当前位置:文档之家› 三角函数的周期性问题

三角函数的周期性问题

三角函数的周期性问题
三角函数的周期性问题

三角函数的周期问题求法

一.选择题(共7小题)

1.(2014?天津)已知函数f(x)=sinωx+cosωx(ω>0),x∈R,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,则f(x)的最小正周期为()A.B.C.πD.2π

2.(2014?新课标I)在函数①y=cos丨2x丨,②y=丨cosx丨,③y=cos(2x+)④y=tan (2x﹣)中,最小正周期为π的所有函数为()

A.①②③B.①③④C.②④ D.①③

3.(2014?南阳三模)若函数f(x)=2sinωx(ω>0)的图象在(0,2π)上恰有一个极大值和一个极小值,则ω的取值范围是()

A.B.C.D.

4.(2005?黑龙江)函数f(x)=|sinx+cosx|的最小正周期是()

A.B.C.πD.2π

5.(2009?江西)函数的最小正周期为()

A.2πB.C.πD.

6.(2014?宝坻区校级模拟)已知函数y=sin在区间[0,t]上至少取得2次最大值,则正整数t的最小值是()

A.6 B.7 C.8 D.9

7.(2015?广西校级学业考试)函数y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分图象如图,则()

A.ω=,φ=B.ω=,φ=C.ω=,φ=D.ω=,φ=

二.填空题(共1小题)

8.(2013?江西)函数y=最小正周期T为.

三.解答题(共3小题)

9.(2004?山东)求函数的最小正周期、最大值和最小值.

10.(2012?四川)函数f(x)=6cos2sinωx﹣3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.

(Ⅰ)求ω的值及函数f(x)的值域;

(Ⅱ)若f(x0)=,且x0∈(﹣),求f(x0+1)的值.

11.(2015?秦安县一模)已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<)图象如图,P是图象的最高点,Q为图象与x轴的交点,O为原点.且|OQ|=2,|OP|=,|PQ|=.

(Ⅰ)求函数y=f(x)的解析式;

(Ⅱ)将函数y=f(x)图象向右平移1个单位后得到函数y=g(x)的图象,当x∈[0,2]时,求函数h(x)=f(x)?g(x)的最大值.

三角函数的周期问题求法

参考答案

一.选择题(共7小题)

1.C;2.A;3.B;4.C;5.A;6.C;7.C;

二.填空题(共1小题)

8.π;

三.解答题(共3小题)

9.; 10.;11.;

三角函数地公式+五点作图+奇偶性+周期性

三角函数的公式 一、扇形的公式 若扇形的圆心角为a (a 为弧度制),半径为r ,弧长为l ,周长为C ,面积为S ,则l=______________;C=___________________;S=________________ 二、三角函数的定义 (1)设a 是一个任意大小的角,a 的终边上任意一点R 的坐标是(x, y ),它与原点的距离是 r,则sin a=_________;cosa =________;tana=____________. (2)设a 是一个任意大小的角,a 的终边与单位圆的交点R 的坐标是(x, y ),它与原点的距 离是r,则sin a=_________;cosa =________;tana=____________. 三、 同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin α cos α =tan α. 四、诱导公式 诱导公式(一) tan )2tan(cos )2(cos sin )2sin(ααπααπααπ=+=+=+k k k 诱导公式(二) )tan()cos( sin )sin(=+= +-=+απαπααπ 诱导公式(三) )tan(cos )cos( )sin(=-=-=-αα αα 诱导公式(四) tan )tan()cos( )sin(ααπαπαπ-=-=-=-

诱导公式(五) =-=-)2 cos( cos )2sin( απ ααπ 诱导公式(六) =+=+)2 cos( cos )2sin(απ ααπ 【方法点拨】 把α看作锐角 前四组诱导公式可以概括为:函数名不变,符号看象限 符号。 看成锐角时原函数值的前面加上一个把三角函数值,的同名的三角函数值,等于它ααπαπααπ ,, , ),Z (2-+-∈+k k 公式(五)和公式(六)总结为一句话:函数名改变,符号看象限 口诀: 变 不变,符号看象限 五:求特殊角的三角函数值 特殊角的三角函数值 1、,0sin tan >θθ则θ在 ( )

三角函数的周期性

1.4.1三角函数的周期性 一、导学目标 1.引导学生从单位圆中,得出正弦、余弦函数值呈现周期性变化 2.函数周期性定义 3.能求三角函数的周期 二、知识回归 1.任意角的三角函数 sin y α= cos x α= 2.终边与α角相同 2απ+ 2απ- L L 2()k k Z απ+∈ 三角函数值相同 三、新知导学 由观察可知 1.三角函数值出现周期性变化的特点 sin(2)sin cos(2)cos x k x x k x ππ+=+= (k Z ∈) 2.函数定义 对于函数()f x ,如果存在一个非零常数T ,使定义域内每一个x ,都有()()f x T f x +=,则函数()f x 叫周期函数,非零常数T 叫做这个函数的周期。 3.正弦函数sin y x =,余弦函数cos y x =的周期 2,4,6,2,4,6,ππππππ---L L 2(,0)k k Z k π∈≠ 都是它们的周期 2π是所有周期中最小的正数,是sin ,cos x x 的最小的 正周期 周期函数()f x ,如果它所有的周期中存在一个最小的正数,这个最小正数就是()f x 的最小正周期,一般,函数周期都是指最小正周期 sin ,cos y x y x ==的周期是T=2π 四、例题分析与巩固训练

