当前位置:文档之家› Digital-Signal-Processing数字信号处理大学毕业论文英文文献翻译及原文

Digital-Signal-Processing数字信号处理大学毕业论文英文文献翻译及原文

毕业设计(论文)外文文献翻译

文献、资料中文题目:数字信号处理

文献、资料英文题目:Digital Signal Processing 文献、资料来源:

文献、资料发表(出版)日期:

院(部):

专业:

班级:

姓名:

学号:

指导教师:

翻译日期: 2017.02.14

数字信号处理

一、导论

数字信号处理(DSP)是由一系列的数字或符号来表示这些信号的处理的过程的。数字信号处理与模拟信号处理属于信号处理领域。DSP包括子域的音频和语音信号处理,雷达和声纳信号处理,传感器阵列处理,谱估计,统计信号处理,数字图像处理,通信信号处理,生物医学信号处理,地震数据处理等。

由于DSP的目标通常是对连续的真实世界的模拟信号进行测量或滤波,第一步通常是通过使用一个模拟到数字的转换器将信号从模拟信号转化到数字信号。通常,所需的输出信号却是一个模拟输出信号,因此这就需要一个数字到模拟的转换器。即使这个过程比模拟处理更复杂的和而且具有离散值,由于数字信号处理的错误检测和校正不易受噪声影响,它的稳定性使得它优于许多模拟信号处理的应用(虽然不是全部)。

DSP算法一直是运行在标准的计算机,被称为数字信号处理器(DSP)的专用处理器或在专用硬件如特殊应用集成电路(ASIC)。目前有用于数字信号处理的附加技术包括更强大的通用微处理器,现场可编程门阵列(FPGA),数字信号控制器(大多为工业应用,如电机控制)和流处理器和其他相关技术。

在数字信号处理过程中,工程师通常研究数字信号的以下领域:时间域(一维信号),空间域(多维信号),频率域,域和小波域的自相关。他们选择在哪个领域过程中的一个信号,做一个明智的猜测(或通过尝试不同的可能性)作为该域的最佳代表的信号的本质特征。从测量装置对样品序列产生一个时间或空间域表示,而离散傅立叶变换产生的频谱的频率域信息。自相关的定义是互相关的信号本身在不同时间间隔的时间或空间的相关情况。

二、信号采样

随着计算机的应用越来越多地使用,数字信号处理的需要也增加了。为了在计算机上使用一个模拟信号的计算机,它上面必须使用模拟到数字的转换器(ADC)使其数字化。采样通常分两阶段进行,离散化和量化。在离散化阶段,信号的空间被划分成等价类和量化是通过一组有限的具有代表性的信号值来代替信号近似值。

奈奎斯特-香农采样定理指出,如果样本的取样频率大于两倍的信号的最高频率,一个信号可以准确地重建它的样本。在实践中,采样频率往往大大超过所需的带宽的两倍。

数字模拟转换器(DAC)用于将数字信号转化到模拟信号。数字计算机的使用是数字控制系统中的一个关键因素。

三、时间域和空间域

在时间或空间域中最常见的处理方法是对输入信号进行一种称为滤波的操作。滤波通常包括对一些周边样本的输入或输出信号电流采样进行一些改造。现在有各种不同的方法来表征的滤波器,例如:

一个线性滤波器的输入样本的线性变换;其他的过滤器都是“非线性”。线

性滤波器满足叠加条件,即如果一个输入不同的信号的加权线性组合,输出的是一个同样加权线性组合所对应的输出信号。

“因果”滤波器只使用以前的样本的输入或输出信号;而“非因果”滤波器使用未来的输入样本。一个非因果滤波器通常可以通过增加一个延迟将它变成了一个因果滤波器。

“时间不变”滤波器随着时间的推移性具有稳定特性;其他滤波器如随时间变化的自适应滤波器。

一些滤波器是“稳定”的,别的是“不稳定的”。一个稳定的滤波器产生的输出信号随时间收敛于一个恒定值,或在一个有限的时间间隔内是有界的。一种不稳定的滤波器可以产生一个没有增长界限的输出,甚至零输入有界。

“有限脉冲响应(FIR)”滤波器只使用于输入信号,而“无限脉冲响应滤波器(IIR)”使用于输入信号和输出信号之前的样品。FIR滤波器总是稳定的,而IIR滤波器可能是不稳定的。

大多数滤波器可以被描述在z域(频域的一个超集)的传递函数。如果它是一个FIR滤波器的脉冲响应和阶跃响应,滤波器也可以被描述为一个差分方程,或对零点和极点的收集。一个FIR滤波器的输出是通过对任何给定的输入与脉冲响应的卷积计算得到的。滤波器也可以被用来推导出一个样品的处理算法的方块图利用硬件指令实现滤波器所代表。

