连续檩条搭接长度分析及构造建议
- 格式:doc
- 大小:25.50 KB
- 文档页数:3
z型钢檩条搭接方法
Z型钢檩条搭接方法是建筑行业中常见的一种连接方式。
一般情况下,Z型钢檩条是用来支撑屋面和墙面的钢结构,因此其连接方式的稳定性和可靠性非常重要。
首先,檩条搭接的长度应根据实际需要确定。
在确定长度后,需要将两根檩条的一段端口切割成一定角度,以便于搭接时更加牢固。
接着,将两根檩条分别放置在需要连接的位置,并用螺丝将其固定在一起。
需要注意的是,螺丝的数量和大小应根据檩条的长度和重量来确定,以保证连接的牢固性。
在檩条搭接时,还需要注意以下几个方面。
首先,檩条的表面应该保持干燥、平整和光滑,以便于连接时更加稳定。
其次,檩条的端口应该保持一定的角度,以避免连接时出现过度的空隙或者过度的压缩。
最后,连接时需要保持两根檩条的位置和角度一致,以避免连接后出现不平整或者不牢固的情况。
总之,Z型钢檩条搭接方法是建筑行业中非常重要的一种连接方式。
其稳定性和可靠性对于建筑的安全和稳定性起着非常重要的作用,因此需要在连接时严格按照规范和要求进行操作。
- 1 -。
浅谈屋面连续檩条在工程中的应用关键词: 斜卷边;Z 型;连续屋面檩条一、前言金属建筑系统中屋面和墙面檩条是重要的结构构件,采用斜边Z型钢连续檩条比简支檩条最大弯矩可减少15%~20%,且变形大大减少。
可以获得较好的经济效益。
但在国家标准图集中尚未有连续檩条的方案,对于采用搭接连接能否有效地传递弯矩还存在问题。
下面针对这一问题进行分析。
二、连续檩条的构造、内力和挠度及控制截面的分析对于钢构企业来讲,轻钢结构的设计应充分考虑其制作工艺,安装技术方面的问题,要使工程质量好成本又低,主要在于做好技术标准化。
连续檩条最适宜的构造方式是按每跨单独制作,通过标准化的嵌套搭接方式构成连续檩条可使得现场安装极为简单方便。
显然,在最常用的C形和Z形檩条中,选择Z形檩条更容易达到目的,在连续檩条中,为了方便嵌套搭接,使Z形檩条的上、下翼缘宽度不等,其不等宽度之差以5mm左右为宜,安装时每隔一跨将其檩条转动1800使较窄翼缘转到上面,即可方便地得到嵌套搭接而成的连续檩条。
采用这样的构造,设计人员有两个问题需要考虑:一是嵌套搭接的长度以多少为好;二是嵌套搭接的刚度情况如何,在计算内力和挠度时需要以此为依据,不同紧松的嵌套有不同的刚度结果,这只能靠试验来确定。
已有的试验表明:嵌套搭接的长度大约是10%的跨度较为适宜,搭接太短,形成连续檩条的刚度条件太弱,搭接太长,则增加的效果不明显,造成浪费。
对于嵌套搭接的连续檩条内力应如何计算?既然檩条是不等宽翼缘嵌套搭接,螺栓连接孔又是椭圆孔,孔径大于螺栓很多,因此在外荷载作用下,嵌套搭接必会有松动滑移,达不到理想的连续梁模式,在支座区的嵌套搭接刚度折减,也就是在理想的连续檩条计算模式下,需要考虑支座处有一定的弯矩释放,根据试验,这个弯矩释放量大约在10%~15%的范围。
在计算挠度时,也不能按理想连系梁模式考虑,其挠度的增大量应靠试验来确定。
连续檩条的弯矩分布图如下图所示,其控制截面的弯矩如图中M1~M9,其中M2、M4、M6、M8是搭接末端处的弯矩值,随搭接长度而定。
对轻钢结构中檩条的设计做法的观点和建议檩条的抗弯性能实验及设计方法研究>的报告:由于支座处存在着裂缝及连接孔,故在支座搭接区有一定程度的松动,导致部分弯矩释放,这样支座处的弯矩小于等截面连续梁的弯矩而跨中弯矩则大于等截面连续梁跨中的弯矩,而且檩条的实际挠度大于等截面连续梁的实际挠度值。
