高考数学总复习(讲+练+测): 专题2.5 二次函数与幂函数(讲)
- 格式:doc
- 大小:831.63 KB
- 文档页数:15
§2.5二次函数与幂函数考试要求 1.通过具体实例,了解幂函数及其图象的变化规律.2.掌握二次函数的图象与性质(单调性、对称性、顶点、最值等).知识梳理1.幂函数(1)幂函数的定义一般地,函数y=xα叫做幂函数,其中x是自变量,α为常数.(2)常见的五种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减;④当α为奇数时,y=xα为奇函数;当α为偶数时,y=xα为偶函数.2.二次函数(1)二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数的图象和性质函数y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)图象(抛物线)定义域 R值域 ⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a对称轴 x =-b2a顶点 坐标 ⎝⎛⎭⎫-b 2a,4ac -b 24a奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数单调性在⎝⎛⎦⎤-∞,-b 2a 上单调递减; 在⎣⎡⎭⎫-b2a ,+∞上单调递增 在⎝⎛⎦⎤-∞,-b 2a 上单调递增; 在⎣⎡⎭⎫-b2a ,+∞上单调递减思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =1212x 是幂函数.( × )(2)若幂函数y =x α是偶函数,则α为偶数.( × )(3)二次函数y =ax 2+bx +c 的图象恒在x 轴下方,则a <0且Δ<0.( √ )(4)若二次函数y =ax 2+bx +c 的两个零点确定,则二次函数的解析式确定.( × ) 教材改编题1.已知幂函数y =f (x )的图象过点(2,2),则f ⎝⎛⎭⎫14等于( ) A .-12B.12 C .±12D.22答案 B解析 设f (x )=x α, ∴2α=2,α=12,∴f (x )=12x , ∴f ⎝⎛⎭⎫14=12.2.若函数f (x )=4x 2-kx -8在[5,20]上单调,则实数k 的取值范围为________.答案 (-∞,40]∪[160,+∞) 解析 依题意知,k 8≥20或k8≤5,解得k ≥160或k ≤40.3.已知y =f (x )为二次函数,若y =f (x )在x =2处取得最小值-4,且y =f (x )的图象经过原点,则函数解析式为________. 答案 f (x )=x 2-4x解析 因为y =f (x )在x =2处取得最小值-4, 所以可设f (x )=a (x -2)2-4(a >0),又图象过原点,所以f (0)=4a -4=0,a =1, 所以f (x )=(x -2)2-4=x 2-4x .题型一 幂函数的图象与性质例1 (1)若幂函数y =x -1,y =x m 与y =x n 在第一象限内的图象如图所示,则m 与n 的取值情况为( )A .-1<m <0<n <1B .-1<n <0<m <12C .-1<m <0<n <12D .-1<n <0<m <1 答案 D解析 幂函数y =x α,当α>0时,y =x α在(0,+∞)上单调递增,且0<α<1时,图象上凸, ∴0<m <1.当α<0时,y =x α在(0,+∞)上单调递减. 不妨令x =2,由图象得2-1<2n ,则-1<n <0.综上可知,-1<n <0<m <1.(2)(2022·长沙质检)幂函数f (x )=(m 2-3m +3)x m 的图象关于y 轴对称,则实数m =________. 答案 2解析 由幂函数定义,知m 2-3m +3=1, 解得m =1或m =2,当m =1时,f (x )=x 的图象不关于y 轴对称,舍去, 当m =2时,f (x )=x 2的图象关于y 轴对称, 因此m =2. 教师备选1.若幂函数f (x )=()12255a a a x ---在(0,+∞)上单调递增,则a 等于( )A .1B .6C .2D .-1 答案 D解析 因为函数f (x )=()12255a a a x---是幂函数,所以a 2-5a -5=1,解得a =-1或a =6. 当a =-1时,f (x )=12x 在(0,+∞)上单调递增; 当a =6时,f (x )=x -3在(0,+∞)上单调递减, 所以a =-1.2.若f (x )=12x ,则不等式f (x )>f (8x -16)的解集是( ) A.⎣⎡⎭⎫2,167 B .(0,2] C.⎝⎛⎭⎫-∞,167 D .[2,+∞)答案 A解析 因为函数f (x )=12x 在定义域[0,+∞)内为增函数,且f (x )>f (8x -16),所以⎩⎪⎨⎪⎧x ≥0,8x -16≥0,x >8x -16,即2≤x <167,所以不等式的解集为⎣⎡⎭⎫2,167. 思维升华 (1)对于幂函数图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 跟踪训练1 (1)(2022·宝鸡检测)已知a =432,b =233,c =1225,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b答案 A解析 由题意得b =233<234=432=a , a =432=234<4<5=1225=c , 所以b <a <c .