(1)()sin 3f x x = 1(2)()2cos()23 g x x π=- 分析:由sin ,cos x x 周期都是2π,设周期T 即可 (1) 设()f x 周期为T ,()()f x T f x += ∴sin3()sin3x T x += sin(33)sin 3x T x += 32T π∴= 23 T π= (2) 设()g x 周期为T ()()g x T g x += 2cos()2cos()2323 x T x ππ+-=- 即2cos ()2cos()23223x T x ππ??- +=-???? 22 T π∴= 巩固训练 A 1. 求下列函数的周期 (1)2sin 2y x =- (2)cos 3 x y = 2.判断下列说法是否正确,并说明理由 (1)76x π=时,2sin()sin 3x x π+=,则23 π一定是函数sin y x =的周期 B 思考 sin()cos() y A x y A x ω?ω?=+=+ (其中,,A ω?为常数,0,0A ω≠>) 的周期为2T π ω= 例2 若钟摆高度()h mm 与时间()t s 之间的函数关系如图所示 (1) 求该函数的周期

三角函数·函数的周期性

三角函数·函数的周期性 教学目标 1.使学生理解函数周期性的概念,并运用它来判断一些简单、常见的三角函数的周期性. 2.使学生掌握简单三角函数的周期的求法. 3.培养学生根据定义进行推理的逻辑思维能力,提高学生的判断能力和论证能力. 教学重点与难点 函数周期性的概念. 教学过程设计 师:上节课我们学习了利用单位圆中的正弦线作正弦函数的图象.今天我们将利用正弦函数图象,研究三角函数的一个重要性质.请同学们观察y=sinx,x ∈R的图象: (老师把图画在黑板左上方.) 师:通过观察,同学们有什么发现? 生:正弦函数的定义域是全体实数,值域是[-1,1].图象有规律地不断重复出现. 师:规律是什么? 生:当自变量每隔2π时,函数值都相等.

师:正弦函数的这种性质叫周期性.我们将会发现,不但正弦函数具有这种性质,其它的三角函数和不少的函数也都具有这样的性质,因此我们就把它作为今天研究的课题:函数的周期性.(老师在黑板左上方写出课题) 师:我们先看函数周期性的定义.(老师板书) 定义对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期. 师:请同学们逐字逐句的阅读定义,找出定义中的要点. 生:首先T是非零常数,第二是自变量x取定义域内的每一个值时都有f (x+T)=f(x). 师:找得准!那么为什么要这样规定呢? 师:如果T=0,那么f(x+T)=f(x)恒成立,函数值当然不变,没有研究价值;如果T为变数,就失去了“周期”的意义了.“每一个值”的含义是无一例外. 师:除这两条外,定义中还有一个隐含的条件是什么? 生:如果x属于y=f(x)的定义域,则T+x也应属于此定义域. 师:对.否则f(x+T)就没有意义. 师:函数周期性的定义有什么用途? 生:它为我们提供判定函数是否具有周期性的理论依据. 师:下面我们看例题. (老师板书) 例1 证明y=sinx是周期函数. 生:因为由诱导公式有sin(x+2π)=sinx.所以2π是y=sinx是一个周期.故它就是周期函数. 例2

三角函数_函数的周期性

三角函数?函数的周期性 教学目标 1 ?使学生理解函数周期性的概念,并运用它来判断一些简单、常见的三角函数的周期性? 2?使学生掌握简单三角函数的周期的求法. 3 ?培养学生根据定义进行推理的逻辑思维能力,提高学生的判断能力和论证能力? 教学重点与难点 函数周期性的概念. 教学过程设计 师:上节课我们学习了利用单位圆中的正弦线作正弦函数的图象. 今天我们将利用正弦函数图象,研究三角函数的一个重要性质?请同学们观察y=sinx , X ∈R的图象: (老师把图画在黑板左上方?) 师:通过观察,同学们有什么发现? 生:正弦函数的定义域是全体实数,值域是[ 重复 出现. 师:规律是什么? 生:当自变量每隔2π时,函数值都相等. 师:正弦函数的这种性质叫周期性.我们将会发现,不但正弦函数具有这种性质,其 -1 ,1].图象有规律地不断

它的三角函数和不少的函数也都具有这样的性质,因此我们就把它作为今天研究的课题:函数的周期性?(老师在黑板左上方写出课题) 师:我们先看函数周期性的定义?(老师板书) 定义对于函数y=f (X),如果存在一个不为零的常数T,使得当X取定义域内的每一个值时,f (x+T) =f (X)都成立,那么就把函数y=f (x)叫做周期函数,不为零的常数T 叫做这个函数的周期. 师:请同学们逐字逐句的阅读定义,找出定义中的要点? 生:首先T是非零常数,第二是自变量X取定义域内的每一个值时都有f (X+T) =f (X). 师:找得准!那么为什么要这样规定呢? 师:如果T=O,那么f ( X+T) =f (X)恒成立,函数值当然不变,没有研究价值;如果T为变数,就失去了“周期”的意义了?“每一个值”的含义是无一例外. 师:除这两条外,定义中还有一个隐含的条件是什么? 生:如果X属于y=f (x)的定义域,贝U T+X也应属于此定义域. 师:对.否则f (x+T)就没有意义. 师:函数周期性的定义有什么用途? 生:它为我们提供判定函数是否具有周期性的理论依据. 师:下面我们看例题. (老师板书) 例1 证明y=sinx是周期函数. 生:因为由诱导公式有Sin(x+2∏)=sinx .所以2∏是y=sinx是一个周期.故它就是周期函数. 例2 T二寸是y二沁的周期吗?试证明你的结论?

