高考专题:解析几何常规题型及方法
- 格式:doc
- 大小:691.50 KB
- 文档页数:12
一、解析几何题型分析:
1. 直线问题:主要考察直线的性质及其特征,如平行、垂直、中心弦定理等。
2. 圆形问题:主要考察圆形的性质及其特征,如圆心角定理、外切内接定理等。
3. 正多面体问题:主要考察正多面体的性质及其特征,如三角形内心定理、四面体最大最小化原理等。
4. 三角形问题:主要考察三角形的性质及其特征,如勾股定理、海伦-泰勒斯定理等。
5. 几何评价法问题: 主要是透过几何图型来评价各部分之间的大小或者数量上的差异,例如由于不同图彩之间存在一些明显差异,所以能够根据这些差异来作出正确判断或者作出正确估测。
二、解法收拾:
1. 第一步应该是将所有信息数字化,即将所有信息由文字表述方式数字化;
2. 第二步应该是根据所数字化后的信息来选用适合的几何方法;
3. 第三步应该是根据前两部中所使用方法来进行相应的代数或者几何运算;
4. 最后一步应该是核对并汇总前三部中所得到的信息,然后作出最合适书写样子上呈上。
相信很多同学都知道,解析几何其实并不难,解题思路也相对简单,但是它却折磨着大多数的考生们!
为什么?因为它的计算量实在是太大了,想找个简单快捷的方法去做都是很不容易的一件事。
在高考数学中,解析几何属于必考题,而且其所占的分值和函数也相差不大,都是在3 0分左右,但是它并没有像函数压轴题一样,让人看了就想放弃。
但是只要找对方法,你会发现其实解析几何也没有想象中的那么折磨人,而且出乎意料的简单。
今天,学长就为同学们整理了高考数学中解析几何的热点常考题和解题方法的汇总,希望同学们好好把握,在高考中取得一个更好的成绩!
需要电子打印版的同学可以私信发送,解析几何,就可以打印出来了!用起来超方便!!!。
解析几何问题的题型与方法一、知识整合高考中解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题),共计30分左右,考查的知识点约为20个左右。
其命题一般紧扣课本,突出重点,全面考查。
选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。
解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量的基本方法...............,这一点值得强化。
1. 能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.4.掌握圆的标准方程:222)()(r b y a x =-+-(r >0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程cos sin x r y r θθ=⎧⎨=⎩(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法. 5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法.二、近几年高考试题知识点分析2004年高考,各地试题中解析几何内容在全卷的平均分值为27.1分,占18.1%;2001年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重视.高考试题中对解析几何内容的考查几乎囊括了该部分的所有内容,对直线、线性规划、圆、椭圆、双曲线、抛物线等内容都有涉及.1.选择、填空题1.1 大多数选择、填空题以对基础知识、基本技能的考查为主,难度以容易题和中档题为主(1)对直线、圆的基本概念及性质的考查例1 (04江苏)以点(1,2)为圆心,与直线4x +3y -35=0相切的圆的方程是_________.(2)对圆锥曲线的定义、性质的考查例2(04辽宁)已知点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF . 当点P 的纵坐标是21时,点P 到坐标原点的距离是 (A )26(B )23 (C )3(D )21.2 部分小题体现一定的能力要求能力,注意到对学生解题方法的考查例3(04天津文)若过定点(1,0)M -且斜率为k 的直线与圆22450x x y ++-=在第一象限内的部分有交点,则k 的取值范围是 (A)0k <<(B)0k <<(C)0k << (D )05k <<2.解答题解析几何的解答题主要考查求轨迹方程以及圆锥曲线的性质.以中等难度题为主,通常设置两问,在问题的设置上有一定的梯度,第一问相对比较简单.例4(04江苏)已知椭圆的中心在原点,离心率为12,一个焦点是F (-m,0)(m 是大于0的常数).(Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M.=,求直线l 的斜率.本题第一问求椭圆的方程,是比较容易的,对大多数同学而言,是应该得分的;而第二问,需要进行分类讨论,则有一定的难度,得分率不高. 解:(I )设所求椭圆方程是).0(12222>>=+b a by a x由已知,得 ,21,==a c m c 所以m b m a 3,2==. 故所求的椭圆方程是1342222=+my m x (II )设Q (Q Q y x ,),直线),0(),(:km M m x k y l 则点+=当),,0(),0,(,2km M m F -=由于时由定比分点坐标公式,得,62.139494,)3,32(.31210,32212022222±==+-=++=-=+-=k mm k m m kmm Q km km y m m x Q Q 解得所以在椭圆上又点0(2)()2,2,1212Q Q m km MQ QF x m y km +-⨯-=-==-==--- 当时.于是.0,134422222==+k mm k m m 解得 故直线l 的斜率是0,62±.例5(04全国文科Ⅰ)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B .(I )求双曲线C 的离心率e 的取值范围:(II )设直线l 与y 轴的交点为P ,且5.12PA PB =求a 的值. