会影响定时的精度。
控制位的设置要正确,否则会导致定时器无法正常工作。
需要考虑定时器的溢出情况,以及如何处理溢出中断。
需要考虑定时器的抗干扰能力,以及如何避免干扰对定时精度的影响。
需要根据具体应用场景进行优化,例如调整计数初值或控制位等,以达到更好的性能和精度。
51单片机的定时器是一个非常实用的功能模块,可以用于实现各种定时控制和计数操作。
在进行定时器设置时,需要注意计数初值的计算、控制位的设置、溢出处理以及抗干扰等问题。
同时需要根据具体应用场景进行优化,以达到更好的性能和精度。
在实际应用中,使用51单片机的定时器可以很方便地实现各种定时控制和计数操作,为嵌入式系统的开发提供了便利。
在嵌入式系统和微控制器领域,51单片机因其功能强大、使用广泛而备受。
其中,定时器中断功能是51单片机的重要特性之一,它为系统提供了高精度的定时和计数能力。
本文将详细介绍51单片机定时器中断的工作原理、配置和使用方法。
单片机中定时器的作用
单片机中的定时器是一种非常重要的功能模块,它可以用来实现各种不同的功能。
下面是定时器的具体作用:
1.计时:单片机中的定时器可以用来计算时间,例如测量某个事件发生的时间间隔或者进行定时操作。
通过对定时器进行编程,可以让它在一定时间后产生中断信号,从而实现某些特殊功能。
2.脉冲计数:在某些应用场合下需要对输入信号进行脉冲计数,这个时候就可以使用单片机中的定时器模块。
通过对定时器进行编程,可以让它记录输入信号发生的次数,并输出相应的计数结果。
3. PWM输出:PWM是一种常见的数字信号调制技术,它可以将一个模拟信号转化为数字信号输出。
单片机中的定时器可以用来产生PWM 波形,并通过IO口输出给外部设备控制电平。
4. 作为延迟函数使用:在某些应用场合下需要进行延迟操作,例如等待外部设备响应或者等待数据传输完成等。
这个时候就可以使用单片机中的定时器模块,在程序中编写相应代码实现延迟操作。
5. 实现周期性任务:在某些嵌入式应用场合下需要对某些任务进行周
期性操作,例如定时采集数据或者周期性发送数据等。
这个时候就可以使用单片机中的定时器模块,在程序中编写相应代码实现周期性任务。
总之,单片机中的定时器模块是一种非常重要的功能模块,它可以帮助我们实现各种不同的功能。
在进行单片机设计和编程的过程中,我们需要充分利用定时器模块来满足不同需求。
52单片机有3个定时器,T2是一个16位自动重载的,像T0和T1的方式2一样,只不过它是16位重载,如果作为计数器或定时用,中断用的是5,就是interrupt 5,T2的引脚是P1.0口。
P1.0作为I/O 口用了以后T2计数是不行了,不过定时或是作为串口时钟还是可以的。
T2CON(T2的控制寄存器),字节地址0C8H:0CFH 0CEH 0CDH 0CCH 0CBH 0CAH 0C9H0C8HTF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2CP/RT2各位的定义如下:TF2:定时/计数器2溢出标志,T2溢出时置位,并申请中断。
只能用软件清除,但T2作为波特率发生器使用的时候,(即RCLK=1或TCLK=1),T2溢出时不对TF2置位。
EXF2:当EXEN2=1时,且T2EX引脚(P1.0)出现负跳变而造成T2的捕获或重装的时候,EXF2置位并申请中断。
EXF2也是只能通过软件来清除的。
RCLK:串行接收时钟标志,只能通过软件的置位或清除;用来选择T1(RCLK=0)还是T2(RCLK=1)来作为串行接收的波特率产生器TCLK:串行发送时钟标志,只能通过软件的置位或清除;用来选择T1(TCLK=0)还是T2(TCLK=1)来作为串行发送的波特率产生器EXEN2:T2的外部允许标志,只能通过软件的置位或清除;EXEN2=0:禁止外部时钟触发T2;EXEN2=1:当T2未用作串行波特率发生器时,允许外部时钟触发T2,当T2EX引脚输入一个负跳变的时候,将引起T2的捕获或重装,并置位EXF2,申请中断。
TR2:T2的启动控制标志;TR2=0:停止T2;TR2=1:启动T2C/T2:T2的定时方式或计数方式选择位。
只能通过软件的置位或清除;C/T2=0:选择T2为定时器方式;C/T2=1:选择T2为计数器方式,下降沿触发。
CP/RT2:捕获/重装载标志,只能通过软件的置位或清除。
CP/RT2=0时,选择重装载方式,这时若T2溢出(EXEN2=0时)或者T2EX引脚(P1.0)出现负跳变(EXEN2=1时),将会引起T2重装载;CP/RT2=1时,选择捕获方式,这时若T2EX引脚(P1.0)出现负跳变(EXEN2=1时),将会引起T2捕获操作。