(3)由(-a)
1 2
知
-a≥0,
∴a-1<0.
∴原式=(1-a)(1-a)-1(-a)14
=(-a)
1 4
.
2.已知 2x+2-x=5, 求下列各式的值: (1) 4x+4-x; (2) 8x+8-x. 解: (1) 4x+4-x=(2x+2-x)2-22x ·2- =25-2=23; x (2) 8x+8-x=(2x+2-x)3-32x ·2-x(2x+2-x) =125-15=110.
∴g(x) 的定义域区间 [0, 1] 为函数的单调递减区间.
g(x) 在 [0, 1] 上单调递减, 证明如下:
对于任意的 x1, x2[0, 1], 且 x1<x2,
g(x1)-g(x2) =(2x1-4x1)-(2x2-4x2)
=(2x1-2x2)-(2x1-2x2)(2x1+2x2)
=(2x1-2x2)(1-2x1-2x2)
3.已知 2a ·5b=2c ·5d=10, 求证: (a-1)(d-1)=(b-1)(c-1). 证: 由已知 2a ·5b=10=2 ·5, 2c ·5d=10=2 ·5,
∴ 2a-1 ·5b-1=1, 2c-1 ·5d-1=1. ∴ 2(a-1)(d-1) ·5(b-1)(d-1) =1, 2(c-1)(b-1) ·5(d-1)(b-1) =1. ∴ 2(a-1)(d-1) ·5(b-1)(d-1) =2(c-1)(b-1) ·5(d-1)(b-1). ∴ 2(a-1)(d-1)=2(c-1)(b-1). ∴ (a-1)(d-1)=(b-1)(c-1).
三、根式的性质
1.当 n 为奇数时, 正数的 n 次方根是一个正数, 负数的 n 次 方根是一个负数, a 的 n 次方根用符号 n a 表示.