故在实际工程中z 型连续檩条的通常算法是:做成上下翼缘不等宽,以便于施工安装的嵌套连接,檩条的搭接长度一般取跨度的1/10可满足构成连续檩条的基本条件;内力计算时按等截面连续梁计算,先按50%活载均匀满布得到一个效应值Sl,再用50%活载按最不利隔跨布置得到第二个效应值S2,两者相加即为最不利活载所产生的荷载效应值S。
再考虑支座处的弯矩释放10%,檩条的极限承载力由支座处的最大弯矩值控制。
目前大多数设计人员不考虑支座处的双檩条强度,这样计算结果很不经济。
笔者认为既能做到节省钢材同时又安全合理的做法应是:支座处搭接区的刚度和抗弯模量按双檩条的代数和考虑,第一跨檩条的厚度大于其余各跨厚度,且同时考虑支座搭接区由于松动造成的弯矩释放10%。
这样既经济又安全,不失为一个很好的设计方法。
3檩条的连接3.1拉条的设置根据I'q规,当檩条跨度大于4m时,宜在檩条间跨中设置拉条;跨度大于6m时宜在檩条跨度三分点处各设一道拉条,在屋脊处还应设置斜拉条及撑杆。
拉条虽/J、,作用不/J、。
实际上有檩体系的压型钢板轻型屋面,拉条起着承受檩条侧向力,减/J、檩条的侧向变形和扭转,减/J、檩条的计算长度保证檩条的侧向稳定的作用。
拉条一般通过螺栓与檩条连接,拉条与屋面板的共同作用能有效地提高檩条的整体抗扭刚度和减少外部荷载引起的扭转效应。
虽然在檩条下翼缘附近有无拉条对檩条的抗弯承载力有很大影响,但当拉条强度满足后,拉条的刚度对抗弯和压弯承载力的影响可忽略。
所以门规推荐拉条的最小直径取为10mm,去除车丝对截面的削弱及锈蚀等因素外是可行的,但应注意:每一个坡面上的檩条是一个大的串联系统,因此檩条的受力是不均匀的,恒活荷载作用下离屋脊处越近的拉条内力越大,而在风吸力作用下正好相反。
9米屋面连续檩条计算书一. 设计资料采用规范:《门式刚架轻型房屋钢结构技术规程CECS 102:2002》《冷弯薄壁型钢结构技术规范GB 50018-2002》连续檩条的跨数为5跨,檩条间距为1.5m;各跨的参数如下:第1跨~第5跨:跨度9000mm,左右搭接长度分别为450mm和450mm,拉条3根采用截面Z-250*70*2*20-Q235,截面基本参数如下:A(cm2)=8.487I x(cm4)=830.136 i x(cm)=9.89W x1(cm3)=69.572 W x2(cm3)=61.116I y(cm4)=41.339 i y(cm)=2.207W y1(cm3)=13.843 W y2(cm3)=11.45I t(cm4)=0.1115 I w(cm6)=8991.676支座处双檩条的刚度折减系数为:0.5;支座处双檩条的弯矩调幅系数:0.9;屋面的坡度角为3.814度;净截面折减系数为0.98;屋面板不能阻止檩条的侧向失稳;能构造保证檩条下翼缘在风吸力下的稳定性;不考虑活荷载不利布置;简图如下所示:二. 荷载组合及荷载标准值考虑恒载工况(D)、活载工况(L1)、施工活载工况(L2)、风载工况(W);强度验算时考虑以下荷载工况组合:1.2D+1.4L11.2D+1.4L1+0.84W1.2D+0.98L1+1.4W1.35D+0.98L1D+1.4W1.2D+1.4L2挠度验算时考虑以下荷载工况组合:1.2D+1.4L11.2D+1.4L1+0.84W1.2D+0.98L1+1.4W1.35D+0.98L1D+1.4W恒载:面板自重: 0.1kN/m2自动考虑檩条自重;活载:屋面活载: 0.5kN/m2雪荷载: 0.5kN/m施工活载: 作用于跨中点1kN风载:基本风压: 0.35kN/m2边跨体型系数-1.4,中跨体型系数-1.15,风压高度变化系数1.206风振系数为1;风压综合调整系数1.05;边跨风载标准值:-1.4×1.206×1×1.05×0.35=-0.6205kN/m2;中跨风载标准值:-1.15×1.206×1×1.05×0.35=-0.5097kN/m2;三. 