双光子荧光显微镜的原理特点
- 格式:doc
- 大小:25.50 KB
- 文档页数:4
双光子显微镜原理
1 、双光子显微镜原理
双光子显微镜是一种新型的三维显微技术,它由一个复杂的光子传输仪、一个激光源和一个光学探头组成。
双光子显微镜的基本原理是利用微米级的激光束分别照射样品表面,多达几千个光子则被反射到仪器的探头,这些光子经过聚焦到固定的电子探测器上,并被计算机整合,获得了样品的三维结构信息。
双光子显微镜最大的优点在于可以实现快速、高分辨率、高空间分辨率的三维显微成像。
此外,由于光学部分的几乎完全抑制,可以大大减少在样品上的损伤。
双光子显微镜的应用可以分为两个主要方面:一是定量构象成像,在生物和材料科学等领域有着广泛的应用,可以用来获得更多的生物结构信息以及揭示细胞活性的详细机理;另一个是影像计算术,主要是利用图像分析的方法来解决复杂的问题,如双光子显微镜可以用来分析样品深度和结构,从而获得物质成分、表面形貌以及更多的三维信息。
- 1 -。
荧光材料的双光子效应
荧光材料的双光子效应是指当一束激光通过荧光材料时,两个光子同时被吸收并导致荧光发射的现象。
这种效应在近年来得到了越来越多的关注,因为它具有许多优点,例如更高的空间分辨率和深度穿透能力。
荧光材料是一种特殊的材料,它可以吸收一定波长范围内的电磁辐射并发出可见光。
这种现象被称为荧光效应。
在双光子效应中,两个激光光子被吸收后,电子从基态跃迁到激发态,并在退激发过程中发出荧光信号。
与传统单光子激发相比,双光子激发具有更高的局部化和深度穿透能力。
这是因为双光子效应只会在聚焦点处发生,而且其穿透深度比单光子更大。
这使得双光子显微镜成为生物医学领域中重要的成像技术之一。
除了生物医学领域外,双光子效应还可以应用于光电转换、光学存储和激光打印等领域。
此外,由于双光子效应的独特性质,它还可以用于制备具有高分子量的荧光材料。
总之,荧光材料的双光子效应是一种非常有前途的技术,在各个领域
都有广泛的应用前景。
随着技术的不断发展和完善,相信这种技术将会在更多领域得到应用。
双光子显微镜工作原理
双光子显微镜的工作原理
双光子显微镜是一种新型的显微技术,它是在光学观察下观察生物样本的最新技术,它可以实现非常高的分辨率和原位观察,比传统的显微镜技术更加的灵敏和准确。
双光子显微镜的工作原理是利用双光子分子吸收谱来观察生物样品。
双光子显微镜的工作原理是借助双光子的趋向性,当双光子吸收谱以较低的功率射射入样本的时候,双光子就会释放出另外一个光子,这个光子会受到样本的影响,从而形成一个分子图像,而这个图像就是我们看到的图像。
双光子显微镜的观察深度是非常深的,可以达到纳米级别的分辨率。
此外,由于双光子吸收谱的低功率,因此样本不会受到任何损伤,这意味着可以进行原位观察。
由于双光子显微镜的优势,它已经受到了各界的广泛应用。
它主要用于细胞学、药物研究、病毒检测、微生物观察等领域。
同时,由于它可以实现非常高的分辨率,也可以用于医学影像学等领域。
- 1 -。
荧光显微镜的原理与应用前言荧光显微镜是一种利用荧光现象进行观察和显示样品细胞或分子结构的显微镜。
它的原理和应用使得生物学、医学、材料科学等领域的研究变得更加准确和深入。
本文将介绍荧光显微镜的原理、构成和其在不同领域的应用。
一、荧光显微镜的原理荧光显微镜的成像原理基于光的荧光现象和酵素固有荧光物质本身的特性。
1.光的荧光现象当物质受到一定波长的光照射后,能量被吸收并再次散发出去。
荧光显微镜利用激发光的波长激发标记在样品中的荧光物质,使其发出荧光信号。
这种荧光信号可以被荧光显微镜所捕获和放大,进而产生图像。
2.酵素固有荧光某些分子具有自身固有的荧光性质。
这些分子可以从基态跃迁到激发态,并在激发态上持续存在一段时间后再跃迁回基态。
通过观察这些分子的荧光信号,可以获得关于样品的信息。
二、荧光显微镜的构成荧光显微镜通常由以下几个主要部件组成:1.光源:用来提供激发样品的激发光,常用的光源有氘灯、汞灯、激光器等。
2.激发光滤镜:用于选择性地过滤或选择激发光的特定波长。