四、频域

信号通常是通过傅立叶变换将其从时间或空间域转换到频率域。傅里叶变换将信号转换信息和相位分量级的每个频率。通常的傅里叶变换转换为功率谱,这是大小的每个频率分量的平方。

在频域对信号分析的最常见的用途是信号特性分析。工程师可以研究频谱来确定哪一频率的存在于输入信号中。

滤波,特别是在非实时的工作也可以被转换到频域实现,应用滤波器,然后转换回时域。这是一个快速,O(nlogn)操作,可以基本上给出任何滤波器的形状包括砖墙滤波器优良的逼近。

有一些常用的频域变换。例如,倒谱转换信号的频域傅立叶变换,取对数,然后将另一个傅里叶变换。这强调的频率成分的幅度较小而保留的频率分量的大小顺序。频域分析又称谱或谱分析。

五、信号处理

信号通常需要以不同的方式进行处理。例如,从一个传感器的输出信号可能被污染的多余电“噪音”。电极连接到一个病人的胸部时,心电图是测量由心脏和其他肌肉的活动引起的微小的电压变化。由于电的干扰从电源的强烈影响,信号通常是采用“总管拾取”。处理信号的滤波电路可以消除或至少降低信号的不需要的部分。现在,越来越多的的情况下,是由DSP技术来进行信号的滤波以提高信号质量或提取重要信息,而不是模拟电子技术。

六、DSP的发展

数字信号处理的发展从1960年代的大型数字计算机的数字运算应用程序的使用快速傅立叶变换(FFT),它允许一个信号的频谱可以快速计算。这些技术在当时没有被广泛使用,因为合适的计算设备通常仅在大学及其他科研机构可以使

用。

七、数字信号处理器(DSP)

在20世纪70年代末和20世纪80年代初微处理机的介绍使DSP技术在更广泛的范围内得到了使用。然而,通用微处理器如Intel x86的家庭并不适合于DSP的计算密集型的需求,随着20世纪80年代DSP重要性的增加导致几个主要的电子产品制造商(如德克萨斯仪器,模拟设备和摩托罗拉)去开发数字信号处理器芯片,专门的微处理器,专门设计用于在数字信号处理要求的操作的类型的架构。(注意,缩写DSP数字信号处理的不同的意思,这个词用于处理数字信号,多种技术或数字信号处理器,一种特殊类型的微处理器芯片)。像一个通用微处理器,DSP是一种具有其自己的本地指令代码的可编程器件。DSP芯片是能够每秒进行数以百万计的浮点运算,像他们同类型的更著名的通用器件,更快和更强大的版本正在不断被引入。DSP也可以嵌入在复杂的“系统芯片”装置,通常包括模拟和数字电路。

8、数字信号处理器的应用

DSP技术是当今普遍在手机,多媒体计算机,录像机,CD播放器,硬盘驱动器和控制器的调制解调器等设备,并将很快在电视和电话业务中取代模拟电路。DSP的一个重要的应用是信号的压缩和解压。信号压缩用于数字蜂窝电话,在每一个地方的“单元”让更多的电话同时被处理。DSP信号压缩技术不仅使人们可以相互交谈,而且可以通过使用安装在计算机上的小的摄像机使人们通过显示器看见对方,而这些只需要将传统的电话线连接在一起。在音频CD系统,DSP技术来执行复杂的错误检测和校正原始数据,因为它是从光盘读取。

虽然一些潜在的DSP技术的数学理论,如傅立叶和希尔伯特变换,数字滤波器的设计和信号压缩,可以相当复杂,而数值运算所需的实际实现这些技术是非常简单的,主要包括操作可以在一个便宜的四功能的计算器上进行操作。一种DSP芯片的结构设计进行这样的操作非常快,处理的样品每秒数以亿计,提供实时的性能:即,能够处理一个实时的信号,因为它是采样,然后输出信号的处理,例如扬声器或视频显示。所有的DSP应用前面提到的实例,如硬盘驱动器和移动电话,要求实时操作。

主要电子产品制造商已投入巨资在DSP技术。因为他们现在发现在大众市场的产品应用中,DSP芯片的电子装置占有世界市场的很大比例。销售额每年数十亿美元,并可能继续快速增长。

DSP主要应用的音频信号处理,音频压缩,数字图像处理,视频压缩,语音处理,语音识别,数字通信,雷达,声纳,地震,和生物医学。具体的例子是在数字移动电话的语音压缩与传输,空间匹配均衡的音响、扩声领域,良好的天气预测,经济预测,地震数据处理,和工业过程控制分析,计算机生成的动画电影中,医学影像如CAT扫描和MRI,MP3压缩,图像处理,高保真度扬声器分频器和均衡,并与电吉他放大器使用的音频效果。

九、数字信号处理的实验

数字信号处理是经常使用专门的微处理器,如dsp56000,TMS320,或SHARC。这些通常处理数据使用定点运算,虽然某些版本可以使用浮点算法和更强大。更快的应用FPGA可能从慢启动流处理器应用Freescale公司的出现,传统的较慢

的处理器如单片机可能是适当的。

【英文原文】

Digital Signal Processing

1、Introduction

Digital signal processing (DSP) is concerned with the representation of the signals by a sequence of numbers or symbols and the processing of these signals. Digital signal processing and analog signal processing are subfields of signal processing. DSP includes subfields like audio and speech signal processing, sonar and radar signal processing, sensor array processing, spectral estimation, statistical signal processing, digital image processing, signal processing for communications, biomedical signal processing, seismic data processing, etc.