验算结果一览验算项验算工况结果限值是否通过受弯强度 1.2D+1.4L1 167.495 205 通过整稳 1.2D+1.4L1 188.517 205 通过挠度D+L1 26.9111 60 通过2轴长细比- 104.068 200 通过3轴长细比- 91.9595 200 通过四. 受弯强度验算最不利工况为:1.2D+1.4L1最不利截面位于第1跨,离开跨端4500mm绕3轴弯矩:M3= 8.711kN·m绕2轴弯矩:M2= 0.08265kN·m计算当前受力下有效截面:毛截面应力计算σ1=8.711/69.572×1000-(0.08265)/13.843×1000=119.23N/mm2(上翼缘支承边)σ2=8.711/61.116×1000+(0.08265)/11.45×1000=149.743N/mm2(上翼缘卷边边)σ3=-(8.711)/69.572×1000+(0.08265)/13.843×1000=-119.23N/mm2(下翼缘支承边)σ4=-(8.711)/61.116×1000-(0.08265)/11.45×1000=-149.743N/mm2(下翼缘卷边边)计算上翼缘板件受压稳定系数k支承边应力:σ1=119.23N/mm2非支承边应力:σ2=149.743N/mm2较大的应力:σmax=149.743N/mm2较小的应力:σmin=119.23N/mm2较大的应力出现在非支承边压应力分布不均匀系数:ψ=σmin/σmax=119.23/149.743=0.7962部分加劲板件,较大应力出现在非支承边,ψ≥-1时,k=1.15-0.22ψ+0.045ψ2=1.15-0.22×0.7962+0.045×0.79622=1.003计算下翼缘板件受压稳定系数k支承边应力:σ1=-119.23N/mm2非支承边应力:σ2=-149.743N/mm2全部受拉,不计算板件受压稳定系数计算腹板板件受压稳定系数k第一点应力:σ1=-119.23N/mm2第二点应力:σ2=119.23N/mm2较大的应力:σmax=119.23N/mm2较小的应力:σmin=-119.23N/mm2压应力分布不均匀系数:ψ=σmin/σmax=-119.23/119.23=-1加劲板件,0≥ψ≥-1时,k=7.8-6.29ψ+9.78ψ2=7.8-6.29×-1+9.78×-12=23.87 计算σ1构件受弯上翼缘σ1=149.743N/mm2下翼缘σ1=-119.23N/mm2腹板σ1=119.23N/mm2计算上翼缘板件有效宽度ξ=250/70×(1.003/23.87)0.5=0.7322ξ≦1.1,故k1=1/(0.7322)0.5=1.169ψ=0.7962>0,故α=1.15-0.15×0.7962=1.031B c=70ρ=(205×1.169×1.003/149.743)0.5=1.267B/t=70/2=35αρ=1.031×1.267=1.30618αρ < B/t < 38αρ,有效宽度B e=[(21.8×1.306/35)0.5-0.1]×70=56.127故扣除宽度为B d=70-56.127=13.873对部分加劲板件,ψ≧0同时较大压应力位于非支承边,故扣除板件的中心位于0.6*56.127+13.873/2=40.613mm处计算下翼缘板件有效宽度全部受拉,全部板件有效。
