中考专题-正多边形与圆
- 格式:doc
- 大小:117.50 KB
- 文档页数:6
中考总复习正多边形与圆的有关的证明和计算--知识讲解【正多边形与圆的有关的证明和计算】一、正多边形的定义与性质:正多边形是指所有边相等、所有角相等的多边形。
正多边形的性质如下:1.所有边相等,所有角相等;2.任意两条边之间的夹角相等;3.对角线相等;4.中心角等于外角。
二、正多边形的内角与外角的关系:1.由正多边形的定义可知,正多边形的内角和为180°(n-2),其中n 为正多边形的边数;2.正多边形的外角和为360°,由此可得正多边形的内角和与外角和之间的关系:内角和=外角和/2三、正多边形的周长和面积的计算:1.正多边形的周长为边长×边数;2.正多边形的面积为面积公式:面积=1/2×边长×边数×正弦(360°/边数)。
四、正多边形内接圆的半径和面积:2.正多边形内接圆的面积等于正多边形面积的一半。
五、正多边形外接圆的半径和面积:1.正多边形外接圆的半径等于正多边形的边长的一半乘以正弦(180°/边数);2.正多边形外接圆的面积等于正多边形边长的平方乘以正弦(360°/边数)乘以1/2六、正多边形的对称轴:正多边形有旋转对称轴和镜像对称轴两类:1.正多边形的旋转对称轴有n条,其中n为正多边形的边数;2.正多边形的镜像对称轴有2n条,其中n为正多边形的边数。
七、圆的性质及计算:1.圆是由一个动点到一个定点的距离保持不变的动点集;2.圆的半径是动点到圆心的距离;3.圆的直径是通过圆心的一条线段,且长度等于半径的两倍;4.圆的周长等于直径的乘以π,即周长=2×半径×π;5.圆的面积等于半径的平方乘以π,即面积=半径×半径×π。
八、正多边形与圆的关系:1.正多边形的内接圆同时是这个正多边形的外接圆,即正多边形的内接圆与外接圆重合;3.正多边形的外接圆的半径等于正多边形的边长的一半乘以正弦(180°/边数);4.正多边形的外接圆的面积等于正多边形边长的平方乘以正弦(360°/边数)乘以1/2;5.正多边形的内接圆和外接圆的关系可以用于计算正多边形的周长和面积。
专题13.圆与正多边形一、单选题1.(2021·四川成都市·中考真题)如图,正六边形ABCDEF 的边长为6,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为( )A .4πB .6πC .8πD .12π2.(2021·云南中考真题)如图,等边ABC 的三个顶点都在O 上,AD 是O 的直径.若3OA =,则劣弧BD 的长是( )A .2πB .πC .32πD .2π3.(2021·广西玉林市·中考真题)学习圆的性质后,小铭与小熹就讨论起来,小铭说:“被直径平分的弦也与直径垂直”,小熹说:“用反例就能说明这是假命题” .下列判断正确的是( )A .两人说的都对B .小铭说的对,小燕说的反例不存在C .两人说的都不对D .小铭说的不对,小熹说的反例存在4.(2021·青海中考真题)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A ,B 两点,他测得“图上”圆的半径为10厘米,16AB =厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为( ).A .1.0厘米/分B .0.8厘米分C .12厘米/分D .1.4厘米/分5.(2021·山东聊城市·中考真题)如图,A ,B ,C 是半径为1的⊙O 上的三个点,若AB ,∠CAB =30°,则∠ABC 的度数为( )A .95°B .100°C .105°D .110°6.(2021·山东泰安市·中考真题)如图,四边形ABCD 是O 的内接四边形,90B ∠=︒,120BCD ∠=︒,2AB =,1CD =,则AD 的长为( )A .2-B .3C .4D .27.(2021·四川广元市·中考真题)如图,从一块直径是2的圆形铁片上剪出一个圆心角为90︒的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是( )A .4πB .4C .12D .18.(2021·四川南充市·中考真题)如图,AB 是O 的直径,弦CD AB ⊥于点E ,2CD OE =,则BCD ∠的度数为( )A .15︒B .22.5︒C .30D .45︒9.(2021·四川广元市·中考真题)如图,在边长为2的正方形ABCD 中,AE 是以BC 为直径的半圆的切线,则图中阴影部分的面积为( )A .32π+B .2π-C .1D .52π-10.(2021·湖北荆州市·中考真题)如图,在菱形ABCD 中,60D ∠=︒,2AB =,以B 为圆心、BC 长为半径画AC ,点P 为菱形内一点,连接PA ,PB ,PC .当BPC △为等腰直角三角形时,图中阴影部分的面积为( )A .23πB .23πC .2πD .2π 11.(2021·浙江衢州市·中考真题)已知扇形的半径为6,圆心角为150︒.则它的面积是( ) A .32π B .3π C .5π D .15π12.(2021·江苏连云港市·中考真题)如图,正方形ABCD 内接于O ,线段MN 在对角线BD 上运动,若O 的面积为2π,1MN =,则AMN 周长的最小值是( )A .3B .4C .5D .613.(2021·湖南怀化市·中考真题)以下说法错误的是( )A .多边形的内角大于任何一个外角B .任意多边形的外角和是360︒C .正六边形是中心对称图形D .圆内接四边形的对角互补14.(2021·四川广安市·中考真题)如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A 、B 是圆上的点,O 为圆心,120AOB ∠=︒,小强从A 走到B ,走便民路比走观赏路少走( )米.A .6π-B .6π-C .12π-D .12π-15.(2021·重庆中考真题)如图,AB 是⊙O 的直径,AC ,BC 是⊙O 的弦,若20A ∠=︒,则B 的度数为 A .70° B .90° C .40° D .60°16.(2021·四川泸州市·中考真题)如图,⊙O 的直径AB =8,AM ,BN 是它的两条切线,DE 与⊙O 相切于点E ,并与AM ,BN 分别相交于D ,C 两点,BD ,OC 相交于点F ,若CD =10,则BF 的长是ABCD17.(2021·四川遂宁市·中考真题)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D 作DF ⊥AC ,垂足为点F ,若⊙O的半径为CDF =15°, 则阴影部分的面积为( ) A.16π- B.16π- C.20π- D.20π-18.(2021·浙江中考真题)如图,已知点O 是ABC 的外心,∠40A =︒,连结BO ,CO ,则BOC ∠的度数是( ).A .60︒B .70︒C .80︒D .90︒19.(2021·浙江丽水市·中考真题)如图,AB 是O 的直径,弦CD OA ⊥于点E ,连结,OC OD .若O 的半径为,m AOD α∠=∠,则下列结论一定成立的是( )A .tan OE m α=⋅B .2sin CD m α=⋅C .cos AE m α=⋅D .2sin COD S m α=⋅20.(2021·重庆中考真题)如图,四边形ABCD 内接于☉O ,若∠A =80°,则∠C 的度数是( ) A .80° B .100° C .110° D .120°21.(2021·浙江金华市·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,以该三角形的三条边为边向形外作正方形,正方形的顶点,,,,,E F G H M N 都在同一个圆上.记该圆面积为1S ,ABC 面积为2S ,则12S S 的值是( )A .52πB .3πC .5πD .112π 22.(2021·山东泰安市·中考真题)如图,在ABC 中,6AB =,以点A 为圆心,3为半径的圆与边BC 相切于点D ,与AC ,AB 分别交于点E 和点G ,点F 是优弧GE 上一点,18CDE ∠=︒,则GFE ∠的度数是( )A .50°B .48°C .45°D .36°23.(2021·浙江绍兴市·中考真题)如图,正方形ABCD 内接于O ,点P 在AB 上,则P ∠的度数为( ) A .30 B .45︒ C .60︒ D .90︒24.(2021·四川凉山彝族自治州·中考真题)点P 是O 内一点,过点P 的最长弦的长为10cm ,最短弦的长为6cm ,则OP 的长为( )A .3cmB .4cmC .5cmD .6cm25.