多路输出反激式电源
- 格式:doc
- 大小:97.00 KB
- 文档页数:6
(二 〇 一 五 年 六 月本科毕业设计说明书 学校代码: 10128 学 号: ************题 目:多路输出反激式开关稳压 电源的设计 学生姓名:XXX 学 院:电力学院 系 别:电力系 专 业:x x x x x x x 班 级:x x x 指导教师:XXX 副教授摘要开关电源是重要的动力之源。
尽管开关电源的电路可以千变万化,但器基本构成却大致相同。
开关电源的特点有体积小、质量轻、效率高、稳压范围宽等等。
凭借这些优点,很快代替了传统的线性稳压电源,并且在各种电子和电气产品中得到广泛应用,而众多开关电源中的反激式开关电源因为其所需元件少、拓扑结构简单、效率高等优点被广泛使用与多路输出、功率较小的电路当中。
本文设计主要基于TOPSwitch系列,通过EMI滤波、整流桥整流对220V 交流进行整流,光耦合反馈、TL431稳压配合TOPSwitch控制,变压器的降压,TOPSwith的PWM脉宽调制控制功能实现稳定输出,实现两路输出一路为15V,1A;另一路为5V,3A。
其中,TOPSwitch为核心,通过控制脉冲电压占空比控制反击式变换器的开通与关断,实现了电子设备对电源的要求,也抑制了对电网的干扰。
整个设计电路采用最新的,也较简单的电路设计,具有结构紧凑、开关平率高、性能可靠、输入电压范围宽、输出效率高等优点。
关键词:反激式变换器;开关电源;PWM控制AbstractSwitch regulated power supply is the most important energy source.Although the kinds of switch power supply have a lot,but they have the same basic after all.The advantages of switch power supply are smaller size,light weight,high efficiency and a wide range of voltage and so on. With so many advantages, the type switch take the place of the traditional switch rapidly, so it is abroad used into many electron and electric production.The most of the flyback switch power supply is widely used in circuit which is multiplexed output and less power,because of its simple structure and less demand for peripherals.This design is based on TOPSwich series, which relies on EMI filtration.The rectifier bridge rectifier on 220V AC.Optical coupling feedback. TL431 voltage regulator cooperation with TOPSwitch control.Reduction voltage of transfomer. The ability of PWM pulse width modulation control of TOPSwitch. It can make two output come ture.One is 15V;1A another is 5V;3A.The TOPSwitch is the center. It works by control off or on of the voltage duty ratio and the flyback converter. It make requirements of electronic equipment for source come true and inhibits grid interference,too.The whole circuit use newest and simplest design,which has characteristic is compact structure,high frequency,property reliable etc.Key words: Fiyback convert;Switch power ; PWM control目录第一章绪论 (1)1.1开关电源背景及意义 (1)1.2课题研究方案 (2)1.3论文主要做的工作 (2)第二章多路输出反激式开关电源介绍 (4)2.1 TOPSwitch200系列介绍 (4)2.2电源系统整体结构框图 (4)2.3反激式变换器的原理 (5)第三章多路输出反激式开关各级电路分析及设备选择 (7)3.1保护电路的选择 (7)3.2电源滤波器的计算与选择 (7)3.3整流桥的选择与计算 (8)3.4输入滤波电容的计算 (9)3.5钳位电路的选择 (9)3.6高频变压器的计算与选择 (10)3.7反馈电路的原理及结构 (14)3.8磁珠 (16)第四章实验结果分析 (17)第五章总结和展望 (19)参考文献 (20)附录 (21)谢辞 (22)第一章绪论1.1开关电源背景及意义今天是信息时代,电子技术迅速发展,开关电源也逐渐走上了时代的舞台,采用开关电源技术能够减小电源体积,提高功率密度和电源效率,节省大量的铜、铁等有色金属,当前实现中功率和小功率电源的方法就是使用反激是开关电源技术。
多路输出反激式开关电源设计要点多路输出反激式开关电源设计摘要:以UC3844芯片为控制核心,设计并制作了多路输出反激式开关电源。
完成了多路输出反激式开关电源系统设计,完成具体模块电路详细设计,包括 EMI 滤波电路、前级保护和整流桥电路、缓冲吸收电路、高频变压器、UC3844的启动与驱动电路、电流检测和过流保护电路等。
合理选择、设计和分配了开关电源各电路参数;设计出电路原理图,根据设计规范制作出 PCB,并组装出电源样机,最后对设计的样机进行测试验证。
开关电源样机输出电压稳定性较高,输出电压纹波较小,符合设计规范小于80mV 的要求;样机整体测试结果表明,电源各项指标均符合要求,输出稳定,性能较好。