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y a x 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率01,).e a a e e e ==<<≠∴>≠+∞ 即离心率的取值范围为(II )设)1,0(),,(),,(12211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得 由于x 1,x 2都是方程①的根,且1-a 2≠0,2222222222172522289,.,,121121160170,.13a a a x x x a a a a a =-=--=--->=所以消去得由所以例6(04全国文科Ⅱ)给定抛物线C :,42x y =F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点. (Ⅰ)设l 的斜率为1,求OB OA与夹角的大小;(Ⅱ)设]9,4[,∈=λλ若AF FB ,求l 在y 轴上截距的变化范围. 解:(Ⅰ)C 的焦点为F (1,0),直线l 的斜率为1,所以l 的方程为.1-=x y将1-=x y 代入方程x y 42=,并整理得 .0162=+-x x设),,(),,(2211y x B y x A 则有 .1,62121==+x x x x.31)(2),(),(212121212211-=++-=+=⋅=⋅x x x x y y x x y x y x.41]16)(4[||||21212122222121=+++=+⋅+=x x x x x x y x y x OB OA.41143||||),cos(-=⋅=OB OA 所以与夹角的大小为.41143arccos -π (Ⅱ)由题设λ= 得 ),,1(),1(1122y x y x --=-λ即⎩⎨⎧-=-=-.1212),1(1y y x x λλ 由②得21222y y λ=, ∵ ,4,4222121x y x y == ∴.122x x λ=③ 联立①、③解得λ=2x ,依题意有.0>λ∴),2,(),2,(λλλλ-B B 或又F (1,0),得直线l 方程为 ),1(2)1()1(2)1(--=--=-x y x y λλλλ或当]9,4[∈λ时,l 在方程y 轴上的截距为,1212---λλλλ或由 ,121212-++=-λλλλλ 可知12-λλ在[4,9]上是递减的, ∴ ,431234,341243-≤--≤-≤-≤λλλλ直线l 在y 轴上截距的变化范围为].34,43[]43,34[⋃--从以上3道题我们不难发现,对解答题而言,椭圆、双曲线、抛物线这三种圆锥曲线都有考查的可能,而且在历年的高考试题中往往是交替出现的,以江苏为例,01年考的是抛物线,02年考的是双曲线,03年考的是求轨迹方程(椭圆),04年考的是椭圆.三、热点分析与2005年高考预测1.重视与向量的综合在04年高考文科12个省市新课程卷中,有6个省市的解析几何大题与向量综合,主要涉及到向量的点乘积(以及用向量的点乘积求夹角)和定比分点等,因此,与向量综合,仍是解析几何的热点问题,预计在05年的高考试题中,这一现状依然会持续下去.例7(02年新课程卷)平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OB OA OC βα+=,其中α、β∈R,且α+β=1,则点C 的轨迹方程为(A )(x -1)2+(y -2)2=5 (B )3x +2y -11=0 (C )2x -y =0 (D )x +2y -5=0 例8(04辽宁)已知点)0,2(-A 、)0,3(B ,动点2),(x PB PA y x P =⋅满足,则点P 的轨迹是 (A )圆 (B )椭圆 (C )双曲线 (D )抛物线2.考查直线与圆锥曲线的位置关系几率较高在04年的15个省市文科试题(含新、旧课程卷)中,全都“不约而同”地考查了直线和圆锥曲线的位置关系,因此,可以断言,在05年高考试题中,解析几何的解答题考查直线与圆锥曲线的位置关系的概率依然会很大.① ②3.与数列相综合在04年的高考试题中,上海、湖北、浙江解析几何大题与数列相综合,此外,03年的江苏卷也曾出现过此类试题,所以,在05年的试题中依然会出现类似的问题.例9(04年浙江卷)如图,ΔOBC 的在个顶点坐标分别为(0,0)、(1,0)、(0,2),设P 为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的中点,对于每一个正整数n,P n+3为线段P n P n+1的中点,令P n 的坐标为(x n,y n), .2121++++=n n n n y y y a (Ⅰ)求321,,a a a 及n a ; (Ⅱ)证明;,414*+∈-=N n y y nn (Ⅲ)若记,,444*+∈-=N n y y b n n n证明{}n b 是等比数列.解:(Ⅰ)因为43,21,153421=====y y y y y ,所以2321===a a a ,又由题意可知213+++=n n n y y y , ∴321121++++++=n n n n y y y a =221121++++++n n n n y y y y =,2121n n n n a y y y =++++∴{}n a 为常数列.∴.,21*∈==N n a a n(Ⅱ)将等式22121=++++n n n y y y 两边除以2,得,124121=++++n n n y y y 又∵2214++++=n n n y y y ,∴.414n n yy -=+(Ⅲ)∵)41()41(44444841n n n n n yy y y b ---=-=+++-)(41444n n y y --=+,41n b -=又∵,041431≠-=-=y y b∴{}n b 是公比为41-的等比数列.4.与导数相综合近几年的新课程卷也十分注意与导数的综合,如03年的天津文科试题、04年的湖南文理科试题,都分别与向量综合.例10(04年湖南文理科试题)如图,过抛物线x 2=4y 的对称轴上任一点P (0,m )(m>0)作直线与抛物线交于A,B 两点,点Q 是点P 关于原点的对称点。
高中数学平面解析几何的常见题型及解答方法在高中数学学习中,平面解析几何是一个重要的内容,也是考试中的重点。
平面解析几何主要研究平面上的点、直线、圆等几何图形的性质和关系,通过坐标系和代数方法进行分析和解决问题。
下面我们将介绍一些常见的平面解析几何题型及解答方法,希望能给同学们提供一些帮助。
一、直线方程的求解直线方程的求解是平面解析几何中的基础内容。
常见的题型有已知直线上的两点,求直线方程;已知直线的斜率和一点,求直线方程等。
这里我们以已知直线上的两点,求直线方程为例进行说明。
例如,已知直线上的两点为A(2,3)和B(4,5),求直线方程。
解题思路:设直线的方程为y = kx + b,其中k为斜率,b为截距。
根据已知条件,我们可以列出方程组:3 = 2k + b5 = 4k + b解方程组,得到k和b的值,从而得到直线方程。
解题步骤:1.将方程组改写为矩阵形式:| 2 1 | | k | | 3 || 4 1 | | b | = | 5 |2.利用矩阵的逆运算,求出k和b的值。