Since the goal of DSP is usually to measure or filter continuous real-world analog signals, the first step is usually to convert the signal from an analog to a digital form, by using an analog to digital converter. Often, the required output signal is another analog output signal, which requires a digital to analog converter. Even if this process is more complex than analog processing and has a discrete value range, the stability of digital signal processing thanks to error detection and correction and being less vulnerable to noise makes it advantageous over analog signal processing for many, though not all, applications.

DSP algorithms have long been run on standard computers, on specialized processors called digital signal processors (DSP)s, or on purpose-built hardware such as application-specific integrated circuit (ASICs). Today there are additional technologies used for digital signal processing including more powerful general purpose microprocessors, field-programmable gate arrays (FPGAs), digital signal controllers (mostly for industrial applications such as motor control), and stream processors, among others.

In DSP, engineers usually study digital signals in one of the following domains: time domain (one-dimensional signals), spatial domain (multidimensional signals), frequency domain, autocorrelation domain, and wavelet domains. They choose the domain in which to process a signal by making an informed guess (or by trying different possibilities) as to which domain best represents the essential characteristics of the signal. A sequence of samples from a measuring device produces a time or spatial domain representation, whereas a discrete Fourier transform produces the frequency domain information that is the frequency spectrum. Autocorrelation is defined as the cross-correlation of the signal with itself over varying intervals of time or space.

2、Signal Sampling

With the increasing use of computers the usage of and need for digital signal processing has increased. In order to use an analog signal on a computer it must be digitized with an analog to digital converter (ADC). Sampling is usually carried out in two stages, discretization and quantization. In the discretization stage, the space of signals is partitioned into equivalence classes and quantization is carried out by replace the signal with representative signal values are approximated by values from a finite set.

The Nyquist-Shannon sampling theorem states that a signal can be exactly reconstructed from its samples if the samples if the sampling frequency is greater than twice the highest

frequency of the signal. In practice, the sampling frequency is often significantly more than twice the required bandwidth.

A digital to analog converter (DAC) is used to convert the digital signal back to analog signal. The use of a digital computer is a key ingredient in digital control systems.

3 、Time and Space Domains

The most common processing approach in the time or space domain is enhancement of the input signal through a method called filtering. Filtering generally consists of some transformation of a number of surrounding samples around the current sample of the input or output signal. There are various ways to characterize filters, for example: A “linear” filter is a linear transformation of input samples; other filters are “non-linear.” Linear filters satisfy the superposition condition, i.e. if an input is a weighted linear combination of different signals, the output is an equally weighted linear combination of the corresponding output signals.

A “causal”filter uses only previous samples of the input or output signals; while a “non-causal”filter uses future input samples. A non-causal filter can usually be changed into a causal filter by adding a delay to it.

A “time-invariant”filter has constant properties over time; other filters such as adaptive filters change in time.

Some filters are “stable”, others are “unstable”. A stable filter produces an output that converges to a constant value with time, or remains bounded within a finite interval. An converges to a constant value with time, or remains bounded within a finite interval. An unstable filter can produce an output that grows without bounds, with bounded or even zero input.

A “Finite Impulse Response”(FIR) filter uses only the input signal, while an “Infinite Impulse Response” filter (IIR) uses both the input signal and previous samples of the output signal. FIR filters are always stable, while IIR filters may be unstable.

Most filters can be described in Z-domain (a superset of the frequency domain) by their transfer functions. A filter may also be described as a difference equation, a collection of zeroes and poles or, if it is an FIR filter, an impulse response or step response. The output of an FIR filter to any given input may be calculated by convolving the input signal with the impulse response. Filters can also be represented by block diagrams which can then be used to derive a sample processing algorithm to implement the filter using hardware instructions.

4、Frequency Domain

Signals are converted from time or space domain to the frequency domain usually through the Fourier transform. The Fourier transform converts the signal information to a magnitude and phase component of each frequency. Often the Fourier transform is converted to the power spectrum, which is the magnitude of each frequency component squared.

The most common purpose for analysis of signals in the frequency domain is analysis of signal properties. The engineer can study the spectrum to determine which frequencies are present in the input signal and which are missing.