3.物镜:用来放大样品并收集由荧光物质发出的荧光信号。
4.荧光筛选器:用来选择特定的荧光波长,并阻挡其他波长的光线。
5.观察系统:包括目镜、眼镜或摄像机等设备,用于观察和记录荧光信号。
三、荧光显微镜在不同领域的应用荧光显微镜在生物学、医学、材料科学等领域有广泛的应用。
1.生物学研究荧光显微镜可以帮助研究者观察和分析生物学样本中的细胞结构和功能。
通过将特定荧光染料标记到细胞中,可以实时监测细胞的代谢状态、基因表达和蛋白质定位。
2.医学诊断荧光显微镜在医学诊断中发挥着重要作用。
例如,通过使用荧光标记剂可以检测肿瘤细胞,帮助医生进行早期诊断和治疗。
3.材料科学荧光显微镜在材料科学中的应用主要集中在材料的结构和性能测试上。
通过标记某些特定的分子或颗粒物,并观察它们在材料中的分布和运动,可以更好地了解材料的组成和特性。
4.环境监测荧光显微镜也可以应用于环境监测领域。
双光子显微镜技术作者:细胞生物组刘洋完整ppt请见附件双光子显微镜问世于上世纪90年代,是结合了激光共聚焦显微镜和双光子激发技术的产物。
目前,双光子显微术以其大穿深、低光毒性、低光漂白等优点而被广泛应用于活体和活细胞/组织的成像观察。
本报告将对双光子显微镜发明的背景、实现方式、技术特点、应用领域及发展趋势进行简要介绍。
一、双光子显微镜发明的背景光学显微镜的发展历史是一段不断提高分辨率的历史。
在传统宽场(Widefield microscope, WF)光学显微镜中,来自标本不同纵深的光线都可以投射到同一焦平面上(视网膜或感光元件在此),导致被接收的光线90%是来自焦平面外的杂散光,因此宽场显微镜的成像是整个标本的重叠像,没有纵向分辨能力。
对标本内部细节的表现很差,严重影响了分辨率。
为了消除杂散光的干扰,Malvin Minsky于1957年提出了一种利用狭小针孔(Pinhole)滤除焦平面外杂散光的设想,并由G. J. Brakenhoff于1978年借助激光最终实现,这就是激光共聚焦显微镜(Laser scanning confocal microscope, confocal)。
与宽场显微镜不同的是,激光共聚焦显微镜在成像侧的焦点位置设置了一个针孔,只允许来自另一个焦点的荧光通过,而来自其他焦平面的杂散光则被屏蔽。
通过焦点的荧光被感光元件(光电倍增管、CCD或CMOS)接收,形成一个点的荧光强度信号。
为了解决二维成像问题,激发光通过一组高速摆动的振镜,在标本上进行X-Y方向扫描,来自扫描区域内各点的信号最后通过计算机重新合成为一张图片。
由于有效滤除了杂散光,激光共聚焦显微镜的分辨率相比宽场显微镜有了本质上的提高(横向200nm,纵向400nm),拥有了对样本的特定焦平面进行精细成像的能力(称为光学切片或“细胞CT”),解决了标本内部细节的问题。
在此基础上,激光共聚焦显微镜能够结合多种其它参数,得到重建后的三维图像(XYZ模式)、动态图(XYt模式)或光谱图(XYλ)等数据,以供后续的形态学、动力学等定量分析。
浙江大学』Ⅲ!{j学位论文第二章双光f成像理论吒。
m=叫2吨。
篙expf(2B.4)山§22的分析可以知道,这里口;为一比例系数,与单光子探测系统有关;口,现对单光子荧光强度和双光子荧光强度在径向作一比较,令公式(2.3.3)和(2.3.4)中的z=O,可以得到荧光光强的径向分布方程分别为:L。
,叫oex。
吲旺,s,L。
胁,叫。
2唧陶㈦,.s,(a)(b)图2—3荧光强度径向归一化分布(a)甲光子荧光光强径向归~化分布(b)双光予荧光光强径向归~化分布蔫浙江大学顺士学位论文第三章双光于实验系统简介第三章双光子实验系统简介在了解了双光予成像理论的基础上,介绍实验中双光子成像系统的流程以及备个组成部分。
通过前期的实验,分析和总结得到的实验数据,经理论计算后,对取光子系统的性能做了一个测试,为双光子荧光成像实验,以及双光子、OCT相结合实现结构功能成像等后期科研的展开打下基础。
本章首先介绍了双光子荧光成像系统的流程,然后对其主要部分:光学成像设计、光电转换、机械扫描做了一个简要的介绍,研制了新型的扫描探头。