3.将k和b的值代入直线方程y = kx + b,即可得到直线方程。
通过这个例子,我们可以看到求解直线方程的方法是通过已知条件列方程组,然后通过矩阵运算求解出未知数的值,最后将值代入直线方程得到结果。
二、直线与圆的位置关系直线与圆的位置关系是平面解析几何中的一个重要内容。
常见的题型有直线与圆的切线问题、直线与圆的交点问题等。
这里我们以直线与圆的切线问题为例进行说明。
例如,已知圆的方程为x^2 + y^2 = 4,直线的方程为y = 2x - 1,求直线与圆的切点坐标。
解题思路:首先,我们需要确定直线与圆是否有交点。
当直线与圆有交点时,我们可以通过求解方程组得到交点坐标。
当直线与圆没有交点时,我们需要判断直线与圆的位置关系,进而确定是否有切点。
解题步骤:1.将直线方程代入圆的方程,得到一个关于x的二次方程。
2.求解二次方程,得到x的值。
高考解析几何的题型及思路解析几何是必考的,常作为压轴题,特点是计算量大。
不过解几题其实很有规律性,解题思路并不难掌握,就是要用代数方法(方程、函数、不等式的思想和方法)研究几何问题,而数形结合思想(主要是利用定义或平面几何知识分析问题)是减少解几综合题计算量的主要手段。
常见的类型题有:(1)、求曲线(动点)的方程:若曲线类型已知,用待定系数法列方程组求解即可。
若给出了单个动点满足的条件,可先判断其是否符合某种曲线的定义,符合即可用待定系数求解,否则用直接法求解。
若条件有两个动点,一般用代入法求解;若条件有三个以上的动点,一般用参数法求解。
(2)求参数或曲线的特征量(如a、b、c、p、离心率、斜率、倾角、面积等)的值。
这类题要用到方程思想求解,即想办法把题目的条件(等量关系)转化为所求变量的方程(组)解之。
(3)求参数或几何量(如角、面积、斜率)的取值范围的问题。
主要是利不等式法或函数法求解。
其中判别式是列不等式的一个重要途径。
通常用韦达定理或题目给出的其它条件来列出变量间的等量关系,再把等量关系代入判别式消元化简解出相关参数的范围。
或利用韦达定理或其它等量关系建立变量间的关系式,把所求变量表示为其它变量的函数,利用求函数值域的方法确定变量的取值范围。
这个函数的定义域通常由判别式或其它条件确定。
(4)直(曲)线过定点问题:关键是求出直(曲)线的方程,当然这个方程必定含有一个参数。
求出方程后观察什么定点的坐标满足。
若观察不出,只要令参数取两个特殊值,然后把得到的两条具体的直(曲)线求交点即得所求定点。
(5)证明定值:证某个式子为定值,即是要求出这个式子的值是什么。
把条件转化为相关的方程(组),消去其中的参数即得。
(6)探索性(存在性)问题:通常转化为对方程根的存在性的讨论。
▲注意向量与解析几何的密切联系.由于向量具有几何形式和代数形式的“双重身份”,使向量与解析几何之间有着密切联系,大量的解析几何问题都是以向量作为背景编拟的;▲判别式和韦达定理是解决以直线和圆锥曲线的位置关系为背景的综合问题的必用工具。
高考专题:解析几何常规题型及方法一、高考风向分析:高考解析几何试题一般共有3--4题(1--2个选择题, 0--1个填空题, 1个解答题), 共计20多分, 考察的知识点约为20个左右,其命题一般紧扣课本, 突出重点, 全面考察。
选择题和填空题考察直线, 圆, 圆锥曲线中的根底知识,大多概念性较强,小巧灵活,思维多于计算;而解答题重点考察圆锥曲线中的重要知识点及其综合运用,重在考察直线与圆锥曲线的位置关系、轨迹方程,以向量为载体,立意新颖,要求学生综合运用所学代数、三角、几何的知识分析问题,解决问题。
二、本章节处理方法建议:纵观历年全国各省市文、理高考试卷,普遍有一个规律:占解几分值接近一半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一 半偏上的解答题得分很不理想,其原因主要表达在以下几个方面:〔1〕解析几何是代数与几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向 量等知识,形成了轨迹、最值、对称、围、参系数等多种问题,因而成为高中数学综合 能力要求最高的容之一〔2〕解析几何的计算量相对偏大〔3〕在大家的"拿可拿之分〞 的理念下,大题的前三道成了兵家必争之地,而排放位置比拟为难的第21题或22题〔有 时20题〕就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比拟普遍。
鉴于解几的特点,建议在复习中做好以下几个方面.1.由于高考中解几容弹性很 大。
有容易题,有中难题。
因此在复习中基调为狠抓根底。
不能因为高考中的解几解答题 较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻 下,将时间用在稳固根底、对付"跳一跳便可够得到〞的常规题上,这样复习,高考时就 能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几 分算几分。
三、高考核心考点1、准确理解根本概念〔如直线的倾斜角、斜率、距离、截距等〕2、熟练掌握根本公式〔如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等〕3、熟练掌握求直线方程的方法〔如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等〕4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算5、了解线性规划的意义及简单应用6、熟悉圆锥曲线中根本量的计算7、掌握与圆锥曲线有关的轨迹方程的求解方法〔如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等〕8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题四、常规题型及解题的技巧方法A:常规题型方面〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
解析几何命题趋向:
1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以填空题的形式出现,每年必考
2.考查直线与二次曲线的普通方程,属容易题,对称问题常以填空题出现
3.考查圆锥曲线的基础知识和基本方法的题多以填空题的形式出现,有时会出现有一定灵活性和综合性较强的题,如求轨迹,与向量结合,与求最值结合,属中档题。
考点透视
一.直线和圆的方程
1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.