(2021·浙江嘉兴市·中考真题)已知平面内有O 和点A ,B ,若O 半径为2cm ,线段3cm OA =,2cm OB =,则直线AB 与O 的位置关系为( )A .相离B .相交C .相切D .相交或相切26.(2021·四川泸州市·中考真题)在锐角ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,有以下结论:2sinA sinB sinCa cb R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( ) A .163π B .643π C .16π D .64π27.(2021·四川自贡市·中考真题)如图,AB 为⊙O 的直径,弦CD AB ⊥于点F ,OE AC ⊥于点E ,若3OE =,5OB =,则CD 的长度是( )A .9.6B .C .D .1928.(2020·广西贵港市·中考真题)如图,动点M 在边长为2的正方形ABCD 内,且AM BM ⊥,P 是CD 边上的一个动点,E 是AD 边的中点,则线段PE PM +的最小值为( )A 1B 1CD 129.(2020·四川广安市·中考真题)如图,点A ,B ,C ,D 四点均在圆O 上,∠AOD=68°,AO//DC ,则∠B 的度数为( )A .40°B .60°C .56°D .68°30.(2019·广西玉林市·中考真题)如图,在Rt ABC ∆中,90︒∠=C ,4AC =,3BC =,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N 分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( )A .5B .6C .7D .8二、填空题目31.(2021·青海中考真题)点P 是非圆上一点,若点P 到O 上的点的最小距离是4cm ,最大距离是9cm ,则O 的半径是______.32.(2021·北京中考真题)如图,,PA PB 是O 的切线,,A B 是切点.若50P ∠=︒,则AOB ∠=______________.33.(2021·山东聊城市·中考真题)用一块弧长16πcm 的扇形铁片,做一个高为6cm 的圆锥形工件侧面(接缝忽略不计),那么这个扇形铁片的面积为_______cm 234.(2021·四川广元市·中考真题)如图,在44⨯的正方形网格图中,已知点A 、B 、C 、D 、O 均在格点上,其中A 、B 、D 又在O 上,点E 是线段CD 与O 的交点.则BAE ∠的正切值为________.35.(2021·四川资阳市·中考真题)如图,在矩形ABCD 中,2cm,AB AD ==,以点B 为圆心,AB长为半径画弧,交CD 于点E ,则图中阴影部分的面积为_______2cm .36.(2021·江苏宿迁市·中考真题)如图,在Rt △ABC 中,∠ABC =90°,∠A =32°,点B 、C 在O 上,边AB 、AC 分别交O 于D 、E 两点﹐点B 是CD 的中点,则∠ABE =__________.37.(2021·江苏宿迁市·中考真题)已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为_____________.38.(2021·江苏南京市·中考真题)如图,AB 是O 的弦,C 是AB 的中点,OC 交AB 于点D .若8cm,2cm AB CD ==,则O 的半径为________cm .39.(2021·湖北随州市·中考真题)如图,O 是ABC 的外接圆,连接AO 并延长交O 于点D ,若50C ∠=︒,则BAD ∠的度数为______.40.(2021·湖南中考真题)如图,方老师用一张半径为18cm 的扇形纸板,做了一个圆锥形帽子(接缝忽略不计).如果圆锥形帽子的半径是10cm ,那么这张扇形纸板的面积是______2cm (结果用含π的式子表示).41.(2021·四川成都市·中考真题)如图,在平面直角坐标系xOy 中,直线33y x =+与O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为_________.42.(2021·重庆中考真题)如图,矩形ABCD 的对角线AC ,BD 交于点O ,分别以点A ,C 为圆心,AO 长为半径画弧,分别交AB ,CD 于点E ,F .若BD =4,∠CAB =36°,则图中阴影部分的面积为___________.(结果保留π).43.(2021·浙江宁波市·中考真题)抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如示意图,,AC BD 分别与O 相切于点C ,D ,延长,AC BD 交于点P .若120P ∠=︒,O 的半径为6cm ,则图中CD 的长为________cm .(结果保留π)44.(2021·山东泰安市·中考真题)若ABC 为直角三角形,4AC BC ==,以BC 为直径画半圆如图所示,则阴影部分的面积为________.45.(2021·江苏连云港市·中考真题)如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.46.(2021·浙江温州市·中考真题)如图,O 与OAB 的边AB 相切,切点为B .将OAB 绕点B 按顺时针方向旋转得到O A B '''△,使点O '落在O 上,边A B '交线段AO 于点C .若25A '∠=︒,则OCB ∠=______度.47.(2021·甘肃武威市·中考真题)如图,从一块直径为4dm 的圆形铁皮上剪出一个圆心角为90︒的扇形,则此扇形的面积为_____2dm .48.(2021·四川凉山彝族自治州·中考真题)如图,等边三角形ABC 的边长为4,C P 为AB 边上一动点,过点P 作C 的切线PQ ,切点为Q ,则PQ 的最小值为________.49.(2021·四川凉山彝族自治州·中考真题)如图,将ABC 绕点C 顺时针旋转120︒得到''A B C .已知3,2AC BC ==,则线段AB 扫过的图形(阴影部分)的面积为__________________.50.(2021·重庆中考真题)如图,在菱形ABCD 中,对角线12AC =,16BD =,分别以点A ,B ,C ,D 为圆心,12AB 的长为半径画弧,与该菱形的边相交,则图中阴影部分的面积为__________.(结果保留π) 51.(2021·湖南常德市·中考真题)如图,四边形ABCD 是⊙O 的内接四边形,若∠BOD=80°,则∠BCD 的度数是_____.52.(2020·贵州黔西南布依族苗族自治州·中考真题)如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =2,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为_____.53.(2020·广西中考真题)如图,在Rt ABC 中,AB =AC =4,点E ,F 分别是AB ,AC 的中点,点P 是扇形AEF 的EF 上任意一点,连接BP ,CP ,则12BP +CP 的最小值是_____. 54.(2020·江苏盐城市·中考真题)如图,在O 中,点A 在BC 上,100,BOC ∠=︒则BAC ∠=______三、解答题55.(2021·甘肃武威市·中考真题)如图,内接于是的直径的延长线上一点,.过圆心作的平行线交的延长线于点.(1)求证:是的切线;(2)若,求的半径及的值;56.(2021·四川资阳市·中考真题)如图,在中,,以为直径的交于点D ,交的延长线于点E ,交于点F .(1)求证:是的切线;(2)若,求的长.57.(2021·四川凉山彝族自治州·中考真题)如图,在中,,AE 平分交BC 于点E ,点D 在AB 上,.是的外接圆,交AC 于点F .(1)求证:BC 是的切线;(2)若的半径为5,,求.ABC ,O D O AB DCB OAC ∠=∠O BC DC E CD O 4,6CD CE ==O tan OCB∠ABC AB AC =AB O BC DE AC ⊥BA AC DE O tan 36,4AC E ==AF C Rt AB 90C ∠=︒BAC ∠ DE AE ⊥O Rt ADE △O O 8AC =ADES58.(2021·四川泸州市·中考真题)如图,ABC 是⊙O 的内接三角形,过点C 作⊙O 的切线交BA 的延长线于点F ,AE 是⊙O 的直径,连接EC, (1)求证:;(2)若,于点,,,求的值59.