第七章螺旋桨的强度计算
- 格式:doc
- 大小:542.50 KB
- 文档页数:19
某沿海单桨散货船螺旋桨设计计算说明书1.已知船体的主要参数船长 L = 118.00 米 型宽 B = 9.70 米 设计吃水 T = 7.20 米 排水量 △ = 5558.2 吨 方型系数 CB = 0.658 桨轴中心距基线高度 Zp = 3.00 米由模型试验提供的船体有效马力曲线数据如下:航速V (kn ) 13 14 15 16 有效马力PE (hp ) 2160 2420 3005 40452.主机参数型号 6ESDZ58/100 柴油机 额定功率 Ps = 5400 hp 额定转速 N = 165 rpm 转向 右旋 传递效率 ηs=0.983.相关推进因子伴流分数 w = 0.279 推力减额分数 t = 0.223 相对旋转效率 ηR = 1.0船身效率 0777.111=--=wtH η4.可以达到最大航速的计算采用MAU 四叶桨图谱进行计算。
取功率储备10%,轴系效率ηs = 0.98 螺旋桨敞水收到马力:PD = R s S P ηη9.0=0.9×5400×0.98×1.0=4762.8hp根据MAU4-40、MAU4-55、MAU4-70的Bp --δ图谱列表计算:项 目 单位 数 值 假定航速V kn 13 14 15 16 V A =(1-w)V kn 9.373 10.094 10.815 11.536 Bp=NP D 0.5/V A 2.542.337 35.177 29.604 25.193 Bp6.5075.931 5.4415.019 MAU 4-40δ76 70 64 61 P/D 0.62 0.65 0.69 0.71 ηO 0.56 0.583 0.605 0.625 P TE =P D ·ηH ·ηOhp 2874.412992.463105.393208.04MAU 4-55δ74 68 63 60 P/D 0.7 0.72 0.74 0.76 ηO 0.541 0.568 0.59 0.61 P TE =P D ·ηH ·ηOhp 2776.882915.473028.393131.05MAU 4-70δ74 67 62 59 P/D 0.71 0.73 0.76 0.78 ηO0.521 0.546 0.57 0.588 P TE =P D ·ηH ·ηOhp2674.232802.552925.743018.13据上表的计算结果可绘制PT E 、δ、P/D 及ηO 对V 的曲线,如图1所示。
螺旋桨推力计算模型根据船舶原理知:42D n K T T ρ=(T K 为螺旋桨的淌水特性)通过资料查得:T K 为进速系数J 的二次多项式,但无具体的公式表示,只能通过图谱查得,同时tK K T T -=10(0T K 为淌水桨在相同的转速情况下以速度为V A 运动时的推力、进速系数nDW U nD V J P A p )1(-==) 估算推力减额分数的近似公式:1. 汉克歇尔公式:对于单螺旋桨标准型商船(C B =0.54~0.84) t=0.50Cp-0.12 对于单螺旋桨渔船: t=0.77Cp-0.30 对于双螺旋桨标准型商船(C B =0.54~0.84) t=0.50Cp-0.18 2. 商赫公式对于单桨船 t=KW 式中:K 为系数K=0.50~0.70 适用于装有流线型舵或反映舵者 K=0.70~0.90 适用于装有方形舵柱之双板舵者 K=0.90~1.5 适用于装单板舵者 对于双螺旋桨船采用轴包架者:t=0.25w+0.14 对于双螺旋桨船采用轴支架者:t=0.7w+0.06 3. 哥铁保公式对于单螺旋桨标准型商船(C B =0.6~0.85) P B WPBC C C C t ⎪⎪⎭⎫ ⎝⎛+-=5.13.257.1对于双螺旋桨标准型商船(C B =0.6~0.85) B WPBC C C t 5.13.267.1+-= 4. 霍尔特洛泼公式对于单螺旋桨船sternP C BT D C BC B L t 0015.0)/(1418.0000524.00585.1)/(001979.02101+--+-=式中:10C 的定义如下: 当L/B>5.2 L B C /10=当L/B<5.2 )134615385.0//(003328402.025.010--=L B C 对于双螺旋桨船: BT D C t B /1885.0325.0-=估算伴流分数的近似公式1. 泰洛公式(适用于海上运输船舶)对于单螺旋桨船 05.05.0-=B C ω 对于双螺旋桨船 20.055.0-=B C ω 式中C B 为船舶的方形系数。
模型飞机螺旋桨原理与拉力计算一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。
流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。
在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。
V—轴向速度;n —螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。
显而易见β=α+φ。
空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。
ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。
将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。
从以上两图还可以看到。
必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。
螺旋桨工作时。
轴向速度不随半径变化,而切线速度随半径变化。
因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。
而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。
螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。
所以说螺旋桨是一个扭转了的机翼更为确切。
从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。
对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。
迎角变化,拉力和阻力矩也随之变化。
用进矩比“J”反映桨尖处气流角,J=V/nD。