2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.
3.了解二元一次不等式表示平面区域.
4.了解线性规划的意义,并会简单的应用.
5.了解解析几何的基本思想,了解坐标法.
6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.
二.圆锥曲线方程
1.掌握椭圆的定义、标准方程和椭圆的简单几何性质.2.掌握双曲线的定义、标准方程和双曲线的简单几何性质.3.掌握抛物线的定义、标准方程和抛物线的简单几何性质.4.了解圆锥曲线的初步应用.。
⾼考专题复习—解析⼏何的题型与⽅法(精髓版)20XX 届⾼三数学题型与⽅法专题七:解析⼏何1【基础知识梳理】班级:姓名:[例1]已知直线1l 的斜率是33,直线2l 过坐标原点且倾斜⾓是1l 倾斜⾓的两倍,则直线2l 的⽅程为___x y 3=.[例2]已知直线l 的⽅程为)0(,0≠=++ab c by ax 且l 不经过第⼆象限,则直线l 的倾斜⾓⼤⼩为( B )A 、arctana b ; B 、arctan(-a b ); C 、p +arctan a b ; D 、p -arctan a b. [例3]与圆1)2()1(22=-+-y x 相切,且在两坐标轴上截距相等的直线有――( B )A 、2条;B 、3条;C 、4条;D 、5条. [例4]过点)3,2(P 与坐标原点距离为2的直线⽅程是___026125=+-y x 与2=x.[例5]直线21,l l 斜率相等是21//l l 的――――――――――――――――――( D ) A 、充分不必要条件;B 、必要不充分条件;C 、充要条件;D 、既不充分⼜不必要条件. [例6]直线l 过点)3,2(P 与以)3,1(),2,3(--B A 为端点的线段AB 有公共点,则直线l 倾斜⾓的取值范围是______.]43,2[πarctg . [例7]将⼀张画有直⾓坐标系的图纸折叠使点)0,2(A 与点(0,6)B 重合,若点)0,3(C 与点D 重合,则点D 的坐标为_;)528,51(D . [例8]抛物线C 1:x y 22=关于直线02=+-y x 对称的抛物线为C 2,则C 2的焦点坐标为____.)25,2(-. [例9]已知点),(b a 是圆222r yx =+外的⼀点,则直线2r by ax =+与圆的位置关系是( C )A 、相离;D 、相交且过圆⼼. [例10]若圆O :222r yx =+上有且只有两点到直线01543:=-+y x l 的距离为2,则圆的半径r 的取值范围是____.51<.[例11]⼆次⽅程022=+++++F Ey Dx Cy Bxy Ax 表⽰圆的充要条件是_____;04,0,022>-+=≠=AF E D B C A .[例12]已知圆C 被y 轴截得的弦长是2,被x 轴分成的两段弧长之⽐为3:1,求圆⼼C 的轨迹⽅程.1222=-x y .[例13]直线l 过定点)0,4(M 与圆422=+yx 交于A 、B 两点,则弦AB 中点N 的轨迹⽅程为_____;4)2(22=+-y x ()10<≤x . [例14]直线l 过定点)0,4(M 与圆422=+y x 交于A 、B 两点,O 是坐标原点,则△AOB ⾯积的最⼤值为_______;2.[例15]已知A 是圆064222=-+-+y ax y x 上任意⼀点,点A 关于直线012=++y x 的对称点也在圆上,那么实数a 的值为___3__.[例16]已知动圆C 与定圆M :1)2(22=+-y x 相切,且与y 轴相切,则圆⼼C 的轨迹⽅程是__;)21(62-=x y 与232()2y x =-.[例17]已知)3,0(M ,⼀动圆I 过点M 与圆N :16)3(22=++y x 内切.(1)求动圆圆⼼I 的轨迹C 的⽅程;(2)经过点(2,0)Q 作直线l 交曲线C 于A 、B 两点,设OB OA OP +=,当四边形OAPB 的⾯积最⼤时,求直线l 的⽅程.(1)14=+y x . (2)由+=知,四边形OAPB 是平⾏四边形.要使得四边形OAPB ⾯积最⼤,则△OAB 的⾯积最⼤,注意变化中的定值条件.△OAB 的⾯积是△AOQ 的⾯积与△BOQ 的⾯积之差.设A ),(),,(2211y x B y x ,则12||||||AOB S y y ?=-.可在联⽴⽅程组时,消去变量x ,保留y .设直线l 的⽅程为2x my =+,由22221(41)1612042y x m y my x my ?+=??+++=??=+?.由△=22(16)412(41)0m m -??+>,得2430m ->. 由韦达定理得:1212221612,4141m y y y y m m +=-=++知021>y y .则12||||||AOBS y y ?=-=||21y y-==.令243(0)m t t -=>,那么:2S ==≤=,当16t t =时等号成⽴.此时274m =,即所求的直线⽅程为42x y =±+.[例18]已知复数z 满⾜4|2||2|=++-i z i z ,则z 对应点的轨迹是_______;以i 2与i 2-对应点为端点的线段.[例19]设P 是以21,F F 为焦点的椭圆)0(12222>>=+b a by a x 上的⼀点,若点P 满⾜:2121; B 、32; C 、31; D 、35.[例20]⼀直线l 过椭圆12422=+y x 的左焦点,被椭圆截得的弦长为2,则直线l 的⽅程2-=x .