檩条、墙梁设计与构造分析摘要:在应用广泛的门式刚架轻型房屋钢结构设计中, 最为困难的是对檩条的设计计算。
困难来自于两方面:首先,在设计规范或规程中无简单实用的计算公式供设计人员采用; 其次,为节省钢材,轻钢结构中的檩条除用于承担梁的功能外往往兼作支撑体系中的压杆,同时还通过隅撑对门式刚架的梁和柱提供侧向支承。
如果考虑门式刚架轻钢房屋中的蒙皮效应,则檩条的构造和受力计算更为复杂。
檩条通常由薄钢板冷弯成型,计算中还需考虑屈曲后的有效截面等问题,因此,精确计算檩条的承载能力非常困难。
关键词:檩条墙梁设计构造分析1檩条计算1.1檩条计算公式对于实腹式檩条计算,《门式刚架轻型房屋钢结构技术规范》GB51022-2015[1](简称门刚规范)第9.1.5条规定应符合下列要求(由于檩条计算不由抗剪强度控制,因此,以下均不涉及檩条抗剪强度问题):(1)门刚规范第9.1.5条第1款规定:当屋面能阻止檩条侧向位移和扭转时,实腹式檩条可仅做强度计算,不做整体稳定计算。
抗弯强度可按下列公式计算:Mx’/Wenx’≤f (1)式中:Mx’为腹板平面内的弯矩设计值,N.mm;Wenx’为按腹板平面内计算的有效净截面模量(对冷弯薄壁型钢)或净截面模量(对热轧型钢),mm3;f为钢材抗弯强度设计值,N/mm2。
(2)门刚规范第9.1.5条第2款规定:当屋面不能阻止檩条侧向位移和扭转时,应按下式计算檩条的稳定性:Mx/(ψbyWenx)+My/Weny≤f (2)式中:Mx、My分别为对截面主轴x、y轴的弯矩设计值,N.mm;Wenx、Weny分别为对截面主轴x、y轴的有效净截面模量(对冷弯薄壁型钢)或净截面模量(对热轧型钢),mm3;ψby为梁的整体稳定性系数,冷弯薄壁型钢构件按现行国家标准《冷弯薄壁型钢结构技术规范》GB50018,热轧型钢构件按现行国家标准《钢结构设计标准》GB50017的规定计算。
(3)门刚规范第9.1.5条第3款规定:在风吸力作用下,受压下翼缘的稳定性应按现行国家标准《冷弯薄壁型钢结构技术规范》GB50018的规定计算;当受压下翼缘有内衬板约束且能防止檩条截面扭转时,整体稳定性可不做计算。
z型连续檩条的搭接长度
首先,让我们来了解一下什么是“Z型连续檩条”。
Z型连续檩条是一种用于搭接木材的结构。
它由两根木檩条交替堆叠形成,每根木檩条的一端有一个凹槽,另一端有一个凸槽。
这样,当两根木檩条交叠在一起时,凸槽可以插入凹槽,形成一个牢固的搭接结构。
现在我们来计算Z型连续檩条的搭接长度。
假设每根木檩条的长度为L,凹槽和凸槽的长度都是d,檩条之间的重叠长度为x。
当两根木檩条交叠时,凸槽和凹槽之间的重叠长度为d。
而檩条之间的重叠长度为x。
所以,总的搭接长度为d+x。
由于每根木檩条都是L长,所以L = d + x。
现在我们可以解这个方程,求得搭接长度x:
x = L - d
所以,Z型连续檩条的搭接长度为L - d。
连续檩条搭接长度分析及构造建议
连续檩条搭接长度分析及构造建议
摘要:以理论模型入手分析了连续檩条内力情况,从而确定连续檩条最佳有效搭接长度,结合多年设计经验,给出在设计、施工时需要注意的构造要求。
关键词连续檩条分析模型有效搭接构造要求
一.引言
钢结构厂房在屋面设计过程中,为了节约材料、减少造价,大多采用Z型连续檩条,但是国家标准规范、图集中尚未对连续檩条搭接长度、构造有详细说明。
设计人员对连续檩条能否有效传递弯矩;内力挠度如何计算;搭接长度及构造要求应如何设计产生困惑。