三角函数周期性公式

设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα

如何求三角函数的周期

如何求三角函数的周期 三角函数的的周期是三角函数的重要性质,对于不同的三角函数式,如何求三角函数的周期也是一个难点,下面通过几个例题谈谈三角函数周期的求法. 1、根据周期性函数的定义求三角函数的周期 例1 求下列函数的周期 x y 2sin )1(= , 3 2tan )2(x y =. (1)分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使x T x 2sin )(2sin =+成立,同时考虑到正弦函数x y sin =的周期是π2. 解:∵ )(2sin )22sin(2sin ππ+=+=x x x , 即 x x 2sin )(2sin =+π. ∴ 当自变量由x 增加到π+x 时,函数值重复出现,因此x y 2sin =的周期是π. (2) 分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使 3 2tan )(32tan x T x =+成立,同时考虑到正切函数x y tan =的周期是π. 解:∵ )23(32tan )32tan(32tan ππ+=+=x x x , 即3 2tan )23(32tan x x =+π. ∴ 函数32tan x y =的周期是π2 3. 注意:1、根据周期函数的定义,周期T 是使函数值重复出现的自变量x 的增加值, 如),2()2(x f T x f =+周期不是T ,而是T 21; 2、”“)()(x f T x f =+是定义域内的恒等式,即对于自变量x 取定义域内的每个值时,上式都成立. 2、根据公式求周期 对于函数B x A y ++=)sin(?ω或B x A y ++=)cos(?ω的周期公式是| |2ωπ=T , 对于函数B x A y ++=)tan( ?ω或B x y ++=)cot(?ω的周期公式是||ωπ=T . 例3 求函数)623sin( 3π-=x y 的周期 解: 3 42 32ππ==T . 3、把三角函数表达式化为一角一函数的形式,再利用公式求周期 例4 求函数x x x y 2sin 2cos sin 32-=的周期 解:12cos 2sin 3sin 2cos sin 322-+=-=x x x x x y

三角函数的公式+五点作图+奇偶性+周期性

三角函数的公式+五点作图+奇偶性+周期性 -CAL-FENGHAI.-(YICAI)-Company One1

三角函数的公式 一、扇形的公式 若扇形的圆心角为(为弧度制),半径为r ,弧长为l ,周长为C ,面积为S ,则l=______________;C=___________________;S=________________ 二、三角函数的定义 (1)设是一个任意大小的角,的终边上任意一点?的坐标是(x, y ),它与原点的距离是r,则 sin =_________;cos?=________;tan?=____________. (2)设是一个任意大小的角,的终边与单位圆的交点的坐标是(x, y ),它与原点的距离是r, 则sin =_________;cos?=________;tan?=____________. 三、 同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin α cos α=tan α. 四、诱导公式 诱导公式(一) tan )2tan(cos )2(cos sin )2sin(ααπααπααπ=+=+=+k k k 诱导公式(二) )tan()cos( sin )sin(=+=+-=+απαπααπ 诱导公式(三) )tan(cos )cos( )sin(=-=-=-αα αα 诱导公式(四) tan )tan()cos( )sin(ααπαπαπ-=-= -=- 诱导公式(五) =-=-)2 cos( cos )2sin( απ ααπ 诱导公式(六) =+=+)2cos( cos )2sin( απ ααπ 【方法点拨】 把α看作锐角 前四组诱导公式可以概括为:函数名不变,符号看象限 符号。 看成锐角时原函数值的前面加上一个把三角函数值,的同名的三角函数值,等于它ααπαπααπ ,, , ),Z (2-+-∈+k k 公 式(五)和公式(六)总结为一句话:函数名改变,符号看象限 口诀: 变 不变,符号看象限

三角函数的周期性

三角函数的周期性的教学研究 滁州市乌衣中学宋传宝 三角函数是我们在高中阶段学习的继一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数之后的又一类基本初等函数。与这些函数比较,三角函数是刻画现实世界当中存在的那些具有周期性变化现象的数学模型。这里我们要学会和掌握其周期性,体会三角函数在解决有关周期变化规律的问题中作用。 下面就我自己在教学过程中对正弦函数周期性的教学研究说一些自己的看法。 这一内容是在学生已掌握了诱导公式与正、余弦函数图象及五点法作图方法,能力上已经具备了一定的形象思维与抽象思维能力基础之上要求学生掌握周期函数定义和正余弦函数的周期性,并能对周期性概念加以运用。 一、准备阶段 这一节的教学多数都是通过生活中的一些有关“周而复始”的现象引入“周期”。借助于诱导公式、正弦线去验证和演示周而复始发现正弦函数的周期。 二、概念的产生 通过对正弦函数图象周期性的研究,进而产生一般函数周期性的定义。即周期函数,这里一般会强调三点:①非零常数T ②定义域内任意一个X ③f(X+T)=f(X),具体实施过程中更多地会逐一通过反例来验证和解释让学生去理解。我感觉在理解这些基本环节基础上