(2021·江苏连云港市·中考真题)如图,中,,以点C 为圆心,为半径作,D 为上一点,连接、,,平分.(1)求证:是的切线;(2)延长、相交于点E ,若,求的值.60.(2021·云南中考真题)如图,是的直径,点C 是上异于A 、B 的点,连接、,点D 在的延长线上,且,点E 在的延长线上,且. (1)求证:是的切线:(2)若,求的长.ACF B ∠=∠AB BC =AD BC ⊥D 4FC =2FA =ADAE Rt ABC 90ABC ∠=︒CB C C AD CD AB AD =AC BAD ∠AD C AD BC 2EDCABCSS=tan BAC∠AB O O AC BC BA DCA ABC ∠=∠DC BE DC ⊥DC O 2,33OA BE OD ==DA61.(2021·四川南充市·中考真题)如图,A ,B 是上两点,且,连接OB 并延长到点C ,使,连接AC .(1)求证:AC 是的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交于点F ,G ,,求GF 的长.62.(2021·浙江金华市·中考真题)在扇形中,半径,点P 在OA 上,连结PB ,将沿PB 折叠得到.(1)如图1,若,且与所在的圆相切于点B .①求的度数.②求AP 的长.(2)如图2,与相交于点D ,若点D 为的中点,且,求的长.O AB OA =BC OB =O O 4OA=AOB 6OA =OBP O BP '75O ∠=︒BO 'AB APO ∠'BO 'AB AB //PD OBAB63.(2021·四川广元市·中考真题)如图,在Rt 中,,是的平分线,以为直径的交边于点E ,连接,过点D 作,交于点F .(1)求证:是的切线;(2)若,,求线段的长.64.(2021·江苏宿迁市·中考真题)如图,在Rt △AOB 中,∠AOB =90°,以点O 为圆心,OA 为半径的圆交AB 于点C ,点D 在边OB 上,且CD= BD .(1)判断直线CD 与圆O 的位置关系,并说明理由; (2)已知AB =40,求的半径.ABC 90ACB ∠=︒AD BAC ∠AD O AB CE //DF CE AB DF O 5BD =3sin 5B ∠=DF 24tan 7DOC ∠=,O65.(2021·湖北随州市·中考真题)等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.(1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为_____,其内切圆的半径长为______;(2)①如图1,是边长为的正内任意一点,点为的中心,设点到各边距离分别为,,,连接,,,由等面积法,易知,可得_____;(结果用含的式子表示) ②如图2,是边长为的正五边形内任意一点,设点到五边形各边距离分别为,,,,,参照①的探索过程,试用含的式子表示的值.(参考数据:,) (3)①如图3,已知的半径为2,点为外一点,,切于点,弦,连接,则图中阴影部分的面积为______;(结果保留)②如图4,现有六边形花坛,由于修路等原因需将花坛进行改造.若要将花坛形状改造成五边形,其中点在的延长线上,且要保证改造前后花坛的面积不变,试确定点的位置,并说明理由.P a ABC O ABC P ABC 1h 2h 3h AP BP CP ()123123ABC OAB h h h S a S ++==△△123h h h ++=a P a ABCDE P ABCDE 1h 2h 3h 4h 5h a 12345h h h h h ++++8tan 3611≈°11tan 548≈°O A O 4OA =AB O B //BC OA AC πABCDEF ABCDG G AFG66.(2021·湖北随州市·中考真题)如图,是以为直径的上一点,过点的切线交的延长线于点,过点作交的延长线于点,垂足为点.(1)求证:;(2)若的直径为9,.①求线段的长;②求线段的长.67.(2021·河北中考真题)如图,的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为(为1~12的整数),过点作的切线交延长线于点.(1)通过计算比较直径和劣弧长度哪个更长;(2)连接,则和有什么特殊位置关系?请简要说明理由;(3)求切线长的值.D AB O D DE AB E B BC DE ⊥AD CF AB BC =OAB 1sin 3A =BFBE O n A n 7A O 111A A P 711A A 711A A 711A A 1PA 7PA68.(2021·山东菏泽市·中考真题)如图,在中,是直径,弦,垂足为,为上一点,为弦延长线上一点,连接并延长交直径的延长线于点,连接交于点,若.(1)求证:是的切线;(2)若的半径为8,,求的长.69.(2020·内蒙古呼和浩特市·中考真题)某同学在学习了正多边形和圆之后,对正五边形的边及相关线段.如图,圆内接正五边形,圆心为O,与交于点H,、与分别交于点M 、N.根据圆与正五边形的对称性,只对部分图形进行研究.(其它可同理得出)(1)求证:是等腰三角形且底角等于36°,并直接说出的形状;(2)求证:,且其比值;(3)由对称性知,由(1)(2)可知也是一个黄金分割数,据此求的值.O AB CD AB⊥H E BC F DC FE AB G AE CD PFE FP=FE O O3sin5F=BG0.618≈ABCDE OA BE AC AD BEABM BAN BM BNBN BE=k=AO BE⊥MNBMsin18︒70.(2019·山西中考真题)阅读以下材料,并按要求完成相应地任务:莱昂哈德·欧拉(Leonhard Euler )是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC 中,R 和r 分别为外接圆和内切圆的半径,O 和I 分别为其外心和内心,则. 如图1,⊙O 和⊙I 分别是△ABC 的外接圆和内切圆,⊙I 与AB 相切分于点F ,设⊙O 的半径为R ,⊙I 的半径为r ,外心O (三角形三边垂直平分线的交点)与内心I (三角形三条角平分线的交点)之间的距离OI =d ,则有d 2=R 2﹣2Rr .下面是该定理的证明过程(部分):延长AI 交⊙O 于点D ,过点I 作⊙O 的直径MN ,连接DM ,AN. ∵∠D=∠N ,∠DMI=∠NAI(同弧所对的圆周角相等), ∴△MDI ∽△ANI ,∴,∴①, 如图2,在图1(隐去MD ,AN)的基础上作⊙O 的直径DE ,连接BE ,BD ,BI ,IF , ∵DE 是⊙O 的直径,∴∠DBE=90°,∵⊙I 与AB 相切于点F ,∴∠AFI=90°,∴∠DBE=∠IFA , ∵∠BAD=∠E(同弧所对圆周角相等),∴△AIF ∽△EDB , ∴,∴②, 任务:(1)观察发现:, (用含R ,d 的代数式表示);(2)请判断BD 和ID 的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC 的外接圆的半径为5cm ,内切圆的半径为2cm ,则△ABC 的外心与内心之间的距离为 cm.222OI R Rr =-IM IDIA IN=IA ID IM IN ⋅=⋅IA IF DE BD=IA BD DE IF ⋅=⋅IM R d =+IN=祝你考试成功!祝你考试成功!。
核心知识点一:正多边形的概念
各边相等,各角也相等的多边形叫做正多边形.
核心知识点二:正多边形与圆
把圆分成()3n n ≥等份:
(1)依次连结各分点所得的多边形是这个圆的内接正n 边形;
(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形;
(3)任何正多边形都有一个外接圆与一个内切圆,这两个圆是同心圆.
核心知识点三:正多边形的中心、半径、边心距及中心角
(1)正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心;
(2)外接圆的半径叫做正多边形的半径;
(3)中心到正多边形一边的距离叫做正多边形的边心距(内切圆的半径);
(4)正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角.
核心知识点四:正多边形的有关计算公式
(1)每个内角=()
1802360=180n n n
︒-︒-,每个外角360n ︒=; (2)正n 边形边长a ,半径R ,边心距r 之间的关系可以结合垂径定理计算;
(3)正n 边形周长C n a =⋅;面积1122
S n r a C r =⋅⋅⋅=⋅.