关键词:开关电源;反激式;UC3844;模块化Design of Multi-output Flyback Switching Power SupplyAbstract: It was designed and produced a set of multiple output fly-back switching power supply, using the chip UC3844 as the control core. The design of the system and specific module circuits was completed. The module circuits include EMI filter circuit, level protection and bridge rectifier circuit, snubber circuit, high frequency transformer, start and drive circuit of UC3844, current sensing and over-current protection circuit. The parameters of switching power supply circuit were chose, designed and distributed reasonably. According to the schematic circuit design and design specifications, we produced the PCB, and assembled the prototype of power supply, also finished the test in the final.The higher stability of the output voltage of the switching power supply prototype, the output voltage ripple is small, meet the design specifications to the requirements of less than 80mV; The prototype of the overall test results show that the power of the indicators are in line with the requirements, output stability, better performance.Keywords: switch power supply;flyback;UC3844;Modular目录1 概述 01.1 课题研究背景与意义 01.2 课题设计内容 02 反激式开关电源系统分析 02.1 反激变换器工作原理分析 02.2 控制电路分析 (2)2.3 系统整体架构 (4)3系统设计 (5)3.1 变压器设计 (5)3.2 控制芯片选择 (11)3.3 控制芯片驱动电路及定时电阻电容计算 (13)3.4 缓冲吸收电路 (17)3.5 前置保护电路 (18)3.6 EMI滤波电路选择与设计 (18)3.7 输入整流滤波电路 (19)3.8 反馈电路设计 (21)3.9电流检测和过流保护电路 (22)3.10 软启动电路 (23)3.11 MOS管瞬态抑制保护电路 (24)4 系统调试 (24)4.1 硬件调试 (24)4.2 空载输出电压波形测量 (25)4.3 纹波测量与分析 (25)5 结束语 (29)参考文献 (30)致谢 (31)附录 (32)附录1 多路输出反激式开关电源原理图 (34)附录2 多路输出反激式开关电源PCB图 (35)附录3 多路输出反激式开关电源系统元器件清单 (36)多路输出反激式开关电源设计1 概述1.1 课题研究背景与意义随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电力电子设备都离不开可靠的电源,其供电一般采用开关电源。
多路输出电源对于电源应用者来讲,一般都希望其所选择的新巨电源产品为“傻瓜型”的,即所选择的电源电压只要负载不超过电源最大值,无论系统的各路负载特性如何变化,而各路电源电压依然精确无误。
仅就这一点来讲,目前绝大多数的多路输出电源是不尽人意的。
为了更进一步说明多路输出电源的特性,首先从图1所示多路输出开关电源框图讲起。
从图1可以看到,真正形成闭环控制的只有主电路Vp,其它Vaux1、Vaux2等辅电路都处在失控之中。
从控制理论可知,只有Vp无论输入、输出如何变动(包括电压变动,负载变动等),在闭环的反馈控制作用下都能保证相当高的精度(一般优于0.5%),也就是说Vp在很大程度上只取决于基准电压和采样比例。
对Vaux1,Vaux2而言,其精度主要依赖以下几个方面:1)T1主变器的匝比,这里主要取决于Np1:Np2或Np1:Np32)辅助电路的负载情况。
3)主电路的负载情况注:如果以上3点设定后,输入电压的变动对辅电路的影响已经很有限了。
图1在以上3点中,作为一个具体的开关电源变换器,主变压器匝比已经设定,所以影响辅助电路输出电压精度最大的因素为主电路和辅电路的负载情况。
在开关电源产品中,有专门的技术指标说明和规范电源的这一特性,即就是交叉负载调整率。
为了更好地讲述这一问题,先将交叉负载调整率的测量和计算方法讲述如下。
电源变换器多路输出交叉负载调整率测量与计算步骤1)测试仪表及设备连接。
2)调节被测电源变换器的输入电压为标称值,合上开关S1、S2…Sn,调节被测电源变换器各路输出电流为额定值,测量第j路的输出电压Uj,用同样的方法测量其它各路输出电压。
3)调节第j路以外的各路输出负载电流为最小值,测量第j路的输出电压ULj。
4)按式(1)计算第j路的交叉负载调整率SIL。
SIL=×100%(1)式中:ΔUj为当其它各路负载电流为最小值时,Uj与该路输出电压ULj之差的绝对值;Uj为各路输出电流为额定值时,第j路的输出电压。
摘要电子设备对电源的要求日益增高,促进了开关电源技术的不断发展。
本文介绍了基于美国PI公司生产的单片开关电源芯片TOPSwitch系列设计的多输出的AC/DC开关电源。
该电源性能优良,具有稳压效果好,纹波小,负载调整率高等优点.可作为电机控制的电源模块,具有很高的应用价值。
设计电路选用TOPSwitch系列芯片的TOP244Y,该芯集成了PWM控制器、MOSFET功率开关管和欠电压、过电压等保护电路,芯片的开关频率为132kHZ,最大占空比为78%。
