6. 偏差分析(deviation)
在偏差中包括很多有用的知识,数据库中的数据 存在很多异常情况,发现数据库中数据存在的异常情 况是非常重要的。偏差检验的基本方法就是寻找观察 结果与参照之间的差别。
六、挖掘方法
1. 关联分析法 2. 决策树 3. 人工神经网络 4. 遗传算法 5. 聚类分析 6. 序列模式分析
1. 关联分析(association analysis)
关联规则挖掘是由rakesh apwal等人首先提出。 两个或两个以上变量的取值之间存在某种规律性, 就称为关联。数据关联是数据库中存在的一类重 要的、可被发现的知识。关联分为简单关联、时 序关联和因果关联。关联分析的目的是找出数据 库中隐藏的关联网。一般用支持度和可信度两个 阀值来度量关联规则的相关性,还不断引入兴趣 度、相关性等参数,使得所挖掘的规则更符合需 求。
数据的转换:将数据转换成一个分析模型。这个 分析模型是针对挖掘算法建立的。建立一个真正 适合挖掘算法的分析模型是数据挖掘成功的关键。
数据挖掘:对所得到的经过转换的数据进行挖掘。 结果分析:解释并评估结果。其使用的分析方法
一般应作数据挖掘操作而定。 知识的同化:将分析所得到的知识集成到业务信
息系统的组织结构中去。
5. 聚集分析(Cluster analysis ,CA)
聚集是把整个数据库分成不同的群组。它的 目的是要群与群之间差别很明显, 而同一个群之 间的数据尽量相似。此外聚类分析可以作为其他 算法( 如特征和分类等) 的预处理步骤, 之后这些 算法再在生成的簇上进行处理。与分类不同, 在 开始聚集之前不知道要把数据分成几组, 也不知 道怎么分( 依照哪几个变量) 。因此在聚集之后要 有一个对业务很熟悉的人来解释这样分群的意义 。很多情况下一次聚集得到的分群对某个业务来 说可能并不好, 这时就需要删除或增加变量以影 响分群的方式, 经过几次反复之后才能最终得到 一个理想的结果。聚类方法主要有两类: 统计方 法和神经网络方法。