现针对以上这些问题逐一分析。
二.连续檩条分析模型
1.均匀连续梁模型
图1 为五跨均匀连续梁在均布荷载q的作用下的弯矩和变形[1] 。
变形()
图1五跨均匀连续梁的弯矩和变形
2. 搭接模型
图2(a) 为连续檩条在实际工程中的构造详图,檩条腹板上的三对螺栓是用来传递剪的。
在设计过程中,将檩托板和檩条搭接端头处的三对螺栓简化成三根链杆(见图2(b) ) ,用以连接檩条[2] 。
这样计算模型可较真实地反映连续搭接檩条的内力和变形状况。
而链杆的轴力就是螺栓所承担的剪力,可用于指导螺栓设计。
图2搭接模型
通过ANSYS 有限元程序分析,采用搭接模型和均匀连续梁模型的计算结果基本接近。
檩条单元中的跨中最大弯矩和最大变形十分接近;而在支座附近,单根构件上的负弯矩比按均匀连续梁的计算结果要小,但均不小于其一半。
因此,只要把按均匀连续梁模型计算的结果进行稍稍调整即可用于连续搭接檩条的设计计算。
连续檩条的分析模型吴梓玮(上海美建钢结构有限公司上海!"##"$)摘要:钢屋面结构中斜卷边的“%”型薄壁型钢檩条通常在支座处相互搭接,设计时利用连续梁的分析方法获得构件的内力,为此构建了一个用梁单元和二力杆单元构成的力学分析模型,揭示了檩条在互相搭接情况下的内力传递过程,证实采用连续梁的分析模型即可较为准确地描述连续搭接的檩条的内力状况,并且可以按连续搭接的方式进行檩条的设计。
关键词:檩条有限元连续梁!"!#$%&’()*+#),’)"%&"-)-./-0#&".&’%()*((+,-./,-(012+3**4+35’63’5*278,93:+,-./,-(!"##"$)!1234563:;.3,*<*3-4577=(./>?>3*<,%@>,-A*:A’54(.>-5*4-AA*:*-6,73,*5’A7.3,*577=5-=3*5>8B./(.**5>:*>(/.3,*A’54(.>’>(./67.3(.’7’><7<*.3:(>35(C’3(7.8;.3,(>3,*>(>,3,*)5(3*5(.357:’6*>-.-.-4?3(6-4<7:*4,),(6,(>67.>35’63*:)(3,->*5(*>7=C*-<>-.:35’>><*<C*5>,37>,7),7)3,*<7<*.3(>35-.>=*55*:3,57’/,3,*4-AA*:67..*63(7.80:*3-(4*:6-46’4-3(7.>,7)>3,*(.3*5.-4=756*-.::*=4*63(7.7=3,*<7:*4(>>(<(4-5->3,*7.*7=-67.3(.’7’>C*-<8+73,*67.3(.’7’>C*-<<*3,7:(>>’(3-C4*=75-.-4?D(./3,*577=A’54(.>8789:;4<2:A’54(.=(.(3**4*<*.367.3(.’7’>C*-<作者:吴梓玮男#EFG 年F 月出生国家级注册结构工程师美国注册结构工程师收稿日期:!""$H "F H "I钢结构建筑体系中屋面与墙面的檩条是重要的结构构件,相对于采用简支方式连接的檩条结构来说,采用连续方式设计的檩条可以在提供同等刚度的条件下,获得更为经济的设计。
浅谈轻钢结构厂房的屋面连续檩条设计【摘要】斜卷边Z型钢连续檩条内力分布较均匀,刚度大,能节省用钢梁,对于屋面面积较大的厂房其优势更为突出。
本文分析了Z型钢连续檩条的计算方法和构造措施,并通过实例说明了连续檩条在用钢量上的相对优势。
【关键词】斜卷边Z型钢;连续檩条;用钢量当前,在轻钢结构厂房的屋面檩条设计中,大量采用的是冷弯薄壁斜卷边Z型钢连续檩条。