设计电路的开关电源输出功率为25W时,实现了12V/1.2A,5V/2A和30V/20mA三路直流电压输出。
论文介绍了开关电源相关内容,反激式开关电源的原理和应用技术,为电路设计提供了理论指导,并且提出了反激式开关电源的设计规划。
仔细分析反激式开关电源之后,选择了电路所需的元器件的型号和参数,最终完成电路图的设计。
关键词:开关电源;反激式;多路输出;TOPSwitch-GXAbstractElectronic devices demanded on power increasingly higher to promote the continuous development of converter technology. This paper introduced the small power multi output AC/DC converter design based on the chip of TOP-Switch produced by American company Power Integrations.This power supply has good performance such as high voltage stability,low output voltage ripple,good load adjustmentrate and so on . It can be used for motor control as a power module and has better application value.The converter design used TOP244Y as switching chip, which had PWM control circuit and power MOSFET, the chip’s switching frequency was 132 kHz, the maximum duty cycle was 78%. When the output power was 25W, switching power served three DC outputs 12V/1.2A, 5V/2A and 30V/20Ma.The paper introduced some related content about the converter and the theory and technology of fly-back converter, to provide a theoretical guidance for circuit design. And then the paper proposed a fly-back converter supply design plan. And next, I designed a fly-back switching power circuit, and selected circuit’s components and parameters.Keywords: Switching power supply;Fly-back;Multiple output;TOPSwitch-GX目次1 绪论能源在社会现代化方面起着关键作用。
供电模块电路器件选型交流输入保险线选型:耐压:有效值220V 。
选一定裕量,有效值300V 左右就行。
电流:由功率来选。
我们的开关电源,最大输出20W 。
电流选的裕量大一些。
我们按40W 算。
AU P I18.022040===。
这是电流有效值,保险线再选大些,选到0.5到1A 均可,这里选1A 。
直流输入保险线选型:耐压:直流最大输入为650V 。
选800V 到1000V ,都可以。
我们这里对于耐压的裕量选的大一些。
选1000V 。
电流:开关电源最大输出功率20W ,按40W 选。
在最小直流电压,最大功率输出时,产生最大电流。
有A VW I 267.015040max ==。
加上裕量,我们选1A 的。
交流输入滤波X 安规电容:耐压:接在交流侧220的输入,耐压选个250到275V 就可以。
一定要选安规电容,不能用别的电容代替。
容值:这里只是用来滤波,消除电磁干扰。
容值选个小一点的就可以。
不用考虑太多。
这里定为:MKP X2 104的。
(一般电容容值的确定考虑如下:1.与附近电感配合,要求去增益和滤波的,或算个截止频率的一起选。
2.没有要求就考虑寄生电感和漏电流的要求。
)交流侧共模电感器耐压:共模电感接入电路中相当于一个导线,耐压一般没有问题。
查资料大概看了看。
都在DC1500V 以上。
最大电流:也就是额定电流。
算出这里会流过的最大电流AVW I 18.022040max ==。
选一定的裕量,我们这里选择额定电流一定要大于0.5A 的电感。
电感量:没有太多时间从理论上计算到底选多大的电感。
一般在共模电感的型号中选。
在满足电流的基础上。
选一个大一点电感,这样效果会更明显些。
这里选15mH ,额定电流为3A 。
型号:CMI15mH/3AY/H25。
整流二极管220V 交流输入二极管不控整流,是十分常用的。
这里的二极管也常用。
耐压:最高电压要到311V 以上。
为了安全,一般耐压选择会大一些。
这里为了与直流侧的型号统一,一起选择。
多路输出反激式开关电源的反馈环路设计引言开关电源的输出是直流输入电压、占空比和负载的函数。
在开关电源设计中,反馈系统的设计目标是无论输入电压、占空比和负载如何变化,输出电压总在特定的范围内,并具有良好的动态响应性能。
电流模式的开关电源有连续电流模式(CCM)和不连续电流模式(DCM)两种工作模式。
连续电流模式由于有右半平面零点的作用,反馈环在负载电流增加时输出电压有下降趋势,经若干周期后最终校正输出电压,可能造成系统不稳定。
因此在设计反馈环时要特别注意避开右半平面零点频率。
当反激式开关电源工作在连续电流模式时,在最低输入电压和最重负载的工况下右半平面零点的频率最低,并且当输入电压升高时,传递函数的增益变化不明显。
当由于输入电压增加或负载减小,开关电源从连续模式进入到不连续模式时,右半平面零点消失从而使得系统稳定。
因此,在低输入电压和重输出负载的情况下,设计反馈环路补偿使得整个系统的传递函数留有足够的相位裕量和增益裕量,则开关电源无论在何种模式下都能稳定工作。
1 反激式开关电源典型设计图l是为变频器设计的反激式开关电源的典型电路,主要包括交流输入整流电路,反激式开关电源功率级电路(有PWM控制器、MOS管、变压器及整流二极管组成),RCD缓冲电路和反馈网络。