更好让学生从函数变化关系上去理解f(X+T)=f(X) 三、概念应用——正弦函数周期 通过周期函数定义去验证正弦函数是一个较为常见的正弦函数。这里可以通过多种方式方法让学生去发现并探索其周期、最小正周期,进而完善周期的理解,能更好地培养学生的数形结合能力。通过自主探究不断地完善自己的认知结构,并通过一定量的例题和习题去加深对周期的理解和认识。 四、课后拓展 正弦函数是我们认识周期的一个较好的数学模型。当我们认识了正弦、余弦、正切函数的周期概念之后,还需要进一步完善概念。①我们对三种较为常见的三角函数,正、余、正切函数的普通结构和一般结构如何简化周期的求法,这是以后解题的一个关键环节,这在我们教材的探究与发现中有涉及,老师要在以后的课程中引导学生去探究学习。②通过这一节学习学生有一个误解就是三角函数是周期函数,我们能见到的周期函数就只有三角函数,这里我们要通过一些解三角函数的周期函数来完善学生的理解,同时不需要过分地强调难度更大的问题。 在教学中会出现很多情况和问题,作为教师,我们必须要不断探索总结经验,这样才能更好地完成教学工作。以上是我个人见解,请各位评委斧正。谢谢!

关于《三角函数的周期性》的教案

关于《三角函数的周期性》的教案 一、目标与自我评估 1掌握利用单位圆的几何作函数的图象 2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3会用代数方法求等函数的周期 4理解周期性的几何意义 二、学习重点与难点 “周期函数的概念”,周期的求解。 三、学法指导 1、是周期函数是指对定义域中所有都有 ,即应是恒等式。 2、周期函数一定会有周期,但不一定存在最小正周期。 四、学习活动与意义建构 五、重点与难点探究 例1、若钟摆的高度与时间之间的函数关系如图所示 (1)求该函数的周期; (2)求时钟摆的高度。 例2、求下列函数的周期。 (1)(2) 总结:(1)函数(其中均为常数,且 的周期T=。

(2)函数(其中均为常数,且 的周期T=。 例3、求证:的周期为。 例4、(1)研究和函数的图象,分析其周期性。 (2)求证:的周期为(其中均为常数, 且 总结:函数(其中均为常数,且 的周期T=。 例5、(1)求的周期。 (2)已知满足,求证:是周期函数 课后思考:能否利用单位圆作函数的图象。 六、作业: 七、自主体验与运用 1、函数的周期为() A、B、C、D、 2、函数的最小正周期是() A、B、C、D、 3、函数的最小正周期是() A、B、C、D、 4、函数的周期是() A、B、C、D、 5、设是定义域为R,最小正周期为的函数,

若,则的值等于() A、1 B、 C、0 D、 6、函数的最小正周期是,则 7、已知函数的最小正周期不大于2,则正整数 的最小值是 8、求函数的最小正周期为T,且,则正整数 的最大值是 9、已知函数是周期为6的奇函数,且则 10、若函数,则 11、用周期的定义分析的周期。 12、已知函数,如果使的周期在内,求 正整数的值 13、一机械振动中,某质子离开平衡位置的位移与时间之间的 函数关系如图所示: (1)求该函数的周期; (2)求时,该质点离开平衡位置的位移。 14、已知是定义在R上的函数,且对任意有 成立, (1)证明:是周期函数; (2)若求的值。 分类计数原理与分步计数原理、排列 一.教学内容:分类计数原理与分步计数原理、排列

三角函数的周期性数学教案

三角函数的周期性数学教案 一、学习目标与自我评估 1掌握利用单位圆的几何方法作函数的图象 2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3会用代数方法求等函数的周期 4理解周期性的几何意义 二、学习重点与难点 “周期函数的概念”,周期的求解。 三、学法指导 1、是周期函数是指对定义域中所有都有 ,即应是恒等式。 2、周期函数一定会有周期,但不一定存在最小正周期。 四、学习活动与意义建构 五、重点与难点探究 例1、若钟摆的高度与时间之间的函数关系如图所示 (1)求该函数的周期; (2)求时钟摆的高度。 例2、求下列函数的周期。 (1)(2) 总结:(1)函数(其中均为常数,且 的周期T=。

(2)函数(其中均为常数,且 的周期T=。 例3、求证:的周期为。 例4、(1)研究和函数的图象,分析其周期性。 (2)求证:的周期为(其中均为常数, 且 总结:函数(其中均为常数,且 的周期T=。 例5、(1)求的周期。 (2)已知满足,求证:是周期函数 课后思考:能否利用单位圆作函数的图象。 六、作业: 七、自主体验与运用 1、函数的周期为() A、B、C、D、 2、函数的最小正周期是() A、B、C、D、 3、函数的最小正周期是() A、B、C、D、 4、函数的周期是() A、B、C、D、 5、设是定义域为R,最小正周期为的函数,

