烟气脱硝技术关键参数与工程实例
- 格式:ppt
- 大小:3.90 MB
- 文档页数:61
烟气脱硝工程方案1.前言烟气脱硝是现代环保工程中的一项重要技术,主要用于降低烟气中的氮氧化物排放(NOx)。
烟气中的NOx是一种常见的大气污染物,不仅对人体健康造成危害,还会对环境和生态系统造成破坏。
因此,烟气脱硝工程的实施对于改善大气环境质量具有重要意义。
本文将针对烟气脱硝工程进行详细的规划和方案设计。
2.工程概况本工程旨在对某燃煤发电厂2×660MW机组的烟气进行脱硝处理,以达到国家相关排放标准要求。
该发电厂位于工业园区,周围有多家居民区,烟气中的NOx排放对周边环境产生了一定的影响。
因此,烟气脱硝工程的实施对于保护周边环境以及居民健康具有积极的意义。
3.工程流程烟气脱硝工程主要包括烟气净化系统和脱硝设备两个部分。
其主要流程如下:3.1 烟气净化系统烟气净化系统是整个脱硝工程的前处理部分,其主要作用是将烟气中的灰尘和颗粒物进行除尘处理,以保证后续的脱硝设备能够正常运行。
该系统包括烟气进口处的除尘器、脱硫塔和除尘设备,主要技术指标如下:a)除尘效率:≥99%b)脱硫效率:≥95%c)除尘设备采用电除尘技术,脱硫设备采用石灰石法d)运行稳定可靠,保证出口烟气中的颗粒物和SO2含量符合国家排放标准3.2 脱硝设备脱硝设备是烟气脱硝工程的核心部分,其主要作用是将烟气中的NOx进行还原或者吸收处理,使其排放浓度符合国家相关标准。
脱硝设备主要采用SCR(Selective Catalytic Reduction)技术或者SNCR(Selective Non-Catalytic Reduction)技术,其主要技术指标如下:a)脱硝效率:≥90%b)采用先进的氨水喷射技术和催化剂,保证脱硝反应的高效进行c)运行稳定可靠,保证出口烟气中的NOx含量符合国家排放标准在实施烟气脱硝工程时,需要综合考虑工程的技术、经济、安全等因素,选择合适的技术方案,确保工程的实施效果和运行稳定可靠。
本工程的技术方案主要包括以下几个方面:4.1 工艺选型根据该燃煤发电厂的实际情况和烟气特性,选择合适的烟气脱硝工艺,主要考虑SCR和SNCR技术两种方案。
焦炉烟气脱硝技术方案1.设计原则1) 本方案为焦炉烟道气脱硝所制定,使焦炉烟囱排气中NOx浓度低于《炼焦化学工业污染物排放标准》中规定的排放限值。
2) 在系统设计中,要确保脱硝系统不论是正常还是发生故障时,绝不能影响焦炉生产。
3) 工艺总体设计尽量选择自身消耗资源少的方案。
4)在设计中严格执行国家、行业规范、标准和规定2焦炉烟气已知参数表3-1焦炉废烟气参数序号名称单位数据备注1 烟囱废气温度℃2802 烟囱废气流量Nm3/h 2200003 废气中NO含量mg/Nm3800X4 废气中SO含量mg/Nm310025 废气中烟尘含量mg/Nm33脱硝设计指标3.3.1脱硝反应器出口NOx浓度:<150mg/m33.3.2脱硝系统阻力:<2000Pa4 工艺技术原理及流程简述4.1 工艺技术原理采用选择性催化还原(SCR)法脱除NOx,其原理为:在尾气中加入一定量的氨气,以氨为还原剂,在催化剂表面上,将NOx还原为N2,其反应方程式如下: 4NOx+4NH3+O2→4N2+6H2O4.2 工艺流程简述本次脱硝反应中氨源可以采用气态氨、液氨或氨水,视现场情况而定。
氨经控制流量后喷入烟道气管道中,然后进入混合器中与烟气均匀混合。