其中PWM控制芯片采用UC2844。
UC2844是电流模式控制器,芯片内部具有可微调的振荡器(能进行精确的占空比控制)、温度补偿的参考基准、高增益误差放大器、电流取样比较器。
开关电源设计输入参数如下:三相380V工业交流电经过整流作为开关电源的输入电压Udc,按最低直流输入电压Udcmin 为250V进行设计;开关电源工作频率f为60kHz,输出功率Po为60W。
当系统工作在最低输入电压、负载最重、最大占空比的工作情况下,设计开关电源工作在连续电流模式(CCM),纹波系数为0.4。
设计的开关电源参数如下:变压器的原边电感Lp=4.2mH,原边匝数Np=138;5V为反馈输出端,U5V=5V,负载R5=5Ω,匝数N5V=4,滤波电容为2个2200μF/16V电容并联,电容的等效串联电阻Resr=34mΩ;24V输出的负载R24=24Ω,匝数N24V=17;15V输出的负载R15=15Ω,匝数N15V=1l;一1 5V输出的负载R-15V=15Ω,匝数N-15V=11。
摘要电子设备对电源的要求日益增高,促进了开关电源技术的不断发展。
本文介绍了基于美国PI公司生产的单片开关电源芯片TOPSwitch系列设计的多输出的AC/DC开关电源。
该电源性能优良,具有稳压效果好,纹波小,负载调整率高等优点.可作为电机控制的电源模块,具有很高的应用价值。
设计电路选用TOPSwitch系列芯片的TOP244Y,该芯集成了PWM控制器、MOSFET功率开关管和欠电压、过电压等保护电路,芯片的开关频率为132kHZ,最大占空比为78%。
设计电路的开关电源输出功率为25W时,实现了12V/1.2A,5V/2A和30V/20mA三路直流电压输出。
论文介绍了开关电源相关内容,反激式开关电源的原理和应用技术,为电路设计提供了理论指导,并且提出了反激式开关电源的设计规划。
仔细分析反激式开关电源之后,选择了电路所需的元器件的型号和参数,最终完成电路图的设计。
关键词:开关电源;反激式;多路输出;TOPSwitch-GXAbstractElectronic devices demanded on power increasingly higher to promote the continuous development of converter technology. This paper introduced the small power multi output AC/DC converter design based on the chip of TOP-Switch produced by American company Power Integrations.This power supply has good performance such as high voltage stability,low output voltage ripple,good load adjustmentrate and so on . It can be used for motor control as a power module and has better application value.The converter design used TOP244Y as switching chip, which had PWM control circuit and power MOSFET, the chip’s switching frequency was 132 kHz, the maximum duty cycle was 78%. When the output power was 25W, switching power served three DC outputs 12V/1.2A, 5V/2A and 30V/20Ma.The paper introduced some related content about the converter and the theory and technology of fly-back converter, to provide a theoretical guidance for circuit design. And then the paper proposed a fly-back converter supply design plan. And next, I designed a fly-back switching power circuit, and selected circuit’s components and parameters.Keywords: Switching power supply;Fly-back;Multiple output;TOPSwitch-GX目次1 绪论能源在社会现代化方面起着关键作用。
反激电源多路输出交叉调整率得的问题文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-反激电源多路输出交叉调整率的产生原因和改进方法。
理论上反激电源比正激电源更使用于多路输出,但实际上反击电源的多路输出交叉调整率比正激电源更难做,这主要是正激后面加了个偶合电感,而反激的漏感不是零。
由于在开关管开通期间,原边电流不断的上升,在Ton结束时达到峰值Ip。
这个电流在开关断开的瞬间,会被传递到副边。
理解交叉调整率非常重要的一点是,传递到副边的电流是如何被副边的多路输出所分配的。
文中会指出最初传递到副边电流的大多数会传递到漏感最小的那一路输出。
如果这一路没有用做开关管PWM的反馈控制,那么它的峰值就会很高。
相反,如果这一路用于开关管PWM的反馈控制,那么其他路的输出就会受到降低。
另外一个于交叉调整率相关的非常重要的特征就是非反馈绕组输出的匝数。
具体来讲,为了保正输出电压在规定的误差范围内,需要增加或减少他们的匝数或者是调节反馈反馈绕组的输出。
为了使所有的输出在一定的误差范围内,这必然会增加调试的时间。
在许多情况下,往往需要增加额外的线性或开关稳压电路来解决由于交叉调整率带来多路输出电压不能达到规定误差范围内的问题。
很多人做反激电源时都遇到这个问题,一路输出稳定性非常好,但多路输出时没有直接取反馈的路的电压会随其他路的负载变化而剧烈变化,这是什么原因呢?原来,在MOS关断,次级输出时能量的分配是有规律的,它是按漏感的大小来分配,具体是按匝比的平方来分配(这个可以证明,把其他路等效到一路就可得出结果)如:5V3匝,漏感1uH,12V7匝,如果漏感为(7/3)(平方)*1=5.4uH,则两路输出的电流变化率是一样的,没有交叉调整率的问题,但如果漏感不匹配时,就会有很多方面影响到输出调整率:1.次级漏感,这是明显的;2.输入电压,如果设计不是很连续,则在高压时进入DCM状态,DCM时由于电流没有后面的平台,漏感影响更显着。