式中D—螺旋桨直径。
理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。
其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。
图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。
特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。
螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速平方(转/秒)×1大气压力(1标准大气压)×经验系数(0.25)=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速平方(转/秒)×1大气压力(1标准大气压)×经验系数(0.00025)=拉力(克)前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在0.6-0.7。
1000米以下基本可以取1。
例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得:100×50×10×50平方×1×0.00025=31.25公斤。
如果转速达到6000转/分,那么拉力等于:100×50×10×100平方×1×0.00025=125公斤机翼升力计算公式滑翔比与升阻比螺旋桨拉力计算公式(静态拉力估算)机翼升力计算公式升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N)机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。
在标识的1位置是抖振点,2位置是自动上仰点, 3位置是反横操纵和方向发散点,4位置是失速点。
对称机翼在0角时升力系数=0(由图)非对称一在机身水平时升力系数大于0,因此机身水平时也有升力滑翔比与升阻比升阻比是飞机飞行速度不同的情况下升力与阻力的比值,跟飞行速度成曲线关系,一般升阻比最大的一点对应的速度就是飞机的有利速度和有利迎角。
滑翔比是飞机下降单位距离所飞行的距离,滑翔比越大,飞机在离地面相同高度飞的距离越远,这是飞机固有的特性,一般不发生变化。
如果有两台飞行器,有着完全相同的气动外形,一台大量采用不锈钢材料的,另一台大量采用碳纤维材料,那么碳纤维材料的滑翔比肯定优于不锈钢材料的。
342第八章 螺旋桨的强度校核为了船舶的安全航行,必须保证螺旋桨具有足够的强度,使其在正常航行状态下不致破损或断裂。
为此,在设计螺旋桨时必须进行强度计算和确定桨叶的厚度分布。
螺旋桨工作时作用在桨叶上的流体动力有轴向的推力及与转向相反的阻力,两者都使桨叶产生弯曲和扭转。
螺旋桨在旋转时桨叶本身的质量产生径向的离心力,使桨叶受到拉伸,若桨叶具有侧斜或纵斜,则离心力还要使桨叶产生弯曲。
此外,桨叶上也可能受到意外的突然负荷,例如:碰击冰块或其他飘浮物体等。
同时螺旋桨处于不均匀的尾流场中工作,使桨叶受力产生周期性变化,故较难精确地算出作用在桨叶上的外力。
在计算桨叶的强度时,我们可以把桨叶看作是扭曲的、变截面的悬臂梁,而且其横截面是非对称的,故计算较为复杂,即使能正确地求得桨叶上的作用力,要精确地进行强度计算也是很困难的。
目前,对于动态负荷(即计及伴流不均匀性影响)下螺旋桨的强度计算方法虽然有所发展,但计算繁复,付之实用还为时尚早。
故在螺旋桨设计的实践中,一般都用理论和实验相结合的近似方法来进行螺旋桨的强度计算。
计算螺旋桨强度的近似方法很多,中国船级社于2001年颁发的《钢质海船入级与建造规范》(以下简称《规范》)中对螺旋桨的强度也有了规定,因为比较偏于安全,用近似方法计算的厚度未必一定能满足规范的要求,因此对“入级”海船应采用规范规定的方法计算。
本章中主要介绍我国2001年《规范》的规定,由此确定桨叶厚度。
为了使读者了解桨叶上的受力情况,对于分析计算方法也作必要的介绍。
§ 8-1 《规范》校核法一、螺旋桨桨叶厚度的确定为了保证螺旋桨的安全,中国船级社2001年《钢质海船入级与建造规范》第三分册第三篇第十一章中,对螺旋桨的强度要求作了明确具体的规定。
螺旋桨桨叶厚度t (固定螺距螺旋桨为0.25R 和0.6R 切面处,可调螺距螺旋桨为0.35R 和0.6R 切面处)不得小于按下式计算所得之值:XK Yt -=(mm ) (8-1) 式中 Y —— 功率系数,按(8-2)式求得;343K —— 材料系数,查表8-1;X —— 转速系数,按(8-3)式求得。
螺旋桨设计计算公式桨叶的迎角只会影响升力的大小,不会前进。
直升机前进是靠螺旋桨的旋转面向前倾斜实现的,桨叶的迎角变化,指的只是桨叶本身绕横向的轴旋转。
就是对称的两只桨,成一条直线,以这个直线为轴旋转。
迎角增大,旋转阻力增大,如果转速不变的情况下,升力就会增大,直升机上升。
飞机螺旋桨由两个或者多个桨叶以及一个中轴组成,桨叶安装在中轴上。
飞机螺旋桨的每一个桨叶基本上是一个旋转翼。
由于他们的结构,螺旋桨叶类似机翼产生拉动或者推动飞机的力。
旋转螺旋桨叶的动力来自引擎。
引擎使得螺旋桨叶在空气中高速转动,螺旋桨把引擎的旋转动力转换成前向推力。
空气中飞机的移动产生和它的运动方向相反的阻力。
所以,飞机要飞行的话,就必须由力作用于飞机且等于阻力,而方向向前。
这个力称为推力。
典型螺旋桨叶的横截面如图3-26。
桨叶的横界面可以和机翼的横截面对比。
一种桨叶的表面是拱形的或者弯曲的,类似于飞机机翼的上表面,而其他表面类似机翼的下表面是平的。
弦线是一条划过前缘到后缘的假想线。
类似机翼,前缘是桨叶的厚的一侧,当螺旋桨旋转时前缘面对气流。
桨叶角一般用度来度量单位,是桨叶弦线和旋转平面的夹角,在沿桨叶特定长度的的特定点测量。
因为大多数螺旋桨有一个平的桨叶面,弦线通常从螺旋桨桨叶面开始划。
螺旋角和桨叶角不同,但是螺旋角很大程度上由桨叶角确定,这两个术语长交替使用。
一个角的变大或者减小也让另一个随之增加或者减小。
当为新飞机选定固定节距螺旋桨时,制造商通常会选择一个螺旋距使得能够有效的工作在预期的巡航速度。
然而,不幸运的是,每一个固定距螺旋桨必须妥协,因为他只能在给定的空速和转速组合才高效。
飞行时,飞行员是没这个能力去改变这个组合的。
当飞机在地面静止而引擎工作时,或者在起飞的开始阶段缓慢的移动时,螺旋桨效率是很低的,因为螺旋桨受阻止不能全速前进以达到它的最大效率。
这时,每一个螺旋桨叶以一定的迎角在空气中旋转,相对于旋转它所需要的功率大小来说产生的推力较少。