最后,混合气进入脱硝反应器进行选择性还原反应过程,脱除烟气中的NOx。
另外,需要在反应器的进出口分别设置NOx传感器用以实时在线监测进出口的NOx浓度,并根据反馈信号控制氨气的加入量。
在本次脱硝过程中,加入的氨和氮氧化物以等摩尔比进行反应,按照焦炉烟道气入口氮氧化物为~800 mg/m3,出口控制小于150mg/m3,则理论所需投氨量:220000×650÷46×17÷1000000=53kg/h5 脱硝反应系统5.1 脱硝催化剂5.1.1脱NO x整体蜂窝陶瓷催化剂特点在本项目中选用以堇青石蜂窝陶瓷为基体的整体涂层式结构催化剂,该催化剂由堇青石蜂窝陶瓷、金属氧化物涂层、活性组分组成。
目录一、总则 (2)二、工程概况 (2)2.1气象条件 (2)2.2主要设计参数 (3)三、设计采用的标准和规范 (3)四、脱硝系统设计说明 (7)4.1 SNCR概述 (7)4.2 SNCR还原剂的选择 (7)五、SNCR系统技术要求 (8)5.1 总的要求 (8)5.2脱硝工艺系统 (11)5.3 SNCR系统描述 (13)5.4其他 (15)六、仪表和控制系统 (16)6.1 技术要求 (16)6.2脱硝系统控制方式 (17)6.3所提供的仪控设备满足的条件 (17)6.4主要设备 (18)七、电气系统 (25)7.1 技术要求 (25)7.2系统设计要求及卖方工作范围 (25)八、脱硝系统运行经济概算 (26)8.1 物料衡算 (26)九、质量保证及售后服务 (27)一、总则脱硝装置采用选择性非催化还原法(SNCR)。
当装置进口烟气中NO X的含量不大于550mg/Nm3时,保证脱硝装置出口烟气中的NO X 含量不大于200mg/Nm3。
本技术说明书对脱硝系统以内所必需具备的工艺系统设计、设备选择、采购、制造、供货运输,以及建设全过程的技术指导、调试、试验、试运行、考核验收、消缺、培训和最终交付投产等进行初步的说明。
二、工程概况2.1气象条件宝安区属于亚热带海洋性季风型气候区,其纬度较低,太阳辐射量较大,四季温和,雨季充沛,日照时间长,年平均气温为22.4℃,最高为36.6℃,最低为 1.4℃,每年5~9月为雨季,年降水量为1948.4mm,常年主导风向为东南风,平均日照时数2120小时。
累年平均气温22.4℃极端最高气温36.6℃极端最低气温 1.4℃累年平均相对湿度79%累年平均风速 2.6m/s年平均雨日144.7天年最大降雨量2662.2 mm年最小降雨量912.5 mm年平均降雨量1926 mm地震烈度7度2.2主要设计参数垃圾焚烧炉出口额定烟气量(运行值):79689 Nm3/h。
燃煤烟气脱硫脱硝技术及工程实例
燃煤烟气脱硫脱硝技术是用于减少燃煤过程中产生的二氧化硫(SO2)和氮氧化物(NOx)排放的一种控制技术。
该技术主要通过在燃烧过程中添加脱硫剂和脱硝催化剂,将烟气中的SO2和NOx转化为可吸收或可除去的化合物,以降低排放浓度。
工程实例中,燃煤电厂通常会采用湿法烟气脱硫(FGD)和选择性催化还原(SCR)技术实现烟气脱硫脱硝。
湿法烟气脱硫技术基于石膏脱硫、石灰石-石膏脱硫、海藻脱硫等反应装置,将烟气通过喷射脱硫剂(如石灰浆)来捕捉SO2。
脱硫剂与SO2反应生成石膏,经过过滤和脱水处理,得到可回收利用的石膏产品,并且将脱硫后的烟气中的绝大部分SO2排放量降低到环保要求以内。