[例21]椭圆13422=+y x 上有2007个不同的点200721,,,P P P ,椭圆的右焦点为F ,数列)2007,,3,2,1|}({| =n FP n 是公差为d 的等差数列,则d 的取值范围是_____.]10031,0()0,10031[ -∈d .[例22]已知点)0,2(),0,2(B A -,点C 在直线1=y 上满⾜BC AC ⊥,则以A 、B 为焦点过点C 的椭圆⽅程为___.12622=+y x . [例23]⼀双曲线C 以椭圆12422=+x x 的焦点为顶点,长轴顶点为焦点,则此双曲线的⽅程为___.12222=-y x . [例24]⼀双曲线与1322=-y x 有共同渐近线且与椭圆1322=+y x 有共同焦点,则此双曲线的⽅程为________;21322=-y x .[例25]若关于x 的⽅程)2(12+=-x k x 有两个不等的实数根,则实数k 的取值范围是___.10<≤k.[例26]已知双曲线的⽅程为116922=-y x ,P 是双曲线上的⼀点,F 1、F 2分别是它的两个焦点,若7||1=PF ,则=||2PF _13;[例27]椭圆12622=+y x 和双曲线221x y a-=的公共焦点为21,F F ,P 是它们的⼀个公共点,则=∠21cos PF F _____;31>=-n y nx 的两焦点为P F F ,,21是此双曲线上的⼀点,且满⾜||||21PF PF +=22+n ,则△21F PF 的⾯积为___1_____.[例29]抛物线24x y =的焦点坐标是__)161,0(___;准线⽅程是__161-=y __[例30]已知抛物线的焦点为)1,1(F ,对称轴为x y =,且过M (3,2),则此抛物线的准线⽅程为__0105=±-+y x _;[例31]直线l 过抛物线y x 42=的焦点与抛物线交于A 、B 两点,若A 、B 两点到x 轴的距离之和等于3,则这样的直线l 有( B )A 、1条;B 、2条;C 、3条;D 、不存在.[例32]直线l 过抛物线的焦点与抛物线交于A 、B 两点,O 是抛物线的顶点,则△ABO 的形状是( C )A 、直⾓三⾓形;B 、锐⾓三⾓形;C 、钝⾓三⾓形;D 、不确定与抛物线的开⼝⼤⼩有关. [例33]求证:过抛物线)0(22>=p px y 焦点的所有弦长的最⼩值是p 2.分析:本例的证明⽅法很多.设其焦点弦为AB ,),(),,(2211y x B y x A ,则由抛物线的定义知12||2AB x x p p p p=++≥==.当且仅当21xx=时等号成⽴.此时直线AB与对称轴垂直.[例34]已知点M是椭圆12=+byax的⼀条不垂直于对称轴的弦AB的中点,O是坐标原点,设OM、AB的斜率分别为21,kk,则21kk?=―――――――――――――( C )A、22ba;B、22ab;C、22ab-;D、22[例35]设直线l过椭圆1422=+yx的右焦点,与椭圆相交于A、B两点,O是坐标原点,当△OAB的⾯积最⼤时,求直线l的⽅程.分析:由题可设直线l:3+=myx代⼊椭圆⽅程中得:0132)4(22=-++myym,设),(),,(2211A,可得△OAB的⾯积S=| |23|)||(|232121yyyy-=+,可得:619)1(132)4()4 ( 12 2 3 2 2 2 2 2 2 2 2 2 + + + + = + + = + + + = m m m m则当312=+m时,S有最⼤值为1.此时直线l⽅程为:32+±=yx.[例36]设点P为双曲线1422=-yx上的动点,F是它的左焦点,M是线段PF的中点,则点M的轨迹⽅程是_____;1 4)25(22=--yx[例37]已知椭圆的焦点是21,FF,P是椭圆上的⼀个动点.如果延长PFPQ=,那么动点Q的轨迹是( A )A、圆;B、椭圆;C、双曲线的⼀⽀;D、抛物线.[例38]已知直线l过点)1,1(M,双曲线C:1322=-yx.(1)若直线l与双曲线有且仅有⼀个公共点,求直线l的⽅程;(2)若直线与双曲线的右⽀有两个不同的交点,求直线l斜率的取值范围;(3)是否存在直线l使其与双曲线的有两个不同的交点A、B,且以AB为直径的圆过坐标原点?若存在求出此直线的斜率,不存在说明理由.分析:(1)当直线l与x轴垂直时,直线1=x满⾜题义.当直线l与x轴不垂直时,设直线⽅程为)1(1-=-xky,联⽴得⽅程:0)42()1(+-----kkxkkxk---(*)当032=-k时,⽅程(*)是⼀次⽅程,直线l与双曲线有⼀个公共点,此时直线l⽅程为)1(31-±=-xy.当032≠-k时,由△02448=-=k,得2=k,所以满⾜题义的直线l为:)1(3=-=--=xyyxx.(2)直线l与双曲线的右⽀有两个不同的交点,则⽅程(*)有两不等的正根.由△k2448-=0>,知2<k且>-+-=3423)1(22221221kkkxxkkkxx,得2 3<-<k02121=+y y x x .0)1())(1()1(221212=-++-++k x x k k x x k , 0142=++k k ,32±-=k (满⾜)2[例39]倾⾓为3π的直线l 过抛物线x y 42=的焦点F 与抛物线交于A 、B 两点,点C 是抛物线准线上的动点.(1)△ABC 能否为正三⾓形?(2)若△ABC 是钝⾓三⾓形,求点C 纵坐标的取值范围.分析:(1)直线l ⽅程为)1(3-=x y ,由x y 42=可得)332,31(),32,3(-B A .若△ABC 为正三⾓形,则3π=∠CAB ,由3π=∠AFx ,那么CA 与x 轴平⾏,此时4||=AC ,⼜3162313||=++=AB .