多路输出单端反激式开关电源设计
1.确定输出电压和电流要求:首先要确定每个输出端口所需的电压和
电流。
根据实际需求和应用场景确定输出要求。
2.选择开关电源IC:根据多路输出和高效能的要求,选择合适的开
关电源IC。
开关电源IC能够实现高效能和多路输出的设计。
根据输出要
求选择合适的IC。
3.设计适配器电路:根据所选的开关电源IC,设计适配器电路。
适
配器电路是将输入电压转换为适合开关电源IC的电压。
适配器电路通常
包括整流、滤波和调压等部分。
4.设计反激式变换器:反激式变换器是多路输出单端反激式开关电源
的核心部分。
反激式变换器能够将适配器电路输出的电压进行变换和调节,得到不同的输出电压和电流。
根据输出要求设计合适的反激式变换器。
5.设计输出电路:根据每个输出端口的电压和电流要求,设计合适的
输出电路。
输出电路通常包括滤波、调压和过载保护等部分。
6.进行仿真和优化:设计完成后,进行电路仿真和优化。
通过仿真可
以验证电路的正常运行和性能是否满足要求。
根据仿真结果进行优化和调整。
7.制作电路原型并测试:将设计的电路制作成原型,并进行测试。
测
试包括输入电压范围、输出电压和电流精度、效率和稳定性等方面的测试。
总结:。
多路输出反激式开关电源设计文章根据开关电源的具体要求,在阐述基于TOP-Switch系列芯片的单端反激式开关电源原理的基础上,详细介绍了一种用于轨道车辆电动塞拉门控制系统的小功率多路输出DC/DC开关电源的设计方法。
该电路主电路采用反激式电路,应用反馈手段和脉冲调制技术实现多路输出的稳压电源,最后,进行了总体设计,在轨道车辆电动门控制系统中有很好的应用前景。
标签:开关电源;反激式电路;高频变压器引言开关电源是综合现代电力电子、自动控制、电力变换等技术,通过控制开关管开通和关断的时间比率,来获得稳定输出电压的一种电源,因其具有体积小、重量轻、效率高、发热量低、性能稳定等优点,在现代电力电子设备中得到广泛应用,代表着当今稳压电源的发展方向,已成为稳压电源的主导产品。
文章设计了一种基于TOP-Switch系列芯片的小功率多路输出DC/DC的反激式开关电源。
1 电源设计要求文章设计的开关电源将用于轨道车辆电动门控制系统中,最大的功率为12W,分四路输出,具体设计参数如下:(1)输入电压Vin=110V;(2)开关频率fs=132kHz;(3)效率η=80%;(4)输出电压/电流48V/0.2A,15V/0.02A-15V/0.02A,5V/0.3A;(5)输出功率12W;(6)电压精度1%;(7)纹波率1%。
(8)负载调整率±3%,电源最小输入电压为Vimin=77V,最大输入电压为Vimax=138V。
考虑到设计要满足结构简单,可靠性高,经济性及电磁兼容性等要求,结合本设计输出功率小的特点,最终选用了单端反激式开关电源,它具有结构简单,所需元器件少,可靠性高,驱动电路简单的特点,适合多路输出场合。
2 单端反激式开关电源的基本原理单端反激式开关电源由功率MOS管,高频变压器,无源钳位RCD电路及输出整流电路组成。
其工作原理是当开关管Q被PWM脉冲激励而导通时,输入电压就加在高频变压器的初级绕组N1上,由于变压器次级整流二极管D1反接,次级绕组N2没有电流流过;当开关管关断时,次级绕组上的电压极性是上正下负,整流二极管正偏导通,开关管导通期间储存在变压器中的能量便通过整流二极管向输出负载释放。
反激电源多路输出交叉调整率得的问题Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998反激电源多路输出交叉调整率的产生原因和改进方法。
理论上反激电源比正激电源更使用于多路输出,但实际上反击电源的多路输出交叉调整率比正激电源更难做,这主要是正激后面加了个偶合电感,而反激的漏感不是零。
由于在开关管开通期间,原边电流不断的上升,在Ton结束时达到峰值Ip。
这个电流在开关断开的瞬间,会被传递到副边。
理解交叉调整率非常重要的一点是,传递到副边的电流是如何被副边的多路输出所分配的。
文中会指出最初传递到副边电流的大多数会传递到漏感最小的那一路输出。
如果这一路没有用做开关管PWM的反馈控制,那么它的峰值就会很高。
相反,如果这一路用于开关管PWM的反馈控制,那么其他路的输出就会受到降低。
另外一个于交叉调整率相关的非常重要的特征就是非反馈绕组输出的匝数。
具体来讲,为了保正输出电压在规定的误差范围内,需要增加或减少他们的匝数或者是调节反馈反馈绕组的输出。
为了使所有的输出在一定的误差范围内,这必然会增加调试的时间。
在许多情况下,往往需要增加额外的线性或开关稳压电路来解决由于交叉调整率带来多路输出电压不能达到规定误差范围内的问题。
很多人做反激电源时都遇到这个问题,一路输出稳定性非常好,但多路输出时没有直接取反馈的路的电压会随其他路的负载变化而剧烈变化,这是什么原因呢原来,在MOS关断,次级输出时能量的分配是有规律的,它是按漏感的大小来分配,具体是按匝比的平方来分配(这个可以证明,把其他路等效到一路就可得出结果)如:5V 3匝,漏感1uH,12V 7匝,如果漏感为(7/3)(平方)*1=,则两路输出的电流变化率是一样的,没有交叉调整率的问题,但如果漏感不匹配时,就会有很多方面影响到输出调整率:1.次级漏感,这是明显的;2.输入电压,如果设计不是很连续,则在高压时进入DCM状态,DCM时由于电流没有后面的平台,漏感影响更显着。
(二 〇 一 五 年 六 月本科毕业设计说明书 题 目:多路输出反激式开关稳压 电源的设计 学生姓名:xxxxx 学 院:电力学院 系 别:电力系 专 业:风能与动力工程 班 级:风能x x x x 指导教师:xxxx 副教授摘要开关电源是重要的动力之源。
尽管开关电源的电路可以千变万化,但器基本构成却大致相同。
开关电源的特点有体积小、质量轻、效率高、稳压范围宽等等。
凭借这些优点,很快代替了传统的线性稳压电源,并且在各种电子和电气产品中得到广泛应用,而众多开关电源中的反激式开关电源因为其所需元件少、拓扑结构简单、效率高等优点被广泛使用与多路输出、功率较小的电路当中。
本文设计主要基于TOPSwitch系列,通过EMI滤波、整流桥整流对220V 交流进行整流,光耦合反馈、TL431稳压配合TOPSwitch控制,变压器的降压,TOPSwith的PWM脉宽调制控制功能实现稳定输出,实现两路输出一路为15V,1A;另一路为5V,3A。