若,则的值等于() A、1 B、 C、0 D、 6、函数的最小正周期是,则 7、已知函数的最小正周期不大于2,则正整数 的最小值是 8、求函数的最小正周期为T,且,则正整数 的最大值是 9、已知函数是周期为6的奇函数,且则 10、若函数,则 11、用周期的定义分析的周期。 12、已知函数,如果使的周期在内,求 正整数的值 13、一机械振动中,某质子离开平衡位置的位移与时间之间的 函数关系如图所示: (1)求该函数的周期; (2)求时,该质点离开平衡位置的位移。 14、已知是定义在R上的函数,且对任意有 成立, (1)证明:是周期函数; (2)若求的值。

精解三角函数的周期性

精解三角函数的周期性 一、正弦函数的周期 三角函数,以正弦函数y = sin x为代表,是典型的周期函数. 幂函数y = xα 无周期性,指数函数y = a x无周期性,对数函数y =log a x 无周期, 一次函数y = kx+b、二次函数y = ax2+bx+c、三次函数y = ax3+bx2 + cx+d 无周期性. 周期性是三角函数独有的特性. 1、正弦函数y=sin x的最小正周期 在单位圆中,设任意角α的正弦线为有向线 段MP. 正弦函数的周期性 动点P每旋转一周,正弦线MP的即时位置 和变化方向重现一次. 同时还看到,当P的旋转量不到一周时,正 弦线的即时位置包括变化方向不会重现. 因此,正弦函数y=sin x的最小正周期2π. 2、y=sin(ωx)的最小正周期 设ω>0,y =sin(ωx)的最小正周期设为L . 按定义y= sin ω(x+L)= sin(ωx+ ωL)= sinωx . 令ωx = x则有sin (x+ ωL)= sin x 因为sin x最小正周期是2π,所以有 例如sin2x的最小正周期为 sin的最小正周期为 3、正弦函数y=sin(ωx+φ)的周期性 对正弦函数sin x的自变量作“一次替代”后,成形式y = sin (ωx+φ). 它的最小正周期与y = sinωx的最小正周期相同,都是.

如的最小周期与y = sin(3x)相同,都是. 于是,余弦函数的最小正周期与sin x的 最小正周期相同,都是2π. 二、复合函数的周期性 将正弦函数y = sin x进行周期变换x→ωx,sin x→sinωx 后者周期变为 而在以下的各种变换中,如 (1)初相变换sinωx→si n(ωx+φ); (2)振幅变换sin(ωx+φ)→A sin(ωx+φ); (3)纵移变换A si n(ωx+φ)→A si n(ωx+φ)+m; 后者周期都不变,亦即A si n(ωx+φ)+m与si n(ωx)的周期相同,都是 . 而对复合函数f(sin x)的周期性,由具体问题确定. 1、复合函数f(sin x)的周期性 【例题】研究以下函数的周期性: (1)2 sin x;(2) (2)的定义域为[2kπ,2kπ+π],值域为[0,1],作图可知,它是最小正周期为 2π的周期函数. 【解答】(1)2sin x的定义域为R,值域为,作图可知,它是最小正 周期为2π的周期函数. 【说明】从基本函数的定义域,值域和单调性出发,通过作图,还可确定,log a x,sin x,, sin(sin x)都是最小正周期2π的周期函数. 2、y= sin3x的周期性

高中数学:三角函数的周期性

1 三角函数的周期性、创新题型研究 【内容提要】1.函数的周期性;2. 三角函数的周期性的判定;3. 三角函数周期性的应用;【2.三角 函数的周期性的判定】 【例2】函数6 6 sin cos y x x =+的最小正周期为 . 【解析】 66224422sin cos (sin cos )(sin cos sin cos ) y x x x x x x x x =+=++-22233513sin cos 1sin 2cos 4488x x x x =-=-=+,所以函数的最小正周期为2 π 。 【变式1】函数tan(2)5 y x π =+的最小正周期为 2 π 【解析】由公式可得函数的最小正周期为.2π=T 【变式2】(2012年高考(上海春))函数()sin(2)4 f x x π =+ 的最小正周期为_______. π 【解析】由公式可得函数的最小正周期为.2 2ππ == T 【变式3】(2010浙江文数)函数2 ()sin (2)4 f x x π =- 的最小正周期是 2π 【解析】∴+-=--= ,2 14sin 212)24cos(1x x y π Θ函数的最小正周期为.22ππ==T

2 【变式4】求函数sin(3)cos( ) 2 ()sin cos()2 x x f x x x πππ+-?= ?+的最小正周期. 2π 【解析】sin(3)cos( )2()sin cos()2x x f x x x πππ+-?= ?+Q sin (sin )sin 2tan cos sin (cos )2 x x x x x x x ?-===?- (2,,2 x k x k k Z π ππ≠≠+ ∈且) , ∴函数()f x 的最小正周期为2π(函数()f x 的图象如右图所示)。 【变式5】函数22tan 1tan x y x = -的最小正周期为 π 【解析】2 2tan tan 21tan x y x x = =-, 根据正切函数定义域,,2x k k z π π≠+∈,即每π单位的区间上,函数图像要去掉一个点 2π,函数图像是每两个2 π 单位,重复出现一次完全相同的图像,所以周期是π。 【变式6】函数?? ? ? ??+=2tan tan 1sin x x x y 的最小正周期为 ( ) A π B π2 C 2 π D 23π B 【解析】将函数解析式化为x y tan =,由定义域的限制可得。 【3.三角函数周期性的应用】 【例3】设函数)5 2 sin( 2)(π π + =x x f ,若对任意x ∈R ,都有,f (x 1 )≤f (x )≤f (x 2 )成立,则|x 1—x 2|的最 小值为 ( ) (A)4 (B)2 (C)1 (D) 2 1 B 【解析】对任意x ∈R ,都有,f (x 1 )≤f (x )≤f (x 2 )成立,说明f (x 1 )是函数的最小值,最低点横坐标是x 1,f (x 2 )是函数的最大值,最高点横坐标是x 2,求|x 1 —x 2|的最小值即求两个最高点与最低点最近距离,也