正多边形和圆
一、基础知识梳理 O 中心角 半径R 边心距r。
2023年中考数学一轮专题练习 ——正多边形和圆一、单选题(本大题共8小题)1. (上海市2022年)有一个正n 边形旋转90后与自身重合,则n 为( ) A .6B .9C .12D .15 2. (湖南省邵阳市2022年)如图,⊙O 是等边△ABC 的外接圆,若AB =3,则⊙O 的半径是( )A.32 B .C D .523. (四川省雅安市2022年)如图,已知⊙O 的周长等于6π,则该圆内接正六边形ABCDEF 的边心距OG 为( )A .3B .32CD .34. (四川省南充市2022年)如图,在正五边形ABCDE 中,以AB 为边向内作正ABF ,则下列结论错误的是( )A .AE AF =B .EAF CBF ∠=∠C .F EAF ∠=∠D .CE ∠=∠ 5. (四川省内江市2022年)如图,正六边形ABCDEF 内接于⊙O ,半径为6,则这个正六边形的边心距OM 和BC 的长分别为( )A .4,3πB .πC .43πD .32π6. (四川省成都市2022年)如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为( )AB .C .3D .7. (广西玉林市2022年)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF 的顶点A 处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是( )A .4B .C .2D .08. (河南省2022年)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB x ∥轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A 的坐标为( )A .)1-B .(1,-C .()1-D .( 二、填空题(本大题共5小题)9. (辽宁省营口市2022年)如图,在正六边形ABCDEF 中,连接,AC CF ,则ACF ∠= 度.10. (江苏省宿迁市2022年)如图,在正六边形ABCDEF 中,AB =6,点M 在边AF 上,且AM =2.若经过点M 的直线l 将正六边形面积平分,则直线l 被正六边形所截的线段长是 .11. (吉林省长春市2022年)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC 和等边三角形DEF 组合而成,它们重叠部分的图形为正六边形.若27AB =厘米,则这个正六边形的周长为 厘米.12. (吉林省2022年)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角()0360αα︒<<︒后能够与它本身重合,则角α可以为 度.(写出一个即可)13. (黑龙江省绥化市2022年)如图,正六边形ABCDEF 和正五边形AHIJK 内接于O ,且有公共顶点A ,则BOH ∠的度数为 度.三、解答题(本大题共1小题)14. (浙江省金华市2022年)如图1,正五边形ABCDE 内接于⊙O ,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF ;②以F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N ;③连接,,AM MN NA .(1)求ABC ∠的度数.(2)AMN 是正三角形吗?请说明理由.(3)从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正n 边形,求n 的值.参考答案1. 【答案】C【分析】根据选项求出每个选项对应的正多边形的中心角度数,与90一致或有倍数关系的则符合题意.【详解】如图所示,计算出每个正多边形的中心角,90是30的3倍,则可以旋转得到.A.B.C.D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C.2. 【答案】C【分析】作直径AD,连接CD,如图,利用等边三角形的性质得到∠B=60°,关键圆周角定理得到∠ACD=90°,∠D=∠B=60°,然后利用含30度的直角三角形三边的关系求解.【详解】解:作直径AD,连接CD,如图,∵△ABC 为等边三角形,∴∠B =60°,∵AD 为直径,∴∠ACD =90°,∵∠D =∠B =60°,则∠DAC =30°,∴CD =12AD , ∵AD 2=CD 2+AC 2,即AD 2=(12AD )2+32,∴AD∴OA =OB =12AD 故选:C .3. 【答案】C【分析】 利用圆的周长先求出圆的半径,正六边形的边长等于圆的半径,正六边形一条边与圆心构成等边三角形,根据边心距即为等边三角形的高用勾股定理求出OG .【详解】∵圆O 的周长为6π,设圆的半径为R ,∴26R ππ=∴R =3连接OC 和OD ,则OC=OD=3∵六边形ABCDEF 是正六边形,∴∠COD =360606︒=︒, ∴△OCD 是等边三角形,OG 垂直平分CD , ∴OC =OD =CD ,1322CG CD ==∴OG =故选 C4. 【答案】C【分析】利用正多边形各边长度相等,各角度数相等,即可逐项判断.【详解】解:∵多边形ABCDE 是正五边形,∴该多边形内角和为:5218540(0)-⨯︒=︒,AB AE =, ∴5401085C E EAB ABC ︒∠=∠=∠=∠==︒,故D 选项正确; ∵ABF 是正三角形,∴60FAB FBA F ∠=∠=∠=︒,AB AF FB ==,∴1086048EAF EAB FAB ∠=∠-∠=︒-︒=︒,1086048CBF ABC FBA ∠=∠-∠=︒-︒=︒, ∴EAF CBF ∠=∠,故B 选项正确;∵AB AE =,AB AF FB ==,∴AE AF =,故A 选项正确;∵60F ∠=︒,48EAF ∠=︒,∴F EAF ∠≠∠,故C 选项错误,故选:C .5. 【答案】D【分析】连接OC 、OB ,证出BOC ∆是等边三角形,根据勾股定理求出OM ,再由弧长公式求出弧BC 的长即可.【详解】解:连接OC 、OB ,六边形ABCDEF 为正六边形,360606BOC ︒∴∠==︒, OB OC =,BOC ∴∆为等边三角形,6BC OB ∴==,OM BC ⊥,132BM BC ∴==,OM ∴==BC 的长为6062180ππ⨯==. 故选:D .6. 【答案】C【分析】连接OB ,OC ,由⊙O 的周长等于6π,可得⊙O 的半径,又由圆的内接多边形的性质,即可求得答案.【详解】解:连接OB ,OC ,∵⊙O 的周长等于6π,∴⊙O 的半径为:3,∵∠BOC 61=⨯360°=60°, ∵OB =OC ,∴△OBC 是等边三角形,∴BC =OB =3,∴它的内接正六边形ABCDEF 的边长为3,故选:C .7. 【答案】B【分析】由题意可分别求出经过2022秒后,红黑两枚跳棋的位置,然后根据正多边形的性质及含30度直角三角形的性质可进行求解.解:∵2022÷3=674,2022÷1=2022,∴67461122,20226337÷=⋅⋅⋅⋅⋅÷=,∴经过2022秒后,红跳棋落在点A 处,黑跳棋落在点E 处,连接AE ,过点F 作FG ⊥AE 于点G ,如图所示:在正六边形ABCDEF 中,2,120AF EF AFE ==∠=︒, ∴1,302AG AE FAE FEA =∠=∠=︒, ∴112FG AF ==,∴AG =∴AE =故选B .8. 【答案】B【分析】首先确定点A 的坐标,再根据4次一个循环,推出经过第2022次旋转后,点A 的坐标即可.【详解】解:正六边形ABCDEF 边长为2,中心与原点O 重合,AB x ∥轴,∴AP =1, AO =2,∠OPA =90°,∴OP =∴A(1第1次旋转结束时,点A -1);第2次旋转结束时,点A 的坐标为(-1,第3次旋转结束时,点A 的坐标为(1);第4次旋转结束时,点A 的坐标为(1,∵将△OAP 绕点O 顺时针旋转,每次旋转90°,∴4次一个循环,∵2022÷4=505……2,∴经过第2022次旋转后,点A 的坐标为(-1,9. 【答案】30【分析】连接BE ,交CF 与点O ,连接OA ,先求出360606AOF ︒∠==︒,再根据等腰三角形等边对等角的性质,三角形外角的性质求解即可.【详解】连接BE ,交CF 与点O ,连接OA ,在正六边形ABCDEF 中,360606AOF ︒∴∠==︒, OA OC =OAC OCA ∴∠=∠2AOF OAC ACF ACF ∠=∠+∠=∠30ACF =∴∠︒,故答案为:30.10. 【答案】【分析】如图,连接AD ,CF ,交于点O ,作直线MO 交CD 于H ,过O 作OP ⊥AF 于P ,由正六边形是轴对称图形可得:,ABCODEFO S S 四边形四边形 由正六边形是中心对称图形可得:,,AOM DOH MOF CHO S S S S ,OM OH = 可得直线MH 平分正六边形的面积,O 为正六边形的中心,再利用直角三角形的性质可得答案.