§3.1双光子荧光成像实验系统流程双光予实验系统的总体构架如图3一l所示图3,l双光子荧光显微镜实验系统图对于一个完整的双光子荧光成像系统,一般应包括:光学成像、光电转换、机械扫描、计算机控制、数据采集、数据处理和显示等几个部分。
其系统流程如第二章职光予实验系统简介在探测器前面放置了荧光滤光片,来选择适当的荧光范围,过滤背景光,提高系统的信噪比。
图3—3中虚线框内表示的是NIKON50I显微镜丰体,其详细结构如图3-4所示:图3.4NIKON50I显微镜光路图箭头的方向表示光束入射的方向。
由图可以知道,N1KON501显微镜本身结构中就包含了落射式和透射式两种激发荧光的方式,可以根据需要来选择。
由第章l},的介绍,可以知道,对本次实验来说,为最大程度的探测荧光,用落射式采集荧光的效率高,所以只利用显微镜上半部分的光路。
双光子显微镜/view/1428311.htm?fr=ala0_1双光子荧光显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。
双光子激发的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收 2 个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。
双光子激发需要很高的光子密度,为了不损伤细胞,双光子显微镜使用高能量锁模脉冲激光器。
这种激光器发出的激光具有很高的峰值能量和很低的平均能量,其脉冲宽度只有100 飞秒,而其周期可以达到80 至100 兆赫。
在使用高数值孔径的物镜将脉冲激光的光子聚焦时,物镜的焦点处的光子密度是最高的,双光子激发只发生在物镜的焦点上,所以双光子显微镜不需要共聚焦针孔,提高了荧光检测效率。
双光子荧光显微镜有很多优点:1)长波长的光比短波长的光受散射影响较小容易穿透标本;2)焦平面外的荧光分子不被激发使较多的激发光可以到达焦平面,使激发光可以穿透更深的标本;3)长波长的近红外光比短波长的光对细胞毒性小;4)使用双光子显微镜观察标本的时候,只有在焦平面上才有光漂白和光毒性。
所以,双光子显微镜比单光子显微镜更适合用来观察厚标本、更适合用来观察活细胞、或用来进行定点光漂白实验。
激光共聚焦显微镜在进行生物样品研究工作中还存在很多局限和问题:一是标记染料的光漂白现象。
因为共焦孔径光阑必须足够小以获得高分辨率的图像,而孔径小又会挡掉很大部分从样品发出的荧光,包括从焦平面发出的荧光,相应的,激发光必须足够强以获得足够的信噪比;而高强度的激光会使荧光染料在连续扫描过程中迅速褪色,荧光信号会随着扫描进程度进行变得越来越弱。
光毒作用是另外一个问题,在激光照射下,许多荧光染料分子会产生诸如单态氧或自由基等细胞毒素,所以实验中要限制扫描时间和激发光的光功率密度以保持样品的活性。
在针对活性样品的研究中,尤其是活性样品生长、发育过程的各个阶段,光漂白和光毒现象使这些研究受到很大的限制。
荧光显微镜原理特点及使用
荧光显微镜的原理和结构特点:荧光显微镜是利用一个高发光效率的点光源,经过滤色系统发出一定波长的光(如紫外光3650入或紫蓝光4200入)作为激发光、激发标本内的荧光物质发射出各种不同颜色的荧光后,再通过物镜和目镜的放大进行观察。
这样在强烈的对衬背景下,即使荧光很微弱也易辨认,敏感性高,主要用于细胞结构和功能以及化学成分等的研究。
荧光显微镜的基本构造是由普通光学显微镜加上一些附件(如荧光光源、激发滤片、双色束分离器和阻断滤片等)的基础上组成的。
荧光光源——般采用超高压汞灯(50一200W),它可发出各种波长的光,但每种荧光物质都有一个产生最强荧光的激发光波长,所以需加用激发滤片(一般有紫外、紫色、蓝色和绿色激发滤片),仅使一定波长的激发光透过照射到标本上,而将其他光都吸收掉。
每种物质被激发光照射后,在极短时间内发射出较照射波长更长的可见荧光。
荧光具有专一性,一般都比激发光弱,为能观察到专一的荧光,在物镜后面需加阻断(或压制)滤光片。