而选择性催化还原技术通过在烟气中注入氨水并使用催化剂,将NOx还原为氮和水。
SCR设备常常设置在烟气处理系统的末端,通过催化剂上的反应,NOx在与氨水接触时被还原为无毒的氮气和水蒸气,从而实现NOx的脱除。
这些技术在全球范围内已经得到广泛应用。
例如,中国的部分大型燃煤电厂已经采用了脱硫脱硝技术,通过装备湿法烟气脱硫和SCR设备实现了低排放和环保化的燃煤发电。
此外,美国、德国等国家也广泛应用了类似的技术来降低燃煤电厂排放的空气污染物。
脱硫脱硝工程案例全文共四篇示例,供读者参考第一篇示例:脱硫脱硝工程是通过一系列化学或物理的反应过程,将大气中的二氧化硫和氮氧化物转化为无害的物质的过程。
这些二氧化硫和氮氧化物是主要的大气污染物之一,其排放会对人体健康和环境造成严重的危害。
脱硫脱硝工程的设计和实施对于改善空气质量具有重要意义。
脱硫脱硝工程的实施案例有很多,下面我们将介绍一些典型的案例。
1. 某燃煤发电厂的脱硫脱硝工程某燃煤发电厂位于城市郊区,因为排放的二氧化硫和氮氧化物超标,对周边环境造成了严重的污染。
为了改善环境质量,该厂商决定进行脱硫脱硝工程的改造。
对燃煤发电厂的设备进行全面的检测和评估,确定需要进行改造的设备和工艺。
然后,根据实际情况选择合适的脱硫脱硝技术,进行工程设计和施工。
对改造后的设备进行调试和验收,确保达到环保要求。
经过脱硫脱硝工程改造后,该燃煤发电厂的排放大幅降低,二氧化硫和氮氧化物浓度显著减少,环境质量得到了明显改善,周边居民的健康状况也得到了有效保护。
第二篇示例:脱硫脱硝工程是指利用各种技术手段去除烟气中的二氧化硫和氮氧化物的过程。
这些有害物质是燃烧过程中产生的主要污染物,对环境和人体健康都有着严重的危害。
脱硫脱硝工程在工业生产中扮演着非常重要的角色。
脱硫脱硝工程的原理是通过吸收、催化或其他方式,将烟气中的有害气体转化为无害物质或沉淀下来,从而达到净化烟气的目的。
下面将介绍一些脱硫脱硝工程的经典案例。
第一个案例是中国煤炭火电厂的脱硫脱硝工程。
随着我国煤炭消费量的不断增加,煤炭火电厂排放的二氧化硫和氮氧化物也越来越多,对环境造成了严重污染。
为了减少排放,中国各大火电厂纷纷引进脱硫脱硝设备,对烟气进行处理。
通过脱硫脱硝工程,煤炭火电厂的排放浓度大大降低,得到了环保部门的认可。
第二个案例是德国一家化工厂的脱硫脱硝工程。
化工厂是二氧化硫和氮氧化物排放较多的工业场所之一,为了减少对周边环境的影响,该化工厂投资引进了先进的脱硫脱硝设备,对烟气进行处理。
燃煤烟气脱硫脱硝技术及工程实例燃煤烟气脱硫脱硝是一种对烟气中SO2和NOx进行去除的重要技术。
随着环境保护要求的提高,燃煤电厂等工业生产设施需要采取有效的脱硫脱硝措施,以减少大气污染物的排放。
燃煤烟气脱硫主要采用湿法和干法两种方式进行,湿法脱硫常见的技术有石膏法、海水脱硫法和氨法等,干法脱硫主要采用煤炭活性炭法和选择性催化还原法。
石膏法是目前最常用的湿法脱硫技术之一,其基本原理是通过喷射石膏糊液或喷射石膏粉末来与烟气中的SO2反应生成石膏,达到脱硫的目的。
石膏法脱硫设施主要包括石膏浆液制备系统、石膏浆液输送系统、石膏浆液喷射系统和石膏浆液除尘系统等。
该技术在国内外也有广泛应用。
海水脱硫技术是近年来发展起来的一种新型湿法脱硫技术,其原理是利用海水中的碱性物质与SO2反应生成硫酸盐,达到脱硫的目的。