【详解】解:如图,连接AD ,CF ,交于点O ,作直线MO 交CD 于H ,过O 作OP ⊥AF 于P , 由正六边形是轴对称图形可得:,ABCODEFO S S 四边形四边形 由正六边形是中心对称图形可得:,,AOM DOH MOF CHO S S S S ,OM OH =∴直线MH 平分正六边形的面积,O 为正六边形的中心,由正六边形的性质可得:AOF 为等边三角形,60,AFO 而6,AB =6,3,ABAF OF OA AP FP 226333,OP2,AM 则1,MP22OM13327,MH OM247.故答案为:11. 【答案】54【分析】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,再证明△FMN、△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形即可求解.【详解】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,如图,∵六边形MNGHPO是正六边形,∴∠GNM=∠NMO=120°,∴∠FNM=∠FNM=60°,∴△FMN是等边三角形,同理可证明△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形,∴MO=BM,NG=AN,OP=PD,GH=HE,∴NG+MN+MO=AN+MN+BM=AB,GH+PH+OP=HE+PH+PD=DE,∵等边△ABC≌等边△DEF,∴AB=DE,∵AB=27cm,∴DE=27cm,∴正六边形MNGHPO的周长为:NG+MN+MO+GH+PH+OP=AB+DE=54cm,故答案为:54.12. 【答案】60或120或180或240或300(写出一个即可)【分析】如图(见解析),求出图中正六边形的中心角,再根据旋转的定义即可得.【详解】 解:这个图案对应着如图所示的一个正六边形,它的中心角3601606︒∠==︒, 0360α︒<<︒,∴角α可以为60︒或120︒或180︒或240︒或300︒,故答案为:60或120或180或240或300(写出一个即可).13. 【答案】12【分析】连接AO ,求出正六边形和正五边形的中心角即可作答.【详解】连接AO ,如图,∵多边形ABCDEF 是正六边形,∴∠AOB =360°÷6=60°,∵多边形AHIJK 是正五边形,∴∠AOH =360°÷5=72°,∴∠BOH =∠AOH -∠AOB =72°-60°=12°,故答案为:12.14. 【答案】(1)108︒(2)是正三角形,理由见解析(3)15n =【分析】(1)根据正五边形的性质以及圆的性质可得BC CD DE AE AB ====,则AOC ∠(优弧所对圆心角)372216︒︒=⨯=,然后根据圆周角定理即可得出结论;(2)根据所作图形以及圆周角定理即可得出结论;(3)运用圆周角定理并结合(1)(2)中结论得出14412024NOD ∠=︒-︒=︒,即可得出结论.(1)解:∵正五边形ABCDE .∴BC CD DE AE AB ====, ∴360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒, ∵3AEC AE =,∴AOC ∠(优弧所对圆心角)372216︒︒=⨯=, ∴1121610822AOC ABC ∠=⨯︒=∠=︒; (2)解:AMN 是正三角形,理由如下:连接,ON FN ,由作图知:FN FO =,∵ON OF =,∴ON OF FN ==,∴OFN △是正三角形,∴60OFN ∠=︒,∴60AMN OFN ∠=∠=︒,同理60ANM ∠=︒,∴60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠,∴AMN 是正三角形;(3)∵AMN 是正三角形,∴2120A N A N M O =∠=︒∠.∵2AD AE =,∴272144AOD ∠=⨯︒=︒,∵DN AD AN =-,∴14412024NOD ∠=︒-︒=︒, ∴3601524n ==.。
初中数学知识点:正多边形和圆知识点新一轮的中考复习又开始了,本站编辑为此特为大家整理了正多边形和圆知识点,希望可以帮助大家复习,预祝大家取得优异的成绩~正多边形和圆知识点1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。
2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
典型例题粉笔是校园中最常见的必备品.图1是一盒刚打开的六角形粉笔,总支数为50支.图2是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD的周长约为_____mm.(,结果精确到1mm)答案:300解析:把图形中的边长的问题转化为正六边形的边长、边心距之间的计算即可.解:作B′M′∥C′D′,C′M′⊥B′M′于点M′.粉笔的半径是6mm.则边长是6mm.∵∠M′B′C′=60°∴B′M′=B′C′?cos60°=6×=3.边心距C′M′=6sin60°=3mm.则图(2)中,AB=CD=11×3=33mm.AD=BC=5×6+5×12+3=93mm.则周长是:2×33+2×93=66+186≈300mm.故答案是:300mm.同步练习题1判断题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )2填空题:①一个外角等于它的一个内角的正多边形是正____边形.[②正八边形的中心角的度数为 ____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm ,面积是____cm.④面积等于 cm2的正六边形的周长是____.⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.3选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:B.1:C.1:2D. :1④正六边形的两条平行边间距离是1,则边长是( )A . B. C. D.⑤周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是:( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S3⑥正三角形的边心距、半径和高的比是( )A.1:2:3B.1: :C. 1: :3D.1:2:四、计算1.已知正方形面积为8cm2,求此正方形边心距 .3.已知圆内接正三角形边心距为 2cm,求它的边长.距长.长.8.已知圆外切正方形边长为2cm ,求该圆外切正三角形半径.10.已知圆内接正方形边长为m,求该圆外切正三角形边长.长.12.已知正方形边长为1cm,求它的外接圆的外切正六边形外接圆的半径.13.已知一个正三角形与一个正六边形面积相等,求两者边长之比.15.已知圆内接正六边形与正方形面积之差为11cm2,求该圆内接正三角形的面积.16.已知圆O内接正n边形边长为an,⊙O半径为R,试用an,R表示此圆外切正n边形边长bn.。
中考数学复习指导《正多边形与圆》知识点归纳一、正多边形的定义正多边形是指所有边相等,所有角相等的多边形。
我们以正n边形来进行讨论,其中n表示边的个数。
二、正多边形的性质1.角的个数:正n边形有n个内角和n个外角。
2.外角和:正n边形的外角和为360°。
3.内角和:正n边形的内角和为(2n-4)×90°。
4.中心角和:正n边形的中心角和为360°。
5. 半径和边长之间的关系:正n边形的边长为a,半径为R,则有R=a/(2×sin(π/n))。
三、正多边形的对称性正n边形有n条对称轴,每条对称轴都把正多边形分成两个对称的部分。
四、圆的性质1.圆心角:圆心角是圆的半径所对应的圆弧所夹的角。
圆心角的大小等于其对应的圆弧的度数。
2.弧长:圆心角对应的圆弧的长度称为弧长。
如果圆的半径为R,圆心角的大小为θ,那么圆弧的长度S=R×θ。
3.弦长:弦是圆上的两点之间的线段,弦长可以通过两角的正弦来计算。
4.弦割定理:圆上的一弦分割出的弧长等于该圆的半径与该弦分割出的小弧的两圆心角的和。
即S=S1+S2=R×θ1+R×θ25.弧度制:弧度制是一种角度的度量方式,将角度定义为弧长与半径的比值:角度=弧长/半径。
单位为弧度。
6.周长和面积:圆的周长等于2πR,面积等于πR²。
五、圆与正多边形的关系1.正多边形逼近圆:正多边形的边数越多,逼近的程度越高,其内接圆越接近于外接圆。
2.正多边形的周长与圆的周长:正n边形的周长与内接圆的周长之比约为n/2π。
3. 正多边形的面积与圆的面积:正n边形的面积与内接圆的面积之比约为(1/2•n•sin(2π/n))/π)。
以上就是《正多边形与圆》的一些重要知识点的归纳。
在复习时,可以通过理论学习、练习习题以及解决实际问题的应用题来巩固和提升自己的理解能力。
加油!。