其中,TOPSwitch为核心,通过控制脉冲电压占空比控制反击式变换器的开通与关断,实现了电子设备对电源的要求,也抑制了对电网的干扰。
整个设计电路采用最新的,也较简单的电路设计,具有结构紧凑、开关平率高、性能可靠、输入电压范围宽、输出效率高等优点。
关键词:反激式变换器;开关电源;PWM控制AbstractSwitch regulated power supply is the most important energy source.Although the kinds of switch power supply have a lot,but they have the same basic after all.The advantages of switch power supply are smaller size,light weight,high efficiency and a wide range of voltage and so on. With so many advantages, the type switch take the place of the traditional switch rapidly, so it is abroad used into many electron and electric production.The most of the flyback switch power supply is widely used in circuit which is multiplexed output and less power,because of its simple structure and less demand for peripherals.This design is based on TOPSwich series, which relies on EMI filtration.The rectifier bridge rectifier on 220V AC.Optical coupling feedback. TL431 voltage regulator cooperation with TOPSwitch control.Reduction voltage of transfomer. The ability of PWM pulse width modulation control of TOPSwitch. It can make two output come ture.One is 15V;1A another is 5V;3A.The TOPSwitch is the center. It works by control off or on of the voltage duty ratio and the flyback converter. It make requirements of electronic equipment for source come true and inhibits grid interference,too.The whole circuit use newest and simplest design,which has characteristic is compact structure,high frequency,property reliable etc.Key words: Fiyback convert;Switch power ; PWM control目录第一章绪论 (1)1.1开关电源背景及意义 (1)1.2课题研究方案 (2)1.3论文主要做的工作 (2)第二章多路输出反激式开关电源介绍 (4)2.1 TOPSwitch200系列介绍 (4)2.2电源系统整体结构框图 (4)2.3反激式变换器的原理 (5)第三章多路输出反激式开关各级电路分析及设备选择 (7)3.1保护电路的选择 (7)3.2电源滤波器的计算与选择 (7)3.3整流桥的选择与计算 (8)3.4输入滤波电容的计算 (8)3.5钳位电路的选择 (9)3.6高频变压器的计算与选择 (10)3.7反馈电路的原理及结构 (14)3.8磁珠 (16)第四章实验结果分析 (17)第五章总结和展望 (19)参考文献 (20)附录 (21)谢辞 (22)第一章绪论1.1开关电源背景及意义今天是信息时代,电子技术迅速发展,开关电源也逐渐走上了时代的舞台,采用开关电源技术能够减小电源体积,提高功率密度和电源效率,节省大量的铜、铁等有色金属,当前实现中功率和小功率电源的方法就是使用反激是开关电源技术。
多路输出反激式开关电源的设计与实现多路输出反激式开关电源的设计与实现一、引言开关电源是一种高效率、高可靠性、体积小、重量轻的电源设备,被广泛应用于电子产品中。
多路输出反激式开关电源是一种基于反激式开关电源拓扑结构,能够同时提供多个稳定电压输出的电源系统。
本文将针对这种电源系统进行设计与实现。
二、多路输出反激式开关电源原理多路输出反激式开关电源的基本原理是利用开关管进行高频开关,通过变压器传递能量,并通过整流和滤波电路获得稳定的输出电压。
其核心是控制开关管的导通时间,以实现不同输出电压的调节。
三、电路设计与元器件选择1. 输入电路设计:为了保护开关管和输入电源,应采用滤波电感和输入电容进行滤波处理,同时添加过流保护电路。
2. 变压器设计:根据输出电压和电流要求确定变压器的参数,选择合适的线性密度和电感,以获得理想的传输效果。
3. 输出电路设计:对于多路输出反激式开关电源,每个输出通道都要设计独立的整流和滤波电路,以确保稳定的输出电压。
4. 控制电路设计:采用反馈控制电路,通过对反馈信号的处理调节开关管的导通时间,实现多路输出电压的精确控制。
四、PCB板设计PCB板是电路实现的载体,其设计主要包括布局设计、走线设计和连接设计。
在多路输出反激式开关电源中,需要考虑分区布局,分别放置输入输出电路和控制电路,以最大限度地减小干扰。
同时,在走线设计中,应注意分离高频信号和低频信号,减少耦合。
五、电路调试与输出稳定性测试在完成电路设计与制作后,需要进行电路调试,并测试输出稳定性。
调试时可以通过示波器观察各个节点的波形,以确定是否存在异常。
并通过负载变化测试,验证输出电压是否能够保持稳定。
六、改进与优化在实际应用中,根据具体需求可以对多路输出反激式开关电源进行改进和优化。