Filtering, particularly in non real-time work can also be achieved by converting to the frequency domain, applying the filter and then converting back to the time domain. This is a fast, O (n log n) operation, and can give essentially any filter shape including excellent approximations to brickwall filters.

There are some commonly used frequency domain transformations. For example, the cepstrum converts a signal to the frequency domain Fourier transform, takes the logarithm, then

专业英语翻译之数字信号处理

Signal processing Signal processing is an area of electrical engineering and applied mathematics that deals with operations on or analysis of signals, in either discrete or continuous time, to perform useful operations on those signals. Signals of interest can include sound, images, time-varying measurement values and sensor data, for example biological data such as electrocardiograms, control system signals, telecommunication transmission signals such as radio signals, and many others. Signals are analog or digital electrical representations of time-varying or spatial-varying physical quantities. In the context of signal processing, arbitrary binary data streams and on-off signalling are not considered as signals, but only analog and digital signals that are representations of analog physical quantities. History According to Alan V. Oppenheim and Ronald W. Schafer, the principles of signal processing can be found in the classical numerical analysis techniques of the 17th century. They further state that the "digitalization" or digital refinement of these techniques can be found in the digital control systems of the 1940s and 1950s.[2] Categories of signal processing Analog signal processing Analog signal processing is for signals that have not been digitized, as in classical radio, telephone, radar, and television systems. This involves linear electronic circuits such as passive filters, active filters, additive mixers, integrators and delay lines. It also involves non-linear circuits such as

the scientist and engineer's guide to digital signal processing部分翻译

姓名柯林波班级07应用物理(2)班学号07207030203成绩 考试内容:2010年第一学期数字信号处理 第一部分解答题 1. Please give the stages of digital processing of analog signals and the basic components of DSP system. 2. Please describe Sampling Theorem Compute the z-transform of the following sequences x (n ) x (n ) = (-0.5)n u(n ) 3. Try to test the linearity and time invariance of the discrete time systems defined as follows: )1()()(--=n x n x n y 4. Given a causal IIR discrete-time system described by the difference equation y[n]-0.4y[n-1]=x[n]. And it is known that the input sequence is x[n]= x[n]=(0.3)n μ[n]. . (1)Determine the output sequence y[n] using the z-transform. (2)Determine the expression of the frequency response H(e j ω) in the form |H(e j ω)|e j ?(ω) 第二部分文献翻译 参考文献:the scientist and engineer's guide to digital signal processing 具体内容:第285页第二段---第292页 原文:见附页

Digital-Signal-Processing数字信号处理大学毕业论文英文文献翻译及原文

毕业设计(论文)外文文献翻译 文献、资料中文题目:数字信号处理 文献、资料英文题目:Digital Signal Processing 文献、资料来源: 文献、资料发表(出版)日期: 院(部): 专业: 班级: 姓名: 学号: 指导教师: 翻译日期: 2017.02.14

数字信号处理 一、导论 数字信号处理(DSP)是由一系列的数字或符号来表示这些信号的处理的过程的。数字信号处理与模拟信号处理属于信号处理领域。DSP包括子域的音频和语音信号处理,雷达和声纳信号处理,传感器阵列处理,谱估计,统计信号处理,数字图像处理,通信信号处理,生物医学信号处理,地震数据处理等。 由于DSP的目标通常是对连续的真实世界的模拟信号进行测量或滤波,第一步通常是通过使用一个模拟到数字的转换器将信号从模拟信号转化到数字信号。通常,所需的输出信号却是一个模拟输出信号,因此这就需要一个数字到模拟的转换器。即使这个过程比模拟处理更复杂的和而且具有离散值,由于数字信号处理的错误检测和校正不易受噪声影响,它的稳定性使得它优于许多模拟信号处理的应用(虽然不是全部)。 DSP算法一直是运行在标准的计算机,被称为数字信号处理器(DSP)的专用处理器或在专用硬件如特殊应用集成电路(ASIC)。目前有用于数字信号处理的附加技术包括更强大的通用微处理器,现场可编程门阵列(FPGA),数字信号控制器(大多为工业应用,如电机控制)和流处理器和其他相关技术。 在数字信号处理过程中,工程师通常研究数字信号的以下领域:时间域(一维信号),空间域(多维信号),频率域,域和小波域的自相关。他们选择在哪个领域过程中的一个信号,做一个明智的猜测(或通过尝试不同的可能性)作为该域的最佳代表的信号的本质特征。从测量装置对样品序列产生一个时间或空间域表示,而离散傅立叶变换产生的频谱的频率域信息。自相关的定义是互相关的信号本身在不同时间间隔的时间或空间的相关情况。 二、信号采样 随着计算机的应用越来越多地使用,数字信号处理的需要也增加了。为了在计算机上使用一个模拟信号的计算机,它上面必须使用模拟到数字的转换器(ADC)使其数字化。采样通常分两阶段进行,离散化和量化。在离散化阶段,信号的空间被划分成等价类和量化是通过一组有限的具有代表性的信号值来代替信号近似值。 奈奎斯特-香农采样定理指出,如果样本的取样频率大于两倍的信号的最高频率,一个信号可以准确地重建它的样本。在实践中,采样频率往往大大超过所需的带宽的两倍。 数字模拟转换器(DAC)用于将数字信号转化到模拟信号。数字计算机的使用是数字控制系统中的一个关键因素。 三、时间域和空间域 在时间或空间域中最常见的处理方法是对输入信号进行一种称为滤波的操作。滤波通常包括对一些周边样本的输入或输出信号电流采样进行一些改造。现在有各种不同的方法来表征的滤波器,例如: 一个线性滤波器的输入样本的线性变换;其他的过滤器都是“非线性”。线