高中数学 1.3.1 三角函数的周期性教案 苏教版必修4

1.3.1 三角函数的周期性 一、课题:三角函数的周期性 二、教学目标:1.理解周期函数、最小正周期的定义; 2.会求正、余弦函数的最小正周期。 三、教学重、难点:函数的周期性、最小正周期的定义。 四、教学过程: (一)引入: 1.问题:(1)今天是星期二,则过了七天是星期几?过了十四天呢?…… (2)物理中的单摆振动、圆周运动,质点运动的规律如何呢? 2自变量x 2π- 32π- π- 2 π- 0 2π π 32 π 2π 函数值sin x 0 1 0 1- 0 1 1- 0 正弦函数()sin f x x =性质如下: 文字语言:正弦函数值按照一定的规律不断重复地取得; 符号语言:当x 增加2k π(k Z ∈)时,总有(2)sin(2)sin ()f x k x k x f x ππ+=+==. 也即:(1)当自变量x 增加2k π时,正弦函数的值又重复出现; (2)对于定义域内的任意x ,sin(2)sin x k x π+=恒成立。 余弦函数也具有同样的性质,这种性质我们就称之为周期性。 (二)新课讲解: 1.周期函数的定义 对于函数()f x ,如果存在一个非零常数....T ,使得当x 取定义域内的每一个值....时,都有()()f x T f x +=,那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期。 说明:(1)T 必须是常数,且不为零; (2)对周期函数来说()()f x T f x +=必须对定义域内的任意x 都成立。 【思考】 (1)对于函数sin y x =,x R ∈有2sin( )sin 636π ππ+ =,能否说23 π是它的周期? (2)正弦函数sin y x =,x R ∈是不是周期函数,如果是,周期是多少?(2k π,k Z ∈且 0k ≠) (3)若函数()f x 的周期为T ,则kT ,* k Z ∈也是()f x 的周期吗?为什么? (是,其原因为:()()(2)()f x f x T f x T f x kT =+=+==+L ) 2.最小正周期的定义 对于一个周期函数()f x ,如果在它所有的周期中存在一个最小的正数,那么这个最小 的正数就叫做()f x 的最小正周期。 – – π 2 π 2π- 2π 5 π- 2π- π- O x y 1 1-

三角函数的周期性问题

三角函数的周期问题求法 一.选择题(共7小题) 1.(2014?天津)已知函数f(x)=sinωx+cosωx(ω>0),x∈R,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,则f(x)的最小正周期为()A.B.C.πD.2π 2.(2014?新课标I)在函数①y=cos丨2x丨,②y=丨cosx丨,③y=cos(2x+)④y=tan (2x﹣)中,最小正周期为π的所有函数为() A.①②③B.①③④C.②④ D.①③ 3.(2014?南阳三模)若函数f(x)=2sinωx(ω>0)的图象在(0,2π)上恰有一个极大值和一个极小值,则ω的取值范围是() A.B.C.D. 4.(2005?黑龙江)函数f(x)=|sinx+cosx|的最小正周期是() A.B.C.πD.2π 5.(2009?江西)函数的最小正周期为() A.2πB.C.πD. 6.(2014?宝坻区校级模拟)已知函数y=sin在区间[0,t]上至少取得2次最大值,则正整数t的最小值是()

A.6 B.7 C.8 D.9 7.(2015?广西校级学业考试)函数y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分图象如图,则() A.ω=,φ=B.ω=,φ=C.ω=,φ=D.ω=,φ= 二.填空题(共1小题) 8.(2013?江西)函数y=最小正周期T为. 三.解答题(共3小题) 9.(2004?山东)求函数的最小正周期、最大值和最小值. 10.(2012?四川)函数f(x)=6cos2sinωx﹣3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形. (Ⅰ)求ω的值及函数f(x)的值域; (Ⅱ)若f(x0)=,且x0∈(﹣),求f(x0+1)的值.