与|AC|=|AB|⽭盾,所以△ABC 不可能是下正三⾓形.(2)设),1(m C -,则}332,34{},32,4{m m --=-=,2)332(-=?m 不可以为负,所以ACB ∠不为钝⾓.若CAB ∠为钝⾓,则038{=BA ,则0)32(338332<-+m ,得3310>m . 若⾓ABC ∠为钝⾓,则032-310()332,36()36,(+∞----∞ .20XX 届⾼三数学题型与⽅法专题七:解析⼏何2【典型题型⽅法】班级:姓名:⼀、轨迹问题(2)当r ∈(1,+∞)时,求N 的轨迹G ⽅程;(3)过点Q (0,2)的直线l 与(2)中轨迹G 相交于两个不同的点A ,B ,若CA --→CB --→>0,求直线l 的斜率的取值范围.解:(1)由已知得,当r =2时,可求得M 点的坐标为(-1,0).设P (0,b ),则由MP CP k k ?=-1,得:2b =1,所以b =±1,即点P 坐标为(0,±1).(2)设N (x ,y ),由已知得,在圆⽅程中令y =0,得M 点的坐标为(1-r ,0).由MP CP k k ?=-1,得:r =2b +1.因为点P 为线段MN 的中点,所以x =r -1=2b ,y =2b ,⼜x >1,所以点N 的轨迹⽅程为:2y =4x (x >0).(3)设直线l 的⽅程为:y =kx +2,M (1x ,1y ),N (2x ,2y ),=+=xy kx y 422,消去y ,得:22x k +x k )44(-+4=0.∵直线l 与抛物线2y =4x (x >0)相交于两个不同的点A ,B ,∴△=-32k +16>0,得:k <21.⼜因为CA --→CB --→>0,∴)1)(1(21--x x +21y y >0,212)1(x x k ++))(12(21x x k +-+5>0,2k +12k >0,∴k >0或k <-12.综上可得:0<k <21或k <-12.例2、如图,已知椭圆2222:1(0)x y C a b a b+=>>的焦点和上顶点分别为1F 、2F 、B ,我们称12F BF ?为椭圆C 的特征三⾓形.如果两个椭圆的特征三⾓形是相似的,则称这两个椭圆是“相似椭圆”,且三⾓形的相似⽐即为椭圆的相似⽐.(1)已知椭圆221:14x C y +=和222:1164x y C +=,判断2C 与1C 是否相似,如果相似则求出2C 与1C 的相似⽐,若不相似请说明理由;(2)已知直线:1l y x =+,与椭圆1C 相似且半短轴长为b 的椭圆b C 的⽅程,在椭圆b C 上是否存在两点M 、N 关于直线l 对2,底边长为3的等腰三⾓形,因此两个等腰三⾓形相似,且相似⽐为2:1(2)椭圆b C 的⽅程为:)0(142222>=+b by b x . 假定存在,则设M 、N 所在直线为y x t =-+,MN 中点为()00,x y .则=++-=142222b y bx tx y 0)(485222=-+-?b t xt x . 所以5,5420210t y t x x x ==+=.中点在直线1y x =+上,所以有35-=t. 12x x -==12()f b MN x b ==-=> (3)椭圆b C 的⽅程为:)0(142222>=+b by b x . 两个相似椭圆之间的性质有:(1)两个相似椭圆的⾯积之⽐为相似⽐的平⽅;(2)分别以两个相似椭圆的顶点为顶点的四边形也相似,相似⽐即为椭圆的相似⽐;(3)两个相似椭圆被同⼀条直线所截得的线段中点重合;(4)过原点的直线截相似椭圆所得线段长度之⽐恰为椭圆的相似⽐.⼆、最值问题例3、已知椭圆,1ny m x 22=+常数m 、n +∈R 且m>n (1) 当m=25,n=21时,过椭圆左焦点F 的直线交椭圆于点P,与y 轴交于点Q, 若FP 2QF =,求直线PQ 的斜率;(2)过原点且斜率分别为k 和k -(1k ≥)的两条直线与椭圆,1ny m x 2解:(1)椭圆121y 25x 22=+,)0,2(F - ,设P )t ,0(Q ),y ,x (00 ()()00y ,2x FP ,t ,2QF +=--=,?=FP 2QF ??-=-=?=-+=-2t y 3x y 2t )2x (22000052142t k 5218t 121y 25x 2020±==?±=?=+ (2)根据椭圆的对称性知四边形ABCD 为矩形,设)0y ,0x )(y ,x (A 1111>> 设kx y :l =与椭圆⽅程,mn my nx 22=+nmk mnx mn x mk nx 21222+==+ )1k (nmk kmn4y x 4S kx y 21111≥+==?=(3))1k (kn mk mn4S ≥+=,当1mn ,n m ,m n k k n mk <∴>== 时,即⼜[)上单调递增,在∞+∈+∴≥1k k n mk ,1k 0n m kn mk >+≥+? nm mn 4S 1k ,n m mn 4S max +==+≤∴时,当例4、已知直线L 1:y=kx+1与双曲线1y x :C 221=-的左⽀交于A 、B 两点,(1)求k 的取值范围;(2)直线L 经过点P (-2,0)及线段AB 的中点Q ,CD 是y 轴上的⼀条线段,对任意的直线L 都与线段CD ⽆公共点,试问CD 长的最⼤值是否存在,若存在,求出这个最⼤值;若不存在,请说明下由。
解析几何题型及解题方法
解析几何是数学中的一个重要分支,主要研究空间中点、线、面等几何对象在坐标系中的表示和性质。
以下是一些常见的解析几何题型及其解题方法:
1. 求轨迹方程:给定一些条件,求动点的轨迹方程。
解题方法包括直接法、参数法、代入法等。
2. 判断位置关系:判断两条直线、两个圆、两条圆锥曲线等是否相交、相切、相离。
解题方法包括联立方程组消元法、判别式法、一元二次方程根的判别式法等。
3. 求弦长、面积、体积等:给定一个几何对象,求其长度、面积、体积等。
解题方法包括公式法、参数法、极坐标法等。
4. 求最值:给定一个几何对象,求其长度的最大值、最小值等。
解题方法包括导数法、不等式法、极坐标法等。
5. 证明不等式:通过几何图形证明不等式。
解题方法包括构造法、极坐标法、数形结合法等。
6. 探索性问题:通过观察、猜想、证明等方式探索几何对象的性质。
解题方法包括归纳法、反证法、构造法等。
以上是一些常见的解析几何题型及其解题方法,掌握这些方法可以帮助我们更好地解决解析几何问题。
同时,需要注意题目中的条件和限制,以及图形的位置和形状,以便更准确地解决问题。
高考专题:解析几何常规题型及方法一、高考风向分析:高考解析几何试题一般共有3--4题(1--2个选择题, 0--1个填空题, 1个解答题), 共计20多分, 考查的知识点约为20个左右,其命题一般紧扣课本, 突出重点, 全面考查。
选择题和填空题考查直线, 圆, 圆锥曲线中的基础知识,大多概念性较强,小巧灵活,思维多于计算;而解答题重点考查圆锥曲线中的重要知识点及其综合运用,重在考察直线与圆锥曲线的位置关系、轨迹方程,以向量为载体,立意新颖,要求学生综合运用所学代数、三角、几何的知识分析问题,解决问题。
二、本章节处理方法建议:纵观历年全国各省市文、理高考试卷,普遍有一个规律:占解几分值接近一半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一 半偏上的解答题得分很不理想,其原因主要体现在以下几个方面:(1)解析几何是代数与 几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向 量等知识,形成了轨迹、最值、对称、范围、参系数等多种问题,因而成为高中数学综合 能力要求最高的内容之一(2)解析几何的计算量相对偏大(3)在大家的“拿可拿之分” 的理念下,大题的前三道成了兵家必争之地,而排放位置比较尴尬的第21题或22题(有 时20题)就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比较普遍。
鉴于解几的特点,建议在复习中做好以下几个方面.1.由于高考中解几内容弹性很 大。
有容易题,有中难题。
因此在复习中基调为狠抓基础。
不能因为高考中的解几解答题 较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻 下,将时间用在巩固基础、对付“跳一跳便可够得到”的常规题上,这样复习,高考时就 能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几 分算几分。
三、高考核心考点1、准确理解基本概念(如直线的倾斜角、斜率、距离、截距等)2、熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等)3、熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等)4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算5、了解线性规划的意义及简单应用6、熟悉圆锥曲线中基本量的计算7、掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等)8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题四、常规题型及解题的技巧方法A:常规题型方面(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
分析:设P x y 111(,),P x y 222(,)代入方程得x y 121221-=,x y 222221-=。
两式相减得 ()()()()x x x x y y y y 12121212120+--+-=。
又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x yy y x x ---=·。
又k y y x x y x =--=--121212,代入得24022x y x y --+=。
当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。
因此所求轨迹方程是24022x y x y --+=说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。
变式练习:给定双曲线2x 2 - y 2 = 2 ,过点B(1,1)能否作直线L,使L 与所给双曲线交于两点Q 1、Q 2 两点,且点B 是线段Q 1Q 2的中点?如果直线L 存在,求出它的方程;如果不存在,说明理由. (2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
分析:(1)设||PF r 11=,|PF r 22=,由正弦定理得r r c122sin sin sin()αβαβ==+。
得r r c122++=+sin sin sin()αβαβ,βαβαsin sin )sin(++==a c e (2)()()a ex a ex a ae x ++-=+3332226。