dsp论文----【浅谈DSP技术的应用和发展前景】

浅谈DSP技术的应用和发展前景 adfasd adsfasdf 【摘要】数字信号处理(DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科.本文概述了数字信号处理技术的发展过程,分析了DSP处理器在多个领域应用状况,介绍了DSP的最新发展,对数字信号处理技术的发展前景进行了展望。 【Abstract】:Digital signal processing (DSP) is the one who is widely used in many disciplines involved in many areas of emerging disciplines。This paper outlines the development of digital signal processing technology,processes,analyzes the DSP processor, application status in many areas,introduced the latest developments in DSP, digital signal processing technology for the future development prospects。 【关键词】信号数字信号处理信息技术 【Key words】Signal digital signal processing Information Technology 1引言 自从数字信号处理器(Digital Signal Processor)问世以来,由于它具有高速、灵活、可编程、低功耗和便于接口等特点,已在图形、图像处理,语音、语言处理,通用信号处理,测量分析,通信等领域发挥越来越重要的作用.随着技术成本的降低,控制界已对此产生浓厚兴趣,已在不少场合得到成功应用。 2DSP技术的发展历程 DSP的发展大致分为三个阶段: 在数字信号处理技术发展的初期(二十世纪50—60年代),人们只能在微处理器上完成数字信号的处理。直到70年代,有人才提出了DSP的理论和算法基础。一般认为,世界上第一个单片DSP芯片应当是1978年AMI公司发布的S281l.1979年美国Intel公司发布的商用可编程器件2920是DSP芯片的一个重要里程碑。这两种芯片内部都没有现代DSP芯片所必须有的单周期乘法器。1980年,日本NEC公司推出的mPD7720是第一个具有硬件乘法器的商用DSP芯片,从而被认为是第一块单片DSP器件. 随着大规模集成电路技术的发展,1982年美国德州仪器公司推出世界上第一代DSP芯片TMS32010及其系列产品,标志了实时数字信号处理领域的重大突破.Ti公司之后不久相继推出了第二代和第三代DSP芯片。90年代DSP发展最快。Ti公司相继推出第四代、第五代DSP芯片等。 随着CMOS技术的进步与发展,日本的Hitachi公司在1982年推出第一个基于CMOS工艺的浮点DSP芯片,1983年日本Fujitsu公司推出的MB8764,其指令周期为120ns,且具有双内部总线,从而使处理吞吐量发生了一个大的飞跃.而第一个高性能浮点DSP芯片应是AT&T公司于1984年推出的DSP32。与其他公司相比,Motorola公司在推出DSP芯片方面相对较晚.1986年,该公司推出了定点处理器MC56001。1990年推出了与IEEE浮点格式兼容的浮点DSP芯片MC96002。美国模拟器件公司(AD)在DSP芯片市场上也占有一定的份额,相继推出了一系列具有自己特点的DSP芯片。自1980年以来,DSP芯片得到了突飞猛进的发展,DSP芯片的应用越来越广泛,并逐渐成为电子产品更新换代的决定因素。从运算速度来看,MAC(一次乘法和一次加法)时间已经从20世纪80年代初的400ns降低到10ns以下,处理能力提高了几十倍。DSP芯片内部关键的乘法器部件从1980年占模片区的40%左右下降到5%以下,片内RAM数量增加一个数量级以上。DSP芯片的引脚数量从1980年的最多64个增加到现在的200个以上,引脚数量的增加,意味着结构灵活性的增

数字信号处理算法研究毕业论文

数字信号处理算法研究毕业论文

毕业论文 论文题目(中文)数字信号处理算法研究--基于人体脉搏信号 论文题目(外文)Research on Digital Signal Processing Algorithm-- based on human pulse signal