这种搭接而成的连续檩条内力分布均匀,刚度大,能节省用钢量,同时在制作、运输、安装等诸方面都很便利,但是连续檩条的内力计算比简至檩条要为复杂,国内的钢结构设计规范及规程尚无针对连续檩条的计算公式。
1:连续檩条的受力分析一般认为,对于Z型连续檩条的内力计算,可按如下简单通用的模式考虑:按等截面连续梁计算,考虑活荷载的不利布置。
具体计算时,可按50%的活荷载均匀布置得到一个效应值S1,再用50%的活荷载按最不利隔跨布置得到一个效应S2,两者相加即为最不利活荷载所产生的效应S。
根据浙江大学杭萧钢结构研究中心的《冷弯斜卷边Z型钢连续檩条的抗弯性能实验及设计方法研究》报告:由于支座处存在着裂缝及连接孔,故在支座搭接区有一定程度的松动,导致部分弯矩释放,这样支座处的弯矩小于等截面连续梁的支座弯矩,跨中弯矩大于等截面连续梁的跨中弯矩,檩条的扰度也大于等截面连续梁的扰度。
所以实际工程中需考虑因搭接嵌套松动所产生的弯矩释放10%。
2:连续檩条的搭接目前,国内各单位设计连续檩条的搭接长度通常统一取为跨度的10%,这个搭接长度完全能够满足构成连续檩条的基本条件。
实际工程中,多数设计人员不考虑支座处的双檩条强度,这样计算的结果不够经济。
个人认为支座处搭接区的刚度和抗弯模量应按双檩条的代数和考虑,第一跨檩条的厚度取为大于其余各跨厚度,这样既经济又安全。
3:工程实例某轻钢结构厂房,柱距9m,厂房总长9×12=108m,屋面材料为压型钢板,屋面坡度为,檩条间距1.5m,每个柱距间设两道拉条,檩条的净截面系数为0.9,钢材均为Q235B钢。
连续檩条搭接长度分析及构造建议
摘要:以理论模型入手分析了连续檩条内力情况,从而确定连续檩条最佳有效搭接长度,结合多年设计经验,给出在设计、施工时需要注意的构造要求。
关键词连续檩条分析模型有效搭接构造要求
一.引言
钢结构厂房在屋面设计过程中,为了节约材料、减少造价,大多采用Z型连续檩条,但是国家标准规范、图集中尚未对连续檩条搭接长度、构造有详细说明。
设计人员对连续檩条能否有效传递弯矩;内力挠度如何计算;搭接长度及构造要求应如何设计产生困惑。
现针对以上这些问题逐一分析。
二.连续檩条分析模型
1.均匀连续梁模型
图1 为五跨均匀连续梁在均布荷载q的作用下的弯矩和变形[1] 。
变形()
图1五跨均匀连续梁的弯矩和变形
2. 搭接模型
图2(a) 为连续檩条在实际工程中的构造详图,檩条腹板上的三对螺栓是用来传递剪的。
在设计过程中,将檩托板和檩条搭接端头处的三对螺栓简化成三根链杆(见图2(b) ) ,用以连接檩条[2] 。
这样计算模型可较真实地反映连续搭接檩条的内力和变形状况。
而链杆的轴力就是螺栓所承担的剪力,可用于指导螺栓设计。
图2搭接模型
通过ANSYS 有限元程序分析,采用搭接模型和均匀连续梁模型的计算结果基本接近。
檩条单元中的跨中最大弯矩和最大变形十分接近;而在支座附近,单根构件上的负弯矩比按均匀连续梁的计算结果要小,但均不小于其一半。
因此,只要把按均匀连续梁模型计算的结果进行稍稍调整即可用于连续搭接檩条的设计计算。
连续檩条的弯矩分布如图3所示,其控制截面的弯矩如图中M1~M9,其中M2、M4、M6、M8是搭接末端处的弯矩值,随搭接长度而定。
在支座处嵌套搭接双层檩条具有双倍的强度,跨中是单檩条强度。
优化设计应当是使M2≈M1, M4≈M5≈M6, M8≈M9……端跨的弯矩大于内部跨的弯矩,因此图3中的搭接长度应当是B>A≥C[3],弯矩值的控制截面将是M1、M3、M7、M9等。