三角函数的周期性教案

1.3.1 三角函数的周期性 一、课题:三角函数的周期性 二、教学目标:1.理解周期函数、最小正周期的定义; 2.会求正、余弦函数的最小正周期。 三、教学重、难点:函数的周期性、最小正周期的定义。 四、教学过程: (一)引入: 1.问题:(1)今天是星期二,则过了七天是星期几?过了十四天呢?…… (2)物理中的单摆振动、圆周运动,质点运动的规律如何呢? 2 正弦函数()sin f x x =性质如下: 文字语言:正弦函数值按照一定的规律不断重复地取得; 符号语言:当x 增加2k π(k Z ∈)时,总有(2)sin(2)sin ()f x k x k x f x ππ+=+==. 也即:(1)当自变量x 增加2k π时,正弦函数的值又重复出现; (2)对于定义域内的任意x ,sin(2)sin x k x π+=恒成立。 余弦函数也具有同样的性质,这种性质我们就称之为周期性。 (二)新课讲解: 1.周期函数的定义 对于函数()f x ,如果存在一个非零常数....T ,使得当x 取定义域内的每一个值.... 时,都有()()f x T f x +=,那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期。 说明:(1)T 必须是常数,且不为零; (2)对周期函数来说()()f x T f x +=必须对定义域内的任意x 都成立。 【思考】 (1)对于函数sin y x =,x R ∈有2sin( )sin 636π ππ+ =,能否说23 π是它的周期? (2)正弦函数sin y x =,x R ∈是不是周期函数,如果是,周期是多少?(2k π,k Z ∈且 0k ≠) (3)若函数()f x 的周期为T ,则kT ,* k Z ∈也是()f x 的周期吗?为什么? (是,其原因为:()()(2)()f x f x T f x T f x kT =+=+==+) 2.最小正周期的定义 对于一个周期函数()f x ,如果在它所有的周期中存在一个最小的正数,那么这个最小的正数就叫做()f x 的最小正周期。 说明:(1)我们现在谈到三角函数周期时,如果不加特别说明,一般都是指的最小正周期; – – π 2π 2π- 2π 5π π- 2π- 5π- O x 1 1-

三角函数的周期性

三角函数的周期性 一、学习目标与自我评估 1掌握利用单位圆的几何方法作函数的图象 2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3会用代数方法求等函数的周期 4理解周期性的几何意义 二、学习重点与难点 “周期函数的概念”,周期的求解。 三、学法指导 1、是周期函数是指对定义域中所有都有 ,即应是恒等式。 2、周期函数一定会有周期,但不一定存在最小正周期。 四、学习活动与意义建构 五、重点与难点探究 例1、若钟摆的高度与时间之间的函数关系如图所示 (1)求该函数的周期; (2)求时钟摆的高度。 例2、求下列函数的周期。 (1)(2) 总结:(1)函数(其中均为常数,且

的周期T=。 (2)函数(其中均为常数,且 的周期T=。 例3、求证:的周期为。 例4、(1)研究和函数的图象,分析其周期性。(2)求证:的周期为(其中均为常数, 且 总结:函数(其中均为常数,且 的周期T=。 例5、(1)求的周期。 (2)已知满足,求证:是周期函数 课后思考:能否利用单位圆作函数的图象。 六、作业: 七、自主体验与运用 1、函数的周期为() A、B、C、D、 2、函数的最小正周期是() A、B、C、D、 3、函数的最小正周期是() A、B、C、D、 4、函数的周期是()

A、B、C、D、 5、设是定义域为R,最小正周期为的函数, 若,则的值等于() A、1 B、 C、0 D、 6、函数的最小正周期是,则 7、已知函数的最小正周期不大于2,则正整数 的最小值是 8、求函数的最小正周期为T,且,则正整数 的最大值是 9、已知函数是周期为6的奇函数,且则 10、若函数,则 11、用周期的定义分析的周期。 12、已知函数,如果使的周期在内,求 正整数的值 13、一机械振动中,某质子离开平衡位置的位移与时间之间的函数关系如图所示: (1)求该函数的周期; (2)求时,该质点离开平衡位置的位移。 14、已知是定义在R上的函数,且对任意有 成立, (1)证明:是周期函数;

必修4三角函数的图像与性质

§1.4.1正弦函数、余弦函数的图象 学习目标:1.能借助正弦线画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象. 2.能熟练运用“五点法”作图. 学习重点:运用“五点法”作图 学习难点:借助于三角函数线画y=sinx的图象 学习过程: 一、情境设置 遇到一个新的函数,画出它的图象,通过观察图象获得对它的性质的直观认识是研究函数的基本方法,那么,一般采用什么方法画图象? 二、探究研究 问题1. 在直角坐标系内把单位圆十二等分,分别画出对应角的正弦线. 问题2. 在相应坐标系内,在x轴表示12个角(实数表示),把单位圆中12个角的正弦线进行右移. 问题 3. 通过刚才描点(x0,sinx0),把一系列点用光滑曲线连结起来,能得到什么? 问题4. 观察所得函数的图象,五个点在确定形状是起关键作用,哪五个点? 问题5. 如何作y=sinx,x∈R的图象(即正弦曲线)? 问题6. 用诱导公式cosx=________(用正弦式表示),y=cosx的图象(即余弦曲线)怎样得到?问题7. 关键五个点.三、例题精讲 例1:用“五点法”画下列函数的简图 (1)y=1+sinx ,x∈[]π2,0 (2) y=-cosx, x∈[]π2,0 思考:(1)从函数图象变换的角度出发,由y=sinx,x∈[]π2,0的图象怎样得到y=1+sinx ,x∈[]π2,0的图像?由y=cosx,x∈[]π2,0的图象怎样得到y=-cosx,,x∈[]π2,0的图像? 四、巩固练习 1、在[0,2π]上,满足 1 sin 2 x≥的x取值范围是( ). A. 0, 6 π ?? ?? ?? B.5, 66 ππ ?? ?? ?? C.2, 63 ππ ?? ?? ?? D.5, 6 π π ?? ?? ?? 2、用五点法作) y=1-cosx, x∈[]π2,0的图象. 3、结合图象,判断方程x sinx=的实数解的个数. 五、课堂小结 在区间] 2,0 [π上正、余弦函数图象上起关键作用的五个点分别是它的最值点及其与坐标轴的交点(平衡点).函数的图象可通过描述、平移、对称等手段得到. 六、当堂检测 1、观察正弦函数的图象,以下4个命题: (1)关于原点对称(2)关于x轴对称(3)关于y轴对称(4)有无数条对称轴其中正确的是 A、(1)、(2) B、(1)、(3) C、(1)、(4) D、(2)、(3)()