数字信号处理算法研究 --基于人体脉搏信号 中文摘要 脉搏信号是一种较为常见的生物医学信号,是人体重要的动力学信号之一,脉搏信号在相当程度上可以反映人体心血管的生理状态信息,它能反映人体心脏器官以及血液循环系统的生理情况变更,在临床健康观察和疾病诊断中位置非常的重要。因此脉搏信号的处理和分析在医学界受到了广泛的关注和重视。随着电子技术与计算机技术的快速发展,将人体脉搏信号转化为电信号进行处理与分析,实现智能化的脉搏检测与分析技术,已是生物医学工程范畴的发展目标。 具体研究工作为: (1)通过采用一款pulsesensor基于光电反射式模拟传感器用于测量脉搏、心率来检测人体模拟脉搏信号。 (2)再通过Arduino等单片机将模拟脉搏信号转换为数字信号通过USB 上传到电脑上。 (3)最后通过matlab对其进行滤波处理消除噪声干扰,得到正确脉搏信号。 (4)处理后发现了脉搏信号可以反映人体的生理特性。 关键词:人体脉搏信号数字信号处理滤波器

Research on Digital Signal Processing Algorithm -- based on human pulse signal Abstract Pulse signal is a common biomedical signal, is one of the important dynamic signals of the human body, the pulse signal to a certain extent, reflects the human cardiovascular physiological status information, it can reflect the human heart organs and blood circulation system physiological changes, It is very important in clinical health observation and disease diagnosis. Pulse signal processing and analysis in the medical world has been widely concerned and attention. With the development of electronic technology and computer technology, the human pulse signal into electrical signals for detection and analysis, to achieve intelligent pulse detection and analysis technology, biomedical engineering is the direction of development.Specific research work: (1)to detect the pulse signal of human body by measuring the pulse and heart rate by using a pulsesensor based analog sensor. (2)and then through the Arduino microcontroller analog pulse signal into digital signal through the USB upload to the computer. (3)Finally, through matlab to filter it to eliminate noise interference, get the correct pulse signal. (4) after treatment found that the pulse signal can reflect the physiological characteristics of the human body. Keywords: human pulse signal, digital signal processing, filter

DSP的发展、现况及其应用中英文翻译

DSP的发展、现况及其应用 数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。DSP有两种含义:digital Signal Processing(数字信号处理)、Digital Signal Processor(数字信号处理器)。我们常说的DSP指的是数字信号处理器。数字信号处理器是一种适合完成数字信号处理运算的处理器。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。 数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。 DSP主要应用在数字信号处理中,目的是为了能够满足实时信号处理的要求,因此需要将数字信号处理中的常用运算执行的尽可能快,这就决定了DSP的特点和关键技术。适合数字信号处理的关键技术:DSP包含乘法器、累加器、特殊地址发生器、领开销循环等;提高处理速度的关键技术:流水线技术、并行处理技术、超常指令(VLIW)、超标量技术、DMA等。从广义上讲,DSP、微处理器和微控制器(单片机)等都属于处理器,可以说DSP是一种CPU。DSP和一般的CPU又不同,最大的区别在于:CPU是冯.诺伊曼结构的;DSP是数据和地址空间分开的哈佛结构。 世界上第一个单片DSP芯片应当是1978年AMI公司发布的S2811,1979年美国Intel公司发布的商用可编程器件2920是DSP芯片的一个主要里程碑。这两种芯片内部都没有现代DSP芯片所必须有的单周期乘法器。1980 年,日本NEC 公司推出的μPD7720是第一个具有乘法器的商用DSP 芯片。 在这之后,最成功的DSP 芯片当数美国德州仪器公司(Texas Instruments,简称TI)的一系列产品。TI 公司在1982年成功推出其第一代DSP 芯片TMS32010及其系列产品TMS32011、TMS320C10/C14/C15/C16/C17等,之后相继推出了第二代DSP 芯片TMS32020、TMS320C25/C26/C28,第三代DSP芯片TMS320C30/C31/C32,第四代DSP芯片TMS320C40/C44,第五代DSP 芯片TMS320C5X/C54X,第二代DSP 芯片的改进型TMS320C2XX,集多片DSP芯片于一体的高性能DSP芯片TMS320C8X 以及目前速度最快的第六代DSP芯片TMS320C62X/C67X等。TI将常用的DSP芯片

数字信号处理英文文献及翻译

Digital Signal Processing 数字信号处理 院系: 专业: 学号: 姓名:

【英文原文】 Digital Signal Processing 1、Introduction Digital signal processing is will signal to digitally says and deal with the theory and technology. Digital signal processing and analog signal processing is signal processing subset. Digital signal processing algorithm need to use special processing equipment such as computer or digital signal processor and application-specific integrated circuits, etc. Digital signal processing technology and equipment with flexible, precies anti-jamming of strong, equipment of small size, low cost, speed such outstanding advantages, these are simulation signal processing technology and equipment and incomparable. Since the goal of DSP is usually to measure or filter continuous real-world analog signals, the first step is usually to convert the signal from an analog to a digital form, by using an analog to digital converter. Often, the required output signal is another analog output signal, which requires a digital to analog converter. Even if this process is more complex than analog processing and has a discrete value range, the stability of digital signal processing thanks to error detection and correction and being less vulnerable to noise makes it advantageous over analog signal processing for many, though not all, applications. DSP algorithms have long been run on standard computers, on specialized processors called digital signal processors (DSP)s, or on purpose-built hardware such as application-specific integrated circuit (ASICs). Today there are additional technologies used for digital signal processing including more powerful general purpose microprocessors, field-programmable gate arrays (FPGAs), digital signal controllers (mostly for industrial applications such as motor control), and stream processors, among others. In DSP, engineers usually study digital signals in one of the following domains: time domain (one-dimensional signals), spatial domain (multidimensional signals), frequency domain, autocorrelation domain, and wavelet domains. They choose the domain in which to process a signal by making an informed guess (or by trying different possibilities) as to which domain best represents the essential characteristics of the signal. A sequence of samples from a measuring device produces a time or spatial domain representation, whereas a discrete Fourier transform produces the frequency domain information that is the frequency spectrum. Autocorrelation is defined as the cross-correlation of the signal with itself over varying intervals of time or space. 2、Signal Sampling With the increasing use of computers the usage of and need for digital signal processing has increased. In order to use an analog signal on a computer it must be digitized with an analog to digital converter (ADC). Sampling is usually carried out in two stages, discretization and quantization. In the discretization stage, the space of

数字信号处理英文版教学设计 (2)

Digital Signal Processing English Version Teaching Plan Course Overview Digital Signal Processing is an introductory course designed to provide students with basic understanding and skills of digital signal processing. This is an essential subject of Electrical Engineering and Computer Science, since it covers many aspects of signal processing such as filtering, audio processing, image processing, and communication signal processing. The course is suitable for junior or senior undergraduate students who have taken basic mathematics, calculus, differential equations, and probability theory. Course Objectives The objectives of this course are for students to be able to: •Understand fundamental concepts and theories of digital signal processing •Design and analyze digital filters for various applications •Understand and process audio, image, and communication signals •Conduct experiments and simulations using MATLAB Course Contents The course is divided into 15 lessons, each lasting 2 hours. The contents are:

DSP发展、现况及其应用中英文翻译外文文献翻译中英文对照

DSP发展、现况及其应用中英文翻译外文文献翻译中 英文对照 DSP的发展、现况及其应用 数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。DSP有两种含义:digital Signal Processing(数字信号处理)、Digital Signal Processor(数字信号处理器)。我们常说的DSP指的是数字信号处理器。数字信号处理器是一种适合完成数字信号处理运算的处理器。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。 数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。 DSP主要应用在数字信号处理中,目的是为了能够满足实时信号处理的要求,因此需要将数字信号处理中的常用运算执行的尽可能快,这就决定了DSP的特点和关键技术。适合数字信号处理的关键技术:DSP包含乘法器、累加器、特殊地址发生器、领开销循环等;提高处理速度的关键技术:流水线技术、并行处理技术、超常指令(VLIW)、

数字信号处理基于计算机的方法英文改编版第四版课程设计

Digital Signal Processing Using Computer-Based Methods - Course Design for the 4th Edition Introduction Digital Signal Processing (DSP) is an area of study that has witnessed significant growth and advancement in recent times. Technological advancements have made it possible to work with signals and signals processing methods more effectively and efficiently. The use of computers has also contributed significantly to the development of DSP methods. In this course design, we will provide an overview of the Digital Signal Processing course designed for the 4th edition of the book titled Digital Signal Processing Using Computer-Based Methods. Overview of the Course This course is designed to provide students with a fundamental understanding of digital signal processing concepts, their applications, and techniques for analyzing signals. The course is divided into eight modules, covering the following topics: 1.Introduction to Digital Signal Processing 2.Discrete-Time Signals and Systems

数字信号处理基础英文版课程设计

Digital Signal Processing Fundamentals Course Design (English Version) Introduction Digital Signal Processing (DSP) is a fundamental discipline in the field of engineering and science. It deals with the analysis and manipulation of digital signals to extract useful information from them. This course ms to provide a comprehensive introduction to DSP and its applications in modern technology. This course design outlines the topics and activities that will be covered throughout the course. Course Objectives 1.Understand the principles and concepts of digital signal processing. 2.Develop proficiency in using tools and techniques in digital signal processing. 3.Learn how to analyze and interpret digital signal data. 4.Apply digital signal processing to practical problems in engineering and science. Course Outline Module 1: Introduction to Digital Signal Processing •Overview of digital signals and systems •Sampling and quantization of signals •Digital signal representation and transforms