中考数学人教版专题复习:正多边形和圆一、教学内容:正多边形和圆1. 正多边形的有关概念.2. 正多边形和圆的关系.3. 正多边形的有关计算.二、知识要点:1. 正多边形的定义各边相等、各角也相等的多边形叫做正多边形. 如正三角形(即等边三角形)、正四边形(即正方形)、正五边形、正六边形、正n 边形等.2. 正多边形与圆的关系(1)从圆的角度看:等分圆周可获得正多边形,把圆分成n (n ≥3)等份. ①依次连结各分点所得的多边形是这个圆的内接正n 边形.②经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形.(2)从正多边形的角度看:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3. 正多边形的有关概念(1)正多边形的中心:正多边形的外接圆(或内切圆)的圆心. (2)正多边形的半径:正多边形外接圆的半径.(3)正多边形的边心距:中心到正多边形的一边的距离(即正多边形的内切圆的半径).(4)正多边形的中心角:正多边形每一边所对的圆心角. 正多边形的每一个中心角的度数是360°n.O R B 1A 1B 2A 2B 3A 3C r4. 正n 边形的对称性当n 为奇数时,正n 边形只是轴对称图形;当n 为偶数时,正n 边形既是轴对称图形,也是中心对称图形. 5. 一些特殊正多边形的计算公式边数n 内角A n 中心角αn 半径R 边长a n 边心距r n 周长P n 面积S n3 60° 120° R 3R 12R 33R343R 2 4 90° 90° R 2R 22R 42R 2R 2 6120°60°RR32R 6R323R 2三、重点难点:重点是正多边形的概念和计算,难点是正确理解正多边形和圆的关系.【典型例题】例1. 如图所示,既是轴对称图形,又是中心对称图形的有__________.线段正三角形正方形正五边形正六边形(1) (2) (3) (4) (5)解:(1)(3)(5)评析:因正方形、正六边形的边数为偶数,所以线段、正方形、正六边形既是轴对称图形,又是中心对称图形.例2. (1)如果一个正多边形的中心角为24°,那么它的边数是__________. (2)正多边形的一个外角等于45°,那么这个正多边形的内角和等于__________,中心角是__________.分析:利用正多边形的内角和及中心角的计算公式求解. (1)依题意得360°n=24°,∴n =15. (2)n ×45°=360°,∴n =8. 由内角和公式得(8-2)·180°=1080°,∴中心角为360°8=45°.解:(1)15,(2)1080°,45°.例3. 如图所示,小明同学在手工制作中,把一个边长为12cm 的等边三角形纸片贴在一个圆形纸片上. 若三角形的三个顶点恰好都在这个圆上,求该圆的半径.A BCOD分析:由题意知这个三角形是圆的内接正三角形.解:如图所示,连结OB ,过O 作OD ⊥BC 于D ,则正△ABC 的中心角=360°3=120°,∠BOD =12×120°=60°,∠OBD =90°-∠BOD =30°,∴OD =12BO.又BD =12BC =12×12=6(cm ),∴OB 2-OD 2=62,即OB 2-(12OB )2=62,∴OB =43cm .评析:把实际问题转化为正三角形的外接圆的问题是解题的关键.例4. 已知圆内接正方形的面积为8,求同圆内接正六边形的面积. 分析:解决问题的关键是“同圆”,通过圆的半径可以把正方形的条件转化为正六边形的条件,从而解决问题.解:由正方形的面积为8,可知正方形的边长为22,设该圆半径为R ,正六边形的边长和边心距分别为a 6和r 6. 则2R =4,a 6=R ,r 6=32·a 6.∴S 6=6×12a 6·r 6=6×12×2×32×2=6 3.例5. 用折纸的方法,可直接剪出一个正五边形(如图所示)方法是:拿一张长方形纸对折,折痕为AB ,以AB 的中点O 为顶点将平角五等分,并沿五等份的线折叠,再沿CD 剪开,使展开后的图形为正五边形,则∠OCD 等于( ) A. 108° B. 90° C. 72° D. 60°AB ABOOCD分析:本题考查学生的动手能力和灵活运用所学知识的能力,这里的O 点是所剪正五边形的中心,由题可知∠COD =36°,所以剪得的三角形正好是五边形一边和两条半径所构成的三角形的一半,所以∠OCD =90°. 解:B例6. 如图(1)、(2)、(3)、…、(n ),M 、N 分别是⊙O 的内接正三角形ABC 、正方形ABCD 、正五边形ABCDE 、…、正n 边形ABCDE …的边AB 、BC 上的点,且BM =CN ,连接OM 、ON.(1)求图(1)中∠MON 的度数; (2)图(2)中∠MON 的度数是__________,图(3)中∠MON 的度数是__________; (3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案). 分析:(1)连接OB 、OC ,注意△OBM ≌△OCN ,可得∠MON =∠BOC =120°. (2)同理,由△OBM ≌△OCN ,可得∠MON =∠BOC =90°. (3)由(1)(2)知,∠MON =∠BOC ,即∠MON =∠BOC =90°.A BCO M N A B C DOM N BC D E O MN ABC OM N …(1)(2)(3)(n )A解:(1)方法一:连接OB 、OC ,∵正△ABC 内接于⊙O , ∴∠OBM =∠OCN =30°,∠BOC =120°, 又∵BM =CN ,OB =OC ,∴△OBM ≌△OCN , ∴∠BOM =∠CON ,∴∠MON =∠BOC =120°. 方法二:连接OA 、OB ,∵正△ABC 内接于⊙O. AB =BC ,∠OAM =∠OBN =30°,∠AOB =120°. 又∵BM =CN ,∴AM =BN ,又∵OA =OB ,∴△AOM ≌△BON ,∴∠AOM =∠BON ,∴∠MON =∠AOB =120°.(2)图(2)中,∠MON =360°4=90°,图(3)中,∠MON =360°5=72°.(3)图(n )中,∠MON =360°n.评析:(1)△OBM 与△OCN 是旋转全等三角形. 图(1)中△OCN 绕点O 顺时针旋转120°,与△OBM 重合;图(2)旋转90°,图(3)旋转72° (2)注意由特殊到一般的思想,归纳出∠MON =360°n.【方法总结】1. 正n 边形的中心角为360°n,与正n 边形的一个外角相等,与正n 边形的一个内角互补. 求中心角常用以上方法.2. 正多边形的外接圆半径R 与边长a 、边心距r 之间的关系式为R 2=r 2+(12a )2,这是把正n 边形分成了2n 个全等的直角三角形,把正n 边形的有关计算转化为直角三角形中的问题.【预习导学案】 (弧长和扇形面积)一、预习前知1. 圆的周长公式是__________. 其中π是圆的周长与它的直径的比值,叫做__________,它是一个常数,π=3.1415926…,根据问题精确度的要求来取π的近似值.2. 圆的面积公式是__________.3. 如图所示,阴影部分由圆心角的两条半径和圆心角所对的弧围成的图形叫做__________,这是__________的一部分.4. 圆柱可以看作是__________而得到的图形,旋转轴叫做__________,圆柱侧面上平行于轴的线段叫做__________,两个底面之间的距离是__________,圆柱的侧面展开图是__________.5. 圆柱的侧面积S 侧=__________,全面积S 表=__________.二、预习导学1. 半径为R 的圆中,n °的圆心角所对的弧长l =__________.2. 半径为R ,圆心角为n °的扇形面积的计算公式是__________,半径为R ,弧长为l 的扇形面积计算公式是__________.3. 圆锥可以看作是__________而得到的图形,连结圆锥的顶点和底面圆上任意一点的线段叫做__________,连结圆锥的顶点和底面圆心的线段叫做__________,圆锥的侧面展开图是__________.4. 圆锥的侧面积S 侧=__________,全面积S 表=__________. 反思:(1)如何求不规则图形的面积.(2)圆锥的侧面展开后所得扇形的半径、弧长与圆锥的哪些量对应?【模拟试题】(答题时间:50分钟) 一、选择题1. 若一个正多边形的一个外角是40°,则这个正多边形的边数是( ) A. 10 B. 9 C. 8 D. 62. 下列命题中正确的是( ) A. 正多边形都是中心对称图形B. 正多边形一个内角的大小与边数成正比C. 正多边形一个外角的大小随边数的增加而减小D. 边数大于3的正多边形对角线都相等3. 一个正多边形的中心角是36°,则其一定是( ) A. 正五边形 B. 正八边形 C. 正九边形 D. 正十边形4. 正多边形的一边所对的中心角与该正多边形一个内角的关系是( ) A. 两角互余 B. 两角互补 C. 两角互余或互补 D. 不能确定5. 圆内接正三角形的边心距与半径的比是( ) A. 2∶1 B. 1∶2 C. 3∶4 D. 3∶26. 