它的作用有二:一是吸收和阻挡激发光进入目镜、以免于扰荧光和损伤眼睛,二是选择并让特异的荧光透过,表现出专一的荧光色彩。
两种滤光片必须选择配合使用。
荧光显微镜就其光路来分有两种:
1.透射式荧光显微镜: 激发光源是通过聚光镜穿过标本材料来激发荧光的。
常用暗视野集光器,也可用普通集光器,调节反光镜使激发光转射和旁射到标本上.这是比较旧式的荧光显微镜。
其优点是低倍镜时荧光强,而缺。
双光子荧光显微镜的原理特点
双光子荧光显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。
双光子激发的基本原理是:
在高光子密度的情况下,荧光分子可以同时吸收2个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。
双光子激发需要很高的光子密度,为了不损伤细胞,双光子显微镜使用高能量锁模脉冲激光器。
这种激光器发出的激光具有很高的峰值能量和很低的平均能量,其脉冲宽度只有100飞秒,而其周期可以达到80至100兆赫。
在使用高数值孔径的物镜将脉冲激光的光子聚焦时,物镜的焦点处的光子密度是的,双光子激发只发生在物镜的焦点上,所以双光子显微镜不需要共聚焦针孔,提高了荧光检测效率。
为形态学、分子细胞生物学、神经科学、和药理学等研究领域中重要的研究手段。
1.双光子显微镜出现的背景----传统激光共聚焦显微镜的两大局限:
1)一是光毒性现象:
因为共聚焦的针孔必须足够小以获得高分辨率的图像,而孔径小又会挡掉很大部分从样品发出的荧光,包括从焦平面发出的荧光,相应的,激发光必须足够强以获得
足够的信噪比;
而高强度的激光会使荧光染料在连续扫描过程中迅速褪色,荧光信号会随着扫描进程度进行变得越来越弱。
2)光毒作用是另外一个问题,在激光照射下,许多荧光染料分子会产生诸如单态氧或自由基等细胞毒素,所以实验中要限制扫描时间和激发光的光功率密度以保持样品的活性。
在针对活性样品的研究中,尤其是活性样品生长、发育过程的各个阶段,光漂白和光毒现象使这些研究受到很大的限制。
2.为什么说双光子显微镜一般不需要配备紫外激发激光器?
双光子显微镜技术是建立在双光子激发效应的基础上的一种荧光激发技术:荧光染料分子可以同时吸收低能量的两个光子而被激发(两个光子到达荧光分子的时间间隔小于1飞秒),其激发效果可以等同于吸收一个1/2波长的高能量光子。
例如,吸收两个红色波长的光子,相当于一个吸收紫外的分子。
长波长的光子不易被细胞吸收,因此对活细胞的光毒性减少,也降低了光漂白。
这样即起到紫外激发的功能,又避免了紫外光线对样品的伤害。
3.双光子显微镜的激光器有何特别之处?
双光子吸收几率依赖于两个入射光子在空间和时间上的重合程度(两个光子必须在10-18秒内到达)。
双光子吸收截面很小,只有在具有很大光子流量的区域的荧光团才会被激发。
因此所用激光器多为钛宝石激光器,可以达到皮秒或者飞秒级的扫描速度,且具有非常高的峰值功率和较低的平均功率,从而可以减小或者消除光漂白和光毒作用。
主要的是在一个很小的范围提供非常高密度的光子,可以保证双光子的同时激发。
4.双光子激发的优点是什么?
1)增加了染料的选择性:共聚焦系统的激光器(Ar,Ar/Kr,HeNe)的激发光范围在488nm-647nm
这就意味着想用紫外激发荧光染料的实验进行,例如使用DAPI,Hoescht
而双光子的激发波长是单光子的两倍,所以紫外激发的染料能被近红外光激发。
2)减少光漂白:因为光漂白减少的减少使得用CFP/YFP做荧光共振能量转移(FRET)的实验的成功率提高。
3)无需特殊的物镜:从硬件的角度出发,用近红外光的波长激发紫外激发染料不需要特殊的紫外光学组件。
4)提高信噪比:激发光波长和发射光波长具有很大的差别,提高了信噪比。
5)漂白局限于焦点处:
因为荧光激发只发生在物镜的焦点上,所以就不需要共聚焦针孔了。
这样提高了光的检测,而且光漂白只发生在焦点上。
6)更容易穿透标本:红外波长的光不易被细胞散射,能穿透更深的标本。
5.相对于激光扫描共聚焦显微镜,双光子显微镜做的改进是什么?
1)减少了光漂白。
2)减少了光毒性。