数字信号处理 英语

数字信号处理英语 Digital Signal Processing (DSP) is an essential technology used in various fields such as communication, media, control systems and audio signal processing. This technology uses algorithms to transform digital signals (numbers) into specific applications. In this article, we will explore some common terminologies used in DSP in English. 1. Sampling Sampling is the process of converting a continuous signal into a discrete signal. The sampled signal represents the original signal at specific intervals, known as the sampling frequency. The number of samples taken per unit time is called the sample rate. For example, in audio signal processing, the standard sample rate is 44.1 kilohertz (kHz), which means that the signal is sampled 44,100 times per second. 2. Quantization Quantization is the process of assigning a discrete value to each sample. Each sample is rounded to the nearest value in a given set of discrete values. The interval between each value is known as the quantization step size. For example, in audio signal processing, the quantization step size is measured in bits. The most common quantization bit size is 16 bits, which means that each sample can be represented by a 16-bit binary number. 3. Filtering Filtering is the process of removing or attenuating specific frequencies in a signal. The filter can be designed

fpga毕业论文

fpga毕业论文 FPGA技术在计算机和电子领域中得到越来越广泛的应用。本文主要介绍了FPGA在数字信号处理中的应用。文章首先介绍了FPGA的基本原理和结构,然后详细阐述了FPGA在数字信号处理中的应用,包括数字滤波器、均衡器、FFT等。最后,文章对FPGA在数字信号处理中的应用进行了总结和展望。 一、FPGA概述 FPGA(Field Programmable Gate Array)是一种可编程逻辑器件,其硬件结构由可编程逻辑单元(LUT)、寄存器和互连资源组成,可以进行不同电路结构的编程和再编程。FPGA 拥有很多优点,例如高度的可定制性、可重构性、高速性、大规模集成度、低功耗和低成本等,因此在数字电子、通信、图像处理、网络交换机、音视频处理、科学计算等领域中得到广泛应用。 二、FPGA在数字信号处理中的应用 数字信号处理(Digital Signal Processing,DSP)是数字电子学的一个重要领域,用于处理数字信号。FPGA在数字信号处理中的应用包括数字滤波器、均衡器、FFT、数字信号合成器、数字调制解调等,下面分别进行详细介绍。 (一)数字滤波器

数字滤波器是一种数字信号处理器件,用于对数字信号进行滤波处理,滤除或增强特定频率的信号。数字滤波器可以基于FPGA硬件平台进行设计和实现。常见的数字滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。FPGA 实现数字滤波器具有高速处理、低延迟、低功耗、高精度和灵活性等优点。 (二)均衡器 均衡器是用于抵消信号失真的一种电路装置,主要用于数字通信和音频处理。FPGA可以实现各种类型的均衡器,如时域均衡器、频域均衡器、自适应均衡器等。这些均衡器主要用于信道均衡、接收机均衡和发射机预失真等领域,能够提高系统的信号质量和稳定性。 (三)FFT FFT(Fast Fourier Transform,快速傅里叶变换)是一种数字信号处理算法,用于将时间域信号转换为频域信号。FPGA 可以实现FFT算法,并且与其他实现FFT算法的器件相比,FPGA具有更高的速度和精度,能够适应不同的数据流速率和时延,是实现FFT算法的理想选择。 (四)数字信号合成器 数字信号合成器是一种数字信号处理器件,用于生成各种类型的数字信号。FPGA可以实现数字信号合成器,它可以生成各种类型的数字信号,包括余弦波、正弦波、方波、三角波、

电子信息工程专业课程翻译中英文对照表

电子信息工程专业课程翻译中英文对照表 LT

英语College English 体育Physical Education 当代世界经济与政治 Modern Global Economy and Politics 文化素质教育课群 卫生健康教育Health Education 心理健康知识讲座 Psychological Health Knowledge Lecture 公共艺术课程Public Arts 文献检索Literature Retrieval 军事理论Military Theory 普通话语音常识及训练 Mandarin Knowledge and Training 大学生职业生涯策划 (就业指导) Career Planning (Guidance of Employment ) 专题学术讲座 Optional Course Lecture 科技文献写作 Sci-tech Document Writing 专 业平高频电子线路 High-Frequency Electronic Circuits 通信原理Communications

台课群 Theory 数字信号处理 Digital Signal Processing 计算机网络Computer Networks 电磁场与微波技术 Electromagnetic Field and Microwave Technology 现代通信技术 Modern Communications Technology DSP原理及应用 Principles and Applications of DSP 单片机原理 Principles of Microcontroller 嵌入式系统Embedded Systems 数字图像处理 Digital Image Processing 信 息处理模检测与转换技术 Signal Detection and Conversion Technology 电子设计自动化 Electronics Design Automation

相关主题
文本预览
相关文档 最新文档