三角函数的周期性奇偶性单调性知识点和练习

知识要求:1、能正确画出sin y x =,cos y x =,tan y x =的图象及变换的图像。 1、给定条件,能够求sin y x =,cos y x =,tan y x =及变换的函数的周期、奇偶性、定义域、值域、单调区间、最大值和最小值; 知识点一:周期性 例题分析 例1.函数sin()y A x ω?=+,它的最小正周期T = ; 例2.函数cos()y A x ω?=+,它的最小正周期T = ; 例3.函数tan()y A x ω?=+,它的最小正周期T = ; 针对练习 1、 1 2sin 2y x =的最小正周期为____________; 2、f (x )=cos ? ???2x +π 6的最小正周期为________.

3、2cos()32 y x π =- +的最小正周期为____________; 4、tan()23y x ππ =-的最小正周期为___________; 5、函数2 tan 3 4y x π??=- + ???的最小正周期是 ; 6、函数)sin(π+=ax y 的周期为

针对练习 1、函数))(2 sin(R x x y ∈+ =π 在 ( ) A ?? ? ???- 2,2ππ上是增函数 B []π,0上是减函数 C []0,π-上是减函数 D []ππ,-上是减函数 2、 函数x y 2sin 2=的单调递增区间为_____________________; 3、函数y=sin ( 23 x π -)的单调增区间为_______________________; 4、函数)32cos(2π -=x y 的单调增区间是________________________; 5、函数2tan()33 x y π =+的单调减区间是________________________; 6、求函数)4 3 cos(log 2 1π + =x y 的单调递增区间 知识点三:单调性的应用 例1.比较sin 250?和sin 260?的大小; 例2.已知]2 3 ,2[ππ- ∈x ,解不等式23 sin -≥x ; 针对练习 1、 比较大小 tan100? tan 200?; 15cos 8π 14cos 9π ③sin 18π??- ??? sin 10π?? - ??? ④17cos()4π- 23cos()5π- ⑤7cos 5π 16cos 5 π ⑥11tan()4π- 13 tan()5π- 2.在[0,2π]上满足sin x ≥2 1 的x 的取值范围是( ) A .[0,6π] B .[6π,65π] C .[6π,32π ] D .[6 5π,π] 3、在)2,0(π内,使x x cos sin >成立的x 的取值范围是( ) A )45,()2,4( πππ πY B ),4(ππ C )45,4(ππ D )2 3,45(),4(ππππY 知识点四:奇偶性

函数的周期性教案1解读

函数的周期性教案1 教学目标 1.使学生理解函数周期性的概念,并运用它来判断一些简单、常见的三角函数的周期性. 2.使学生掌握简单三角函数的周期的求法. 3.培养学生根据定义进行推理的逻辑思维能力,提高学生的判断能力和论证能力. 教学重点与难点 函数周期性的概念. 教学过程设计 师:上节课我们学习了利用单位圆中的正弦线作正弦函数的图象.今天我们将利用正弦函数图象,研究三角函数的一个重要性质.请同学们观察y=sinx,x∈R的图象: (老师把图画在黑板左上方.) 师:通过观察,同学们有什么发现? 生:正弦函数的定义域是全体实数,值域是[-1,1].图象有规律地不断重复出现. 师:规律是什么? 生:当自变量每隔2π时,函数值都相等. 师:正弦函数的这种性质叫周期性.我们将会发现,不但正弦函数具有这种性质,其它的三角函数和不少的函数也都具有这样的性质,因

此我们就把它作为今天研究的课题:函数的周期性.(老师在黑板左上方写出课题) 师:我们先看函数周期性的定义.(老师板书) 定义对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期. 师:请同学们逐字逐句的阅读定义,找出定义中的要点. 生:首先T是非零常数,第二是自变量x取定义域内的每一个值时都有f(x+T)=f(x). 师:找得准!那么为什么要这样规定呢? 师:如果T=0,那么f(x+T)=f(x)恒成立,函数值当然不变,没有研究价值;如果T为变数,就失去了“周期”的意义了.“每一个值”的含义是无一例外. 师:除这两条外,定义中还有一个隐含的条件是什么? 生:如果x属于y=f(x)的定义域,则T+x也应属于此定义域. 师;对.否则f(x+T)就没有意义. 师:函数周期性的定义有什么用途? 生:它为我们提供判定函数是否具有周期性的理论依据. 师:下面我们看例题. (老师板书) 例1 证明y=sinx是周期函数. 生:因为由诱导公式有sin(x+2π)=sinx,所以2π是y=sinx是一个周期.故它就是周期函数. 师:要想判断T是不是函数y=f(x)的周期有什么方法?我们现有的理论依据只有定义,如何使用定义?

相关主题
文本预览
相关文档 最新文档