常见的改进方法包括添加过压、欠压保护功能,提高电源的效率,降低输出纹波等。
七、结论多路输出反激式开关电源作为一种高效、可靠、稳定的电源系统,具有广泛应用前景。
毕业设计(论文)开题报告题目多路输出单端反激式开关电源仿真与设计学生姓名学号院( 系)专业指导教师报告日期2015 年11 月24 日题目类别(请在有关项目下作√记号)设计论文其它√题目需要在实验、实习、工程实践和社会调查等社会实践中完成是否□毕业设计(论文)起止时间2015年10月24日起至2016年04月26日(共16周)1.设计的意义及国内外状况1.1 设计的意义开关电源是电力电子设备中不可或缺的部分,与人们的生活、工作有着密不可分的关系。
在工业自动化控制、军工设备、科研设备、发光二极管照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备和半导体制冷制热等领域, 都能看到开关电源产品被广泛应用。
开关电源一般由脉冲宽度调节控制和场效应管构成,利用现代电力电子技术,是控制开关管关断和导通时间的比率,维持稳定输出电压的一种电源。
开关电源的发展方向是高频化。
高频化能使开关电源小型化,并使开关电源在更广泛的领域适用,尤其是能在高新技术领域应用,从而推动高新技术产品的小型化、轻便化。
另外, 开关电源的发展与应用在节约能源、节约资源和保护环境等方面都具有重要的意义。
现有的稳压电源可分成两大类: 线性稳压电源和开关稳压电源.线性稳压电源是比较早使用的一类直流稳压电源, 其特点是输出电压比输入电压低, 反应速度快, 输出纹波较小, 工作产生的噪声低, 效率较低, 发热量大( 尤其是大功率电源) , 间接地给系统增加了热噪声。
开关稳压电源是一种新颖的稳压电源, 通过改变调整管的导电时间和截止时间的相对长短来改变输出电压的大小。
开关稳压电源具有功耗小、效率高、体积小、质量轻和稳压范围宽等特点。
但开关电源还存在较为严重的开关干扰、输出纹波电压高、瞬变响应较差和电磁干扰等缺点。
这就需要靠技术手段和工艺措施来克服上述缺点。
近年来, 电源技术的飞速发展, 使高效率的开关电源得到了越来越广泛的应用。
1.2 国内外研究现状1955 年, 美国人罗耶发明了自激振荡推挽晶体管单变压器直流变换器, 标志着实现了高频转换控制电路. 1957 年, 美国人查赛发明了自激式推挽晶体管双变压器. 1964 年, 美国科学家们提出了取消工频变压器的串联开关电源的设想,为减小电源的体积和质量开创了一条根本的途径.1969 年, 随着大功率硅晶体管耐压的提高和二极管反向恢复时间的缩短等元器件性能的改善, 终于做成了25kHz的开关电源.开关电源最早起源于上世纪50年代初,美国宇航局以小型化、轻量化、为目标,为搭载火箭开发了开关电源。
多路输出反激式开关电源设计随着现代科技的高速发展,功率器件的不断更新,PWM技术的发展日趋完善,开关电源正朝着短、小、轻、薄的方向发展。
本文介绍了一种基于TOPSwith系列芯片设计的小功率多路输出AC/DC开关电源的原理及设计方法。
设计要求本文设计的开关电源将作为智能仪表的电源,最大功率为10 W。
为了减少PCB的数量和智能仪表的体积,要求电源尺寸尽量小并能将电源部分与仪表主控部分做在同一个PCB上。
考虑10W的功率以及小体积的因素,电路选用单端反激电路。
单端反激电路的特点是:电路简单、体积小巧且成本低。
单端反激电路由输入滤波电路、脉宽调制电路、功率传递电路(由开关管和变压器组成)、输出整流滤波电路、误差检测电路(由芯片TL431及周围元件组成)及信号传递电路(由隔离光耦及电阻组成)等组成。
本电源设计成表面贴装的模块电源,其具体参数要求如下:输出最大功率:10W输入交流电压:85~265V输出直流电压/电流:+5V,500mA;+12V,150mA;+24V,100mA纹波电压:≤120mV单端反激式开关电源的控制原理所谓单端是指TOPSwitch-II系列器件只有一个脉冲调制信号功率输出端一漏极D。
反激式则指当功率MOSFET导通时,就将电能储存在高频变压器的初级绕组上,仅当MOSFET关断时,才向次级输送电能,由于开关频率高达100kHz,使得高频变压器能够快速存储、释放能量,经高频整流滤波后即可获得直流连续输出。
这也是反激式电路的基本工作原理。
而反馈回路通过控制TOPSwitch器件控制端的电流来调节占空比,以达到稳压的目的。
TOPSwitch-Ⅱ系列芯片选型及介绍TOPSwitch-Ⅱ系列芯片的漏极(D)与内部功率开关器件MOSFET相连,外部通过负载电感与主电源相连,在启动状态下通过内部开关式高压电源提供内部偏置电流,并设有电流检测。
控制极(C)用于占空比控制的误差放大器和反馈电流的输入引脚,与内部并联稳压器连接,提供正常工作时的内部偏置电流,同时也是提供旁路、自动重起和补偿功能的电容连接点。
源极(S)与高压功率回路的MOSFET的源极相连,兼做初级电路的公共点与参考点。
内部输出极MOSFET的占空比随控制引脚电流的增加而线性下降,控制电压的典型值为5.7 V,极限电压为9 V,控制端最大允许电流为100 mA。
在设计时还对阈值电压采取了温度补偿措施,以消除因漏源导通电阻随温度变化而引起的漏极电流变化。
当芯片结温大于135℃时,过热保护电路就输出高电平,关断输出极。
此时控制电压Vc进入滞后调节模式,Vc端波形也变成幅度为4.7V~5.7V的锯齿波.若要重新启动电路,需断电后再接通电路开关,或者将Vc降至3.3V以下,再利用上电复位电路将内部触发器置零,使MOSFET恢复正常工作。
采用TOPSwitch-Ⅱ系列设计单片开关电源时所需外接元器件少,而且器件对电路板布局以及输入总线瞬变的敏感性大大减少,故设计十分方便,性能稳定,性价比更高。
对于芯片的选择主要考虑输入电压和功率。
由设计要求可知,输入电压为宽范围输入,输出功率不大于10W,故选择TOP222G。
电路设计本开关电源的原理图如图1所示。
电源主电路为反激式,C1、L1、C2,接在交流电源进线端,用于滤除电网干扰,C5接在高压和地之间,用于滤除高频变压器初、次级后和电容产生的共模干扰,在国际标准中被称为"Y电容"。
C1跟C5都称作安全电容,但C1专门滤除电网线之间的串模干扰,被称为"X电容"。
为承受可能从电网线窜入的电击,可在交流端并联一个标称电压u1mA为275V的压敏电阻VSR。
鉴于在功率MOSFET关断的瞬间,高频变压器的漏感产生尖峰电压UL,另外,在原边上会产生感应反向电动势UOR,二者叠加在直流输入电压上。
典型的情况下,交流输入电压经整流桥整流后,其最高电压UImax=380V,UL≈165V,UOR=135V,贝UOR+UL+UOR≈680V。