下列命题中:①三边都相等的三角形是正三角形;②四边都相等的四边形是正四边形;③四角都相等的四边形是正四边形;④各边都相等的圆的内接多边形是正多边形. 其中正确的有( )A. 1个B. 2个C. 3个D. 4个*7. 已知四边形ABCD 内接于⊙O ,给出下列三个条件:①︵AB =︵BC =︵CD =︵DA ;②AB =BC =CD =DA ;③∠A =∠B =∠C =∠D. 则在这些条件中,能够判定四边形ABCD 是正四边形的条件共有( )A. 0个B. 1个C. 2个D. 3个**8. A 点是半圆上一个三等分点,B 点是︵AN 的中点,P 是直径MN 上一动点,⊙O 的半径为1,则AP +BP 的最小值为( )OABMNPA. 1B.22C. 2D. 3-1二、填空题1. 用一张圆形的纸片剪一个边长为4cm 的正六边形,则这个圆形纸片的半径最小为__________cm .2. 如果一个正多边形的内角和是900°,则这个多边形是正__________边形.3. 正十边形至少绕中心旋转__________度,它与原正十边形重合.4. 若正三角形、正方形、正六边形的周长都相等,它们的面积分别为S 3、S 4、S 6,则S 3、S 4、S 6由大到小的排列顺序是__________. ]5. 正六边形DEFGHI 的顶点都在边长为6cm 的正三角形ABC 的边上,则这个正六边形的边长是__________cm .*6. 如图是某广场地面的一部分,地面的中央是一块正六边形地砖,周围用正三角形和正方形的大理石密铺,从里向外共铺了12层(不包括正六边形地砖),每一层的外边界都围成一个多边形. 若正中央正六边形地砖的边长为0.5米,则第12层的外边界所围成的多边形的周长是__________.三、解答题1. 解答下列各题:(1)分别求出正十边形、正十二边形的中心角.(2)已知一个正多边形的一个中心角为18°,求它的内角的度数. (3)正六边形的两条平行边间的距离为12cm ,求它的外接圆的半径. 2. 如图所示,求中心为原点O ,顶点A 、D 在x 轴上,半径为4cm 的正六边形ABCDEF 的各个顶点坐标.xy OA B C D E F3. 用一块半径R =60cm 的圆形木料,做“八仙桌”(正方形)桌面或“八角桌”(正八边形)桌面,哪个面积大?大多少?(结果保留三个有效数字)**4. 请阅读,完成证明和填空. 九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:A A A BBB CCCD DO OOM M M NN N E图1图2图3…(1)如图1,正三角形ABC 中,在AB 、AC 边上分别取点M 、N ,使BM =AN ,连接BN 、CM ,发现BN =CM ,且∠NOC =60°. 请证明:∠NOC =60°.(2)如图2,正方形ABCD 中,在AB 、BC 边上分别取点M 、N ,使AM =BN ,连接AN 、DM ,那么AN =__________,且∠DON =__________度.(3)如图3,正五边形ABCDE 中,在AB 、BC 边上分别取点M 、N ,使AM =BN ,连接AN 、EM ,那么AN =__________,且∠EON =__________度.(4)在正n 边形中,对相邻的三边实施同样的操作过程,也会有类似的结论. 请大胆猜测,用一句话概括你的发现:______________________________.【试题答案】 一、选择题1. B2. C3. D4. B5. B6. B7. C8. C (提示:如图所示,作点B 关于直线MN 的对称点B ’,连结OB ’,PB ’,BB ’.OABMN PB'二、填空题1. 42. 七3. 364. S 6>S 4>S 35. 26. 39米三、解答题1. (1)正十边形的中心角为360°10=36°,正十二边形的中心角是360°12=30°. (2)中心角为18°的正多边形的边数为36018=20,正二十边形的内角为(20-2)·180°20=162°. (3)由题意得r 6=6(cm ),由于正六边形的边长与半径相等,∴R 2=(12R )2+r 62,∴34R 2=36,R =43(cm ).2. A (-4,0)、B (-2,-23)、C (2,-23)、D (4,0)、E (2,23)、F (-2,23)3. “八仙桌”的面积为7200平方厘米,“八角桌”的面积为72002平方厘米,所以“八角桌”比“八仙桌”的面积大2980平方厘米.4. (1)证明:∵△ABC 是正三角形,∴∠A =∠ABC =60°,AB =BC ,在△ABN和△BCM 中,⎩⎪⎨⎪⎧AB =BC∠A =∠ABCAN =BM,∴△ABN ≌△BCM . ∴∠ABN =∠BCM. 又∵∠ABN +∠OBC =60°,∴∠BCM +∠OBC =60°,∴∠NOC =60°. (2)在正方形中,AN=DM ,∠DON =90°. (3)在正五边形中,AN =EM ,∠EON =108°. (4)以上所求的角恰好等于正n 边形的内角(n -2)·180°n.。
中考正多边形和圆知识点中考数学中的多边形和圆的知识点主要包括多边形的性质、圆的性质以及相关的计算。
一、多边形的性质:1.多边形是由若干条线段组成的封闭图形,它的每个线段都是相邻两个顶点之间的连接线段,多边形的每个顶点都是两个线段的公共顶点。
2.多边形的顶点个数等于线段的个数,多边形的边数等于线段的长度。
3.多边形中,相邻两条边之间的夹角称为内角,多边形中所有内角的和等于180°×(n-2),其中n为多边形的边数。
4.多边形中的对角线是多边形内部两个非连续顶点之间的线段,多边形中的对角线的条数D=(n×(n-3))/2,其中n为多边形的边数。
5.正多边形是所有边和角都相等的多边形,正多边形中的所有内角都相等,且每个内角是(2×180°)/(n),其中n为多边形的边数。
二、圆的性质:1.圆是由所有与圆心的距离相等的点组成的图形。
2.圆心是圆上所有点的中心,圆上的每条线段都通过圆心。
3.圆的半径是圆心到圆上任意一点的距离,圆的直径是经过圆心的两个点之间的距离,直径是半径的2倍。
4.圆的周长是圆的边界的长度,周长等于2π乘以半径,或π乘以直径。
5.圆的面积是圆内部的平面区域,面积等于π乘以半径的平方。
6.弧是圆上的一段弧线,它是圆上两个点之间的连线所对应的圆心角所夹的弧,它的长度等于圆的周长乘以圆心角所占的比例。
7.扇形是圆心和圆上的两个点所围成的图形,扇形的面积是圆的面积乘以圆心角所占的比例。
8.弦是圆上的两个点之间的线段,它的长度可以通过圆心角的正弦、余弦等函数关系进行计算。
三、相关计算:1.根据多边形的边数和边长计算多边形的周长。
2.根据多边形的边数和一个内角的度数计算多边形的内角和。
3.根据圆的半径或直径计算圆的周长和面积。
4.根据圆周角的度数计算弧长和扇形的面积。
5.根据圆心角的度数计算弧长和扇形的面积。
以上就是中考数学中多边形和圆的相关知识点,掌握了这些知识点,同学们就能够正确理解多边形和圆的性质,能够运用相关公式进行计算和解题。
中考复习之正多边形和圆知识考点:1、掌握正多边形的边长、半径、中心角、边心距、周长、面积等的计算;2、掌握圆周长、弧长的计算公式,能灵活运用它们来计算组合图形的周长;3、掌握圆、扇形、弓形的面积计算方法,会通过割补、等积变换求组合图形的面积;4、掌握圆柱、圆锥的侧面展开图的有关计算。
精典例题:【例1】如图,两相交圆的公共弦AB 为32,在⊙O 1中为内接正三角形的一边,在⊙O 2中为内接正六边形的一边,求这两圆的面积之比。
分析:欲求两圆的面积之比,根据圆的面积计算公式,只须求出两圆的半径3R 与6R 的平方比即可。
解:设正三角形外接圆⊙O 1的半径为3R ,正六边形外接圆⊙O 2的半径为6R ,由题意得:AB R 333=,AB R =6,∴3R ∶6R =3∶3;∴⊙O 1的面积∶⊙O 2的面积=1∶3。
【例2】已知扇形的圆心角为1500,弧长为π20,求扇形的面积。
分析:此题欲求扇形的面积,想到利用扇形的面积公式,lR R n S 213602=π=扇形,由条件n =1500,π20=l 看到,不管是用前者还是用后者都必须求出扇形的半径,怎么求?由条件想到利用弧长公式不难求出扇形半径。
解:设扇形的半径为R ,则180Rn l π=,n =1500,π20=l ∴18015020Rππ=,24=R ∴ππ24024202121=⨯⨯=lR S =扇形。
【例3】如图,已知PA 、PB 切⊙O 于A 、B 两点,PO =4cm ,∠APB =600,求阴影部分的周长。
分析:此题欲求阴影部分的周长,须求PA 、PB 和⋂AB 的长,连结OA 、OB ,根据切线长定理得PA =PB ,∠PAO =∠PBO =Rt ∠,∠APO =∠BPO =300,在Rt △PAO 中可求2O 1O ••例1图B A出PA 的长,根据四边形内角和定理可得∠AOB =1200,因此可求出⋂AB 的长,从而能求出阴影部分的周长。
正多边形与圆
【重点、难点、考点】
重点:正多边形及正多边形的中心、半径、边心距、中心角的概念与计算;圆周长弧长、扇形及弓形的面积公式及有关的计算;正多边形与圆的关系及正多边形的性质.