与传统的石膏法相比,海水脱硫技术具有碱源充足、液气比低、脱硫效率高等优点,但也面临着海水腐蚀问题。
因此,在实际工程应用中,需要针对不同情况进行系统设计和工艺优化。
氨法是另一种常用的湿法脱硫技术,其原理是通过将氨气和烟气中的SO2反应生成硫酸铵,并在后续的步骤中将其转化为硫酸,达到脱硫的目的。
氨法脱硫技术具有高脱硫效率、适应性强等特点,在一些特殊的燃烧工况下得到了广泛应用。
除了烟气脱硫技术外,烟气脱硝也是减少大气污染物排放的重要措施之一。
常见的烟气脱硝技术包括选择性催化还原法、非选择性催化还原法和氨水法等。
选择性催化还原法是目前最常用的烟气脱硝技术之一,其原理是利用还原剂(如氨气或尿素等)与烟气中的NOx反应生成氮气和水蒸气。
该技术具有脱硝效率高、操作简单等特点,已经在多个工业领域得到了广泛应用。
非选择性催化还原法是一种适用于高温烟气的脱硝技术,其原理是通过将烟气中的NOx与添加催化剂(如铵盐、金属氧化物等)的干燥剂接触反应,使其发生化学反应转化为氮气和水蒸气。
氨水法是另一种常用的烟气脱硝技术,其原理是将氨水喷射到烟气中,通过与烟气中的NOx反应生成氮气和水蒸气。
1、化学反应原理任意浓度的硫酸、硝酸,都能够跟烟气当中细颗粒物的酸、碱性氧化物产生化学反应,生成某酸盐和水,也能够跟其它酸的盐类发生复分解反应、氧化还原反应,生成新酸和新盐,通过应用高精尖微分捕获微分净化处理技术产生的巨大量水膜,极大程度的提高烟气与循环工质接触、混合效率,缩短工艺流程,在将具有连续性气、固、液多项流连续进行三次微分捕获的同时,连续进行三次全面的综合性高精度微分净化处理.2、串联叠加法工作原理现有技术装备以及烟气治理工艺流程的效率都是比较偏低,例如脱硫效率一般都在98%左右甚至更低,那么,如果将三个这样工作原理的吸收塔原型进行串联叠加性应用,脱硫效率一定会更高,例如99.9999%以上。
工艺流程工作原理传统技术整治大气环境污染,例如脱硫都是采用一种循环工质,那么,如果依次采用三种化学性质截然不同的循环工质,例如稀酸溶液、水溶液和稀碱溶液进行净化处理,当然可以十分明显的提高脱除效率,达到极其接近于百分百无毒害性彻底整治目标。
1、整治大气环境污染,除尘、脱硫、脱氮、脱汞,进行烟气治理,当然最好是一体化一步到位,当然首选脱除效率最高,效价比最高,安全投运率最高,脱除污染因子最全面,运行操作最直观可靠,运行费用最低的,高效除尘、脱硫、脱氮、脱汞一体化高精尖技术装备.2、高效除尘、脱硫、脱氮、脱汞一体化高精尖技术装备,采用最先进湿式捕获大化学处理技术非选择性催化还原法,拥有原创性、核心性、完全自主知识产权,完全国产化,发明专利名称《一种高效除尘、脱硫、脱氮一体化装置》,发明专利号。
3、吸收塔的使用寿命大于30年,保修三年,耐酸、耐碱、耐摩擦工质循环泵,以及其它标准件的保修期,按其相应行业标准执行。
4、30年以内,极少、甚至可以说不会有跑、冒、滴、漏、渗、堵现象的发生。
5、将补充水引进到3#稀碱池入口,根据实际燃煤含硫量和烟气含硝量调整好钠碱量以及相应补充水即可正常运行。
6、工艺流程:三个工质循环系统的循环工质,分别经过三台循环泵进行加压、喷淋。
垃圾焚烧烟气脱硝工艺选择及案例分析针对垃圾焚烧厂烟气的脱硝技术,分别介绍了各种脱硝技术及其组合脱硝工艺的工艺流程、经济性以及工艺特点。