这就要求功率MOSFET至少能承受700V的高压,同时还必须在漏极增加钳位电路,用以吸收尖峰电压,保护TOP222G中的功率MOSFET。
本电源的钳位电路由D2、D3组成。
其中D2为瞬态电压抑制器(TVS)P6KE200,D3为超快恢复二极管UF4005。
当MOSFET导通时,原边电压上端为正,下端为负,使得D3截止,钳位电路不起作用。
在MOSFET截止瞬间,原边电压变为下端为正,上端为负,此时D1导通,电压被限制在200V左右。
输出环节设计以+5V输出环节为例,次级线圈上的高频电压经过UF5401型100V/3A的超快恢复二极管D7,由于+5V输出功率相对较大,于是增加了后级LC滤波器,以减少输出纹波电压。
滤波电感L2选用被称作"磁珠"的3.3μH穿心电感,可滤除D7在反向恢复过程中产生的开关噪声。
对于其他两路输出,只需在输出端分别加上滤波电容。
其中R3、R4分别为输出的假负载,它们能降低各自输出端的空载和轻载电压。
反馈环节设计反馈同路主要由PC817和TL431及若干电容、电阻构成。
其中U2为TL431,它为可调试精密并联稳压器,利用电阻R5、R6分压获得基准电压值。
通过调节R5、R6的值可以调节输出电压的稳压值。
C8为TL431的频率补偿电容,可以提高TL43l的瞬态频率响应。
C7为软启动电容,取C7=22μF时可增加4ms的软启动时间,在加上TOP222G本身已有的10ms 软启动时间,则总共为14ms。
U3为PC817型线性光耦合器,其电流传输比(CTR)范围为80%~160%,,能够较好地满足反馈回路的设计要求,而目前国内常用的4N25、4N26属于非线性光耦合器,不宜采用。
反馈绕组上产生的电压经D4、C9整流滤波,获得非隔离式+12V输出,为PC817接收管的集电极供电。
由于反馈绕组输出电流较小,次级采用D4硅高速开关管1N4148。
光耦PC817能将+5V输出与电网隔离,其发射极电流送至TOP222G的控制端,用来调节占空比。
C3为控制端旁路电容,它能对控制回路进行补偿并设定自动重启频率。
当C3=47μF时,自动重启频率为1.2Hz,即每隔0.83s检测一次调节失控故障是否已经被排除,若确认已被排除,就自动重启开关电源恢复正常工作。
R2为PC817中LED的外部限流电阻。
实际上除了限流保护作用外,他对控制回路的增益也具有重要影响。
当R2改变时,会依次影响到下列参数值:IF→IC→D→UO,也就相当于改变了控制回路的电流放大倍数。
下面简要分析一下反馈回路实现稳压的工作原理。
当输出电压UO发生波动且变化量为UO 时,通过取样电阻R5、R6分压后,就使TL431的输出电压UK也产生相应的变化,进而使PC817中LED的工作电流IF改变,最后通过控制端电流IC的变化量来调节占空比D,使UO产生相反的变化,从而抵消UO的波动。
上述稳压过程可归纳为:UO ↑→UK ↓→IF ↑→IC ↑→D ↓→UO↓→最终使UO不变。
其余各路输出未加反馈,输出电压均由高频变压器的匝数来确定。
变压器设计变压器的设计是整个电源设计的关键,它的好坏直接影响电源性能。
磁芯及骨架的确定由于本文选用漆包线绕制,而且EE型磁芯的价格低廉,磁损耗低且适应性强,故选择EE22,其磁芯长度A=22mm。
从厂家提供的磁芯产品手册中可查得磁芯有效横截面积SJ=0.41cm2,有效磁路长度1=3.96cm,磁芯等效电感AL=2.4μH/匝2,骨架宽度b=8.43mm。
确定最大占空比Dmax根据公式:其中,UOR=135V,直流输入最小电压值UImin=90V,MOSFET的漏-源导通电压UDS(ON)=10V,代入上式得:Dmax=64.3%,接近典型值67%。
Dmax随着输入电压的升高而减小。
计算初级线圈中的电流输入电流的平均值IA VG为初级峰值电流IP为:其中,KRP为初级纹波电流IR与初级峰值电流IP的比值,当电压为宽范围输入时,可取0.9。
将Dmax=64.3%代入得,IP=0.518A。
确定初级绕组电感LP其中,损耗分配系数Z=0.5,IP=0.518A,KRP=0.4,PO=10W,代入得:LP≈1265μH。
确定绕组绕制方法并计算各绕组的匝数初级绕组的匝数NP可以通过下式计算:其中,磁芯截面积SJ=0.41cm2,磁芯最大磁通密度BM=60,IP=0.518A,LP≈1265μH,代入可得NP=26.6,实取30匝。
次级绕组采用堆叠式绕法,这也是变压器生产厂家经常采用的方法,其特点是由5V绕组给12V绕组提供部分匝数,而24V绕组中则包含了5V、12V的绕组和新增加的匝数。
堆叠式绕法技术先进,不仅可以节省导线,减小线圈体积,还可以增加绕组之间的互感量,加强耦合程度。
以本电源为例,当5V输出满载而12V和24V输出轻载时,由于5V绕组兼作12V、24V绕组的一部分,因此能减小这些绕组的漏感,可以避免因漏感使12V、24V输出电路中的滤波电容被尖峰电压充电到峰值,即产生所谓的峰值充电效应,从而引起输出电压不稳定。
这里将5V绕组作为次级的始端。
对于多输出高频变压器,各输出绕组的匝数可以取相同的每伏匝数。
每伏匝数nO可以由下式确定:其单位是匝/VO将NS取5匝,UO1=5V,UF1=0.4V(肖特基整流管导通压降)代入上式得到nO=0.925匝/V。
对于24V输出,已知UO2=24V,UF2=0.4V,则该路输出绕组匝数为NS2=0.925 匝/V×(24V 十0.4V)=22.57匝,实取22匝。
对于12V输出,已知UO3=12V,UF2=0.4V,则该路输出绕组匝数为NS2=0.925匝/V ×(12V+0.4V)=11.47匝,实取11匝。
对于反馈绕组,已知UF=12V,UF3=0.7V(硅快速恢复整流二极管导通压降),则该路输出绕组匝数为NS2=0.925匝/V×(12V+0.4V)=11.47匝,实取11匝。
确定初/次级导线的内径首先根据初级层数d、骨架宽度b和安全边距M,利用下式计算有效骨架宽度bE(单位是mm):bE=d(b-2M) (7)将d=2,b=8.43mm,M=0代入上式可得bE=16.86mm。
利用下式计算初级导线的外径(带绝缘层)DPM:DPM=bE/NP (8)将bE=16.86mm,NP=78匝代人得DPM=0.31mm,扣除漆皮厚度,裸导线内径DPM=0.26mm。
与直径0.26mm接近的公制线规为0.28mm,比0.26mm略粗完全可以满足要求,而0.25mm 的公制线规稍细,不宜选用。
而次级绕组选用与初级相同的导线,根据电流的大小,采用多股并绕的方法绕制。