在计算连续檩条的挠度时,应考虑嵌套搭接的松动带来的挠度增加,这个增加量有实验测定,檩条的细部尺寸不同,挠度的增加量不同,根据杭萧公司委托浙江大学做的试验的情况,可以将均匀连续梁模式计算出的挠度乘以1.3~1.5的放大系数,或对搭接区段的刚度,按单根檩条刚度的0.5L 来拟合计算。
[4](注:此对应檩条卷边为60°,如檩条卷边为45°,则按单根檩条刚度的0.4L来拟合计算。
)
图3 连续檩条搭接长度及弯矩分布图
三.连续檩条有效搭接长度
在连续檩条中,为了方便嵌套搭接,使Z型檩条的上、下翼缘宽度不等,其不等宽度之差以5~7mm为宜,采用这种构造,设计人有两个问题需要考虑:1.嵌套搭接的长度以多少为好;2.嵌套搭接的刚度情况如何,在计算内力和挠度时需要以此为依据,不同松紧的套管有不同的刚度结构,这只能考实验来确定。
已有的实验表明:嵌套搭接的长度大约是10%的跨度较为适宜,搭接太短,形成连续檩条的刚度太弱,搭接太长,则增加的效果不明显,造成浪费[5]。
檩条搭接越长,嵌套作用就越强。
在设计时,认为支座处两根檩条共同工作,那么它们所能承担的弯矩及剪力都应该是单根檩条的两倍,需要说明的是,两根檩条搭接时还应该满足以下4 个条件才可以满足共同工作的假设[6] :1) 搭接的端部必须采用直径不小于12mm 的螺栓相互连接;2) 两根檩条的下翼缘与支座连接时必须采用直径不小于12mm 的螺栓;3) 两根檩条的腹板必须紧密贴合;4) 两根檩条的构件壁厚比不应超过1.3。
图4 檩条搭接长度示意图
2003 年《全国民用建筑工程设计技术措施》中对檩条的搭接长度有了明确的规定,即要求不小于跨度的1/ 10 。
这个规定基本反映了经济可靠的原则,但是它只参考了影响檩条有效搭接长度的跨度变量,而没有考虑荷载变量,在设计过程中需要引起注意。
这样就可以基本确定有效的搭接长度为檩条跨度的1/ 12~1/ 10 ,有条件的话,第一跨的搭接长度还应该略长一些,最好为0.15L。
需要说明的是,在檩条跨度较小而且檩条所承担的悬挂荷载也很小时,有效搭接长度与跨度的比可能比本文分析的更小一些。
四.构造要求
1. 自攻螺钉布置
试验研究表明:上、下翼缘均有自攻螺钉和仅在上翼缘有自攻螺钉时,嵌套刚度相差不算大[7] 。
而在实际工程中,由于其与层面板连接,上翼缘总是有自攻螺钉的(下翼缘则在有内衬板时才会有自攻螺钉) 。
Z 型连续檩条连接构造详见图5 。
跨中弯矩必然降低,从而风吸力作用下下翼缘受压区长度减小。
因此,在搭接端头的上、下翼缘处各设一对螺栓提高了风吸力作用下檩条的稳定性。
图5Z型连续檩条搭接和螺栓布置
2.卷边角度向外倾斜的斜卷边角度越小,嵌套刚度越小,卷边角度越大,嵌套刚度越大,但安装难度会随之增大,为使运输和安装方便,宜采用60°左右的斜卷边角度。
五.结论
(1) 斜卷边Z 型檩条采用搭接连接可以连续承担荷载。
采用均匀连续梁模型设计檩条是可行的。
(2) 拉条继续延用习惯做法,即仅在檩条的上翼缘附近设置拉条。
连续檩条强度验算只考虑跨中和檩条搭接的端头处;将按均匀连续梁模式计算的值乘以1.3~1.5的放大系数。
(3) 对于连接节点,连续檩条的搭接长度在任何时候都不宜小于1/12L ,多跨檩条中,端跨檩条应向第二跨再延伸,延伸长度为0.15L 时都能满足要求;嵌套搭接仅需在搭接端头的腹板处设置一对螺栓;为保证一定的嵌套刚度且不致于使安装难度过大,卷边角度在60°左右为宜,工程中通常采用60°。
(4) 连续檩条的用钢指标明显低于简支檩条; 另外,在提供较大搭接长度的前提下,连续檩条采用同种规格的截面也不失为一种好的方法。
注:文章内的图表及公式请以PDF格式查看。