难点:将较复杂的图形分割成扇形、弓形、三角形等基本图形进行计算是难点.
考点:将不能直接用公式计算的图形,转化成能用公式计算的图形,是近几年中考所考查的知识点,这部分知识的考查约占总考量的2%左右.
【典例精讲】
例1 :已知一个正三角形与一个正六边形的周长相等,求它们的面积的比值.
解:设正三角形边长为a,则其周长为C1=3a,面积S1=
3
4
a2,又设正六边形边长为b,
则周长为C2=6b.面积S2=33
2
b2,由C1=C2,
知,a=2b,∴S1∶S2=
3
4
a2∶
33
2
b2=3b2∶
33
2
b2=
2
3
,故它们的面积的比值为2∶3。
【解题技巧点拨】
本题必须抓住“周长相等”这一重要信息,找出两种图形的内在联系,然后利用三角形的面积公式计算。
例2 :已知:如图在Rt△ABC中,∠ACB=90°,AC=3,BC=4,分别以各边为直径在AB同侧作半圆,求阴影部分的面积.
解:在Rt△ABC中,∵AC=3,BC=4,∠ACB=90°,∴AB=5。
则图中阴影部分的面积为S阴
=1
2
π×(
3
2
)2+
1
2
π×(
4
2
)2+
1
2
×3×4-
1
2
π×(
5
2
)2=
9
8
π
+2π+6-
25
8
π
=6
故图中阴影部分的面积为S阴=6个(平方单位).
【解题技巧点拨】
本题必须经过认真细致的观察,发现以AC、BC、AB为直径的三个半圆的面积,以及
Rt△ABC的面积之间的内在联系,然后利用圆的面积公式,三角形的面积公式进行计算.【综合能力训练】
一、填空题
1.扇形的圆心角为90°,半径为2cm,扇形的面积为cm2.
2.如图,⊙O的半径为1,圆周角∠ABC=3O°,则图中阴影部分的面积
是.(结果用π表示)
3.我国国旗上五角星的每一个锐角是。
4. 一个正n边形的中心角是它的一个内角的1
5
,则n=。
5. 在⊙O中,弦AB是内接正三角形的一边,弦AC是内接正六边形的一边,则∠BAC=。
6.半径为5,孤长等于圆周长1
5
的扇形面积。
7.母线长为3cm,底面半径为1cm的圆柱侧面展开图的面积为cm2。
8.用一个半径为30cm,圆心角为120°的扇形纸片做成一个圆锥模型的侧面(不计接缝),那么这个圆锥底面的半径是cm.
二、选择题
9.已知正三角形的边长为a,其内切圆的半径为r,外接圆的半径为R,则r∶a∶R等于()A.1∶23∶2 B.1∶3∶2 C.1∶2∶3 D.1∶3∶23
10.如果正多边形的一个内角是144°,则这个多边形是()
A.正十边形B.正九边形C.正八边形D.正七边形
11.有一边长为4的正n边形,它的一个内角为120°,则其外接圆的半径为()A.43B.4 C.23 D.2
12.下列命题中的真命题是()
A .正三角形的内切圆半径和外接圆半径之比为2∶1
B .正六边形的边长等于其外接圆的半径
C .圆外切正方形的边长等于其边心距的2倍
D .各边相等的圆外切多边形是正方形 13.某校计划在校园内修建一座周长为12米的花坛,同学们设计出正三角形、正方形和圆共三种图案,其中使花坛面积最大的图案是( )
A .正三角形
B .正方形
C .圆
D .不能确定
14. 1994年版人民币一角硬币正面图案中有一个正九边形,如果这个正九边形的半径是R ,那么它的边长是( )
A .Rsin20°
B .Rsin40°
C .2Rsin20°
D .2Rsin40°
15.将一个边长为a 的正方形硬纸板剪去四角,使它成为正八边形,则正八边形的面积为( )
A .()2222a -
B .279a
C .232a
D .()2
322a - 16.如图两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD =13,PD =4,则两圆组成圆环的面积是( )
A .16π
B .36π
C .52π
D .81π
三、解答下列各题:
17.已知:如图P 是⊙O 外一点,PA 切⊙O 于A ,AB 是⊙O 的直径,PB 交⊙O 于C ,PA =2cm ,PC =1cm ,求图中阴影部分的面积S.
18.如图,把三个半径均为15cm的圆筒捆在一起,要用多长的绳子才能绕它们一圈?
19.如图,已知B是AC上一点,分别以AB、BC、AC为直径在AC同侧作半圆,过B作BD⊥AC,与半圆交于D,如果BD=6,求图中阴影部分的面积.
20.如图,⊙O的内接正五边形AB CDE的对角线AD与BE相交于点M,(1)请你仔细观察图形,并直接写出图中的所有等腰三角形;(2)求证:BM2=BE· ME;(3)设BE、ME的长是关于x的一元二次方程x2-25x+k=0的两个根,试求k的值,并求出正五边形ABCDE的边长.
【创新思维训练】
21.已知,如图⊙O 和⊙O′相交于A 、B ,弦AC 、AD 分别与⊙O′,⊙O 相切于点A ,∠CAB =45°,∠BAD =30°,⊙O′的半径为 6cm.
求:(1)公共弦AB 的长及BC AC 2-AD BD
的值;(2)求图中阴影部分的面积。
22.如图,表示广场中心的圆形花坛的平面图,准备在圆形花坛内种植六种不同颜色的花,为了美观,要使同色花卉集中在一起,并且各花卉的种植面积相等,请你帮助设计一种种植方案作在圆上(保留痕迹,不写作法).
23.某单位的办公室由四种正多边形的小木板铺成,设这四种正多边形的边数分别为 x 、y 、z 、w 。
试求:1111x y z w
+++的值.
参考答案
【综合能力训练】
一、1. π 2. 6π-43
3.36°
4.12
5.30°或90°
6.5π
7.6π
8.10cm 二、
9.A 10.A 11.B 12.B 13.C 14.C 15.A 16.B
三、17.( 435-2π
)cm 2 18.(90+3π)cm 19.9π 20.(1)(略) (2)(略) (3)k=4,边长为2
21.(1)62cm, 2 (2)(27+273)cm 2 22.(略) 23.1。