当x =0时,最小值是23a ;当a x ±=时,最大值是26323a e a +。
变式练习:设F 1、F 2分别是双曲线12222=-by a x (a>0,b>0)的左、右两个焦点,P 是双曲线上的一点,若∠P=θ,求证:S △=b 2cot2θ(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法 典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
(1)证明:抛物线的准线为114:x p=--由直线x+y=t 与x 轴的交点(t ,0)在准线右边,得 t pt p >--++>14440,而 由消去得x y ty p x y +==+⎧⎨⎩21()x t p x t p 2220-++-=()() ∆=+--()()2422t p t p =++>p t p ()440 故直线与抛物线总有两个交点。
(2)解:设点A(x 1,y 1),点B(x 2,y 2) ∴+=+=-x x t p x x t p 121222, OA OB k k OA OB ⊥∴⨯=-,1 则x x y y 12120+= 又y y t x t x 1212=--()()∴+=-+=x x y y t t p 1212220() ∴==+p f t t t ()22又,得函数的定义域是p t p f t >++>0440() ()()-⋃+∞200,, 变式练习:直线y=ax+1与双曲线3x 2-y 2=1交于两点A 、B 两点 (1)若A 、B 都位于双曲线的左支上,求a 的取值范围 (2)当a 为何值时,以AB 为直径的圆经过坐标原点? (4)圆锥曲线的有关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。
<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。
<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。
典型例题已知抛物线y 2=2px(p>0),过M (a,0)且斜率为1的直线L 与抛物线交于不同的两点A 、B ,|AB|≤2p(1)求a 的取值范围;(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值。
分析:这是一道直线与圆锥曲线位置关系的问题,对于(1),可以设法得到关于a 的不等式,通过解不等式求出a 的范围,即:“求范围,找不等式”。
或者将a 表示为另一个变量的函数,利用求函数的值域求出a 的范围;对于(2)首先要把△NAB 的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。
解:(1)直线L 的方程为:y=x-a,将y=x-a 代入抛物线方程y 2=2px,得:设直线L 与抛物线两交点的坐标分别为A (x 1,y 1),B(x 2,y 2),则⎪⎩⎪⎨⎧=+=+>-+221212)(204)(4ax x p a x x a p a ,又y 1=x 1-a,y 2=x 2-a,,2)2(80,0)2(8,2||0)2(8]4)[(2)()(||21221221221p a p p a p p p AB a p p x x x x y y x x AB ≤+<∴>+≤<+=-+=-+-=∴解得:.42p a p -≤<-(2)设AB 的垂直平分线交AB 与点Q ,令其坐标为(x 3,y 3),则由中点坐标公式得:p a x x x +=+=2213, .2)()(221213p a x a x y y y =-+-=+=所以|QM|2=(a+p-a)2+(p-0)2=2p 2.又△MNQ 为等腰直角三角形,所以|QM|=|QN|=P 2,所以S △NAB =22222||22||||21p p p AB p QN AB =⋅≤⋅=⋅,即△NAB 面积的最大值为P 22。
变式练习:双曲线12222=-by a x (a>0,b>0)的两条准线间的距离为3,右焦点到直线x+y-1=0的距离为22 (1)求双曲线的方程(2)设直线y=kx+m(k 0≠且m 0≠)与双曲线交于两个不同的点C 、D ,若A(0,-1)且AC =AD ,求实数m 的取值范围(5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。
典型例题已知直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
若点A (-1,0)和点B (0,8)关于L 的对称点都在C 上,求直线L 和抛物线C 的方程。
分析:曲线的形状已知,可以用待定系数法。
设出它们的方程,L :y=kx(k ≠0),C:y 2=2px(p>0)设A 、B 关于L 的对称点分别为A /、B /,则利用对称性可求得它们的坐标分别为:A /(12,11222+-+-k k k k ),B (1)1(8,116222+-+k k k k )。
因为A 、B 均在抛物线上,代入,消去p ,得:k 2-k-1=0.解得:k=251+,p=552. 所以直线L 的方程为:y=251+x,抛物线C 的方程为y 2=554x. 变式练习:在面积为1的△PMN 中,tanM=21,tanN=-2,建立适当的坐标系,求出以M 、N 为焦点且过点P 的椭圆方程。