对SNCR+SCR与SNCR+PNCR的NOx超低排放组合工艺分别在某省某生活垃圾焚烧项目与某省某垃圾焚烧项目的运行情况开展分析,总结SNCR+SCR与SNCR+PNCR这2种工艺在工程应用中的系统稳定性、经济性、运行过程存在的问题、工艺需改良的地方及方法。
在垃圾焚烧发电中,NOx主要来源于燃料型NOx与部分热力型NOx,GB18485—20**生活垃圾焚烧污染控制标准与欧盟20**的NOx排放标准分别为250mg/m3(日均值)与200mg/m3(日均值)。
近年来大气污染物排放标准日益趋严,氮氧化物的减排越来越受到重视,比方DB37/2376—20**某省区域性大气污染物综合排放标准的重点控制区域氮氧化物限值为100mg/m3,垃圾焚烧烟气氮氧化物排放浓度限值低于100mg/m3成了一个趋势。
垃圾焚烧烟气脱硝技术主要包括焚烧炉燃烧控制炉温、烟气回流技术、SNCR系统、SCR系统以及PNCR系统,其中焚烧炉燃烧控制炉温与烟气回流技术可有效降低原始NOx浓度。
目前对于垃圾炉排炉,采用焚烧炉燃烧控制炉温、烟气回流以及SNCR脱硝系统的情况下,NOx排放值仍无法稳定控制在100mg/m3以内。
针对NOx排放限值为100mg/m3的垃圾焚烧项目,目前国内垃圾焚烧发电厂采用的脱硝工艺有SNCR+SCR系统以及SNCR+PNCR系统。
笔者将分别介绍各种脱硝技术及其组合脱硝工艺的工艺流程、经济性以及工艺特点,并以某省与某省某垃圾焚烧发电项目为例,比照分析SNCR+SCR以及SNCR+PNCR 这2种超低NOx排放的脱硝组合工艺。
1脱硝工艺描述1.1SNCR脱硝系统SNCR是在焚烧炉第一烟道或第二烟道内喷射含有氨自由基的复原剂(常用的复原剂为尿素溶液或氨水溶液),NH3与氮氧化物开展反应生成氮气与水的方法。
脱硫脱硝工艺参数脱硫脱硝是烟气脱除二氧化硫和氮氧化物的工艺,是环保设备中的重要组成部分。
脱硫脱硝工艺参数主要包括烟气温度、烟气流量、喷雾液比例、吸收液浓度、反应器系统、氧化剂使用量等。
下面将对这些工艺参数进行详细介绍。
1.烟气温度:脱硫脱硝反应需要在一定温度范围内进行,常见的操作温度为120℃至180℃之间。
在这个温度范围内,催化剂反应效果最佳。
2.烟气流量:脱硫脱硝工艺的效果与烟气流量直接相关,较高的烟气流量可以提高脱硫脱硝的效率。
同时,对于大型燃煤发电厂等需要高效处理烟气的设备,需要对烟气流量进行精确控制。
3.喷雾液比例:脱硫脱硝过程中,酸性喷雾液用于与烟气中的二氧化硫和氮氧化物进行反应。
喷雾液比例是指酸性喷雾液与烟气的体积比。
根据不同的工艺要求和实际情况,喷雾液比例可以进行调整。
4.吸收液浓度:吸收液是脱硫脱硝过程中与酸性喷雾液反应生成固体产物的介质。
吸收液浓度是指固体溶解在吸收液中的比例。
不同的工艺要求对吸收液浓度有不同的要求,需要进行适当的调整。
5.反应器系统:脱硫脱硝是一个复杂的化学反应过程,需要借助反应器系统完成。
反应器系统包括各种反应器、冷凝器、加热器等。
合理设计反应器系统能够提高工艺的效率。
6.氧化剂使用量:在脱硝过程中,氧化剂用于将氮氧化物氧化成氮氧化物的过程,氧化剂使用量的控制直接影响脱硝效果。
过多的氧化剂使用会增加运行成本,过少的氧化剂使用会影响脱硝效果。
总之,脱硫脱硝工艺参数的选择和控制对于脱硫脱硝效果至关重要。
科学合理的工艺参数调整能够提高工艺的效率,降低污染物排放。
不同的工艺参数需要根据具体的工艺要求和实际情况进行调整,以达到理想的脱硫脱硝效果。