(2)已知幂函数y =p qx (p ,q ∈Z 且p ,q 互质)的图象关于y 轴对称,如图所示,则( )A .p ,q 均为奇数,且pq >0B .q 为偶数,p 为奇数,且pq <0C .q 为奇数,p 为偶数,且pq >0D .q 为奇数,p 为偶数,且pq <0答案 D解析 因为函数y =p q x 的图象关于y 轴对称,于是函数y =p qx 为偶函数,即p 为偶数, 又函数y =p qx 的定义域为(-∞,0)∪(0,+∞),且在(0,+∞)上单调递减,则有pq <0,又因为p ,q 互质,则q 为奇数,所以只有选项D 正确. 题型二 二次函数的解析式例2 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.解 方法一 (利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎨⎧ 4a +2b +c =-1,a -b +c =-1,4ac -b24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为 f (x )=-4x 2+4x +7.方法二 (利用“顶点式”解题) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12,所以m =12.又根据题意,函数有最大值8,所以n =8, 所以f (x )=a ⎝⎛⎭⎫x -122+8. 因为f (2)=-1,所以a ⎝⎛⎭⎫2-122+8=-1, 解得a =-4,所以f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 方法三 (利用“零点式”解题)由已知f(x)+1=0的两根为x1=2,x2=-1,故可设f(x)+1=a(x-2)(x+1)(a≠0),即f(x)=ax2-ax-2a-1.又函数有最大值8,即4a(-2a-1)-(-a)24a=8.解得a=-4或a=0(舍去).故所求函数的解析式为f(x)=-4x2+4x+7.教师备选若函数f(x)=(x+a)(bx+2a)(a,b∈R)满足条件f(-x)=f(x),定义域为R,值域为(-∞,4],则函数解析式f(x)=________.答案-2x2+4解析f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2.∵f(-x)=f(x),∴2a+ab=0,∴f(x)=bx2+2a2.∵f(x)的定义域为R,值域为(-∞,4],∴b<0,且2a2=4,∴b=-2,∴f(x)=-2x2+4.思维升华求二次函数解析式的三个策略:(1)已知三个点的坐标,宜选用一般式;(2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式;(3)已知图象与x轴的两交点的坐标,宜选用零点式.跟踪训练2(1)已知f(x)为二次函数,且f(x)=x2+f′(x)-1,则f(x)等于()A.x2-2x+1 B.x2+2x+1C.2x2-2x+1 D.2x2+2x-1答案 B解析设f(x)=ax2+bx+c(a≠0),则f ′(x )=2ax +b , 由f (x )=x 2+f ′(x )-1可得 ax 2+bx +c =x 2+2ax +(b -1), 所以⎩⎪⎨⎪⎧ a =1,b =2a ,c =b -1,解得⎩⎪⎨⎪⎧a =1,b =2,c =1,因此,f (x )=x 2+2x +1.(2)已知二次函数f (x )的图象经过点(4,3),且图象被x 轴截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )的解析式为________. 答案 f (x )=x 2-4x +3解析 ∵f (2+x )=f (2-x )对任意x ∈R 恒成立, ∴f (x )图象的对称轴为直线x =2, 又∵f (x )的图象被x 轴截得的线段长为2, ∴f (x )=0的两根为1和3,设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0), ∵f (x )的图象过点(4,3), ∴3a =3,∴a =1,∴所求函数的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3.题型三 二次函数的图象与性质 命题点1 二次函数的图象例3 设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )答案 D解析 因为abc >0,二次函数f (x )=ax 2+bx +c ,那么可知, 在A 中,a <0,b <0,c <0,不符合题意; B 中,a <0,b >0,c >0,不符合题意; C 中,a >0,c <0,b >0,不符合题意,故选D. 命题点2 二次函数的单调性与最值 例4 已知函数f (x )=x 2-tx -1.(1)若f (x )在区间(-1,2)上不单调,求实数t 的取值范围; (2)若x ∈[-1,2],求f (x )的最小值g (t ). 解f (x )=x 2-tx -1=⎝⎛⎭⎫x -t 22-1-t 24. (1)依题意,-1<t2<2,解得-2<t <4,∴实数t 的取值范围是(-2,4).(2)①当t2≥2,即t ≥4时,f (x )在[-1,2]上单调递减,∴f (x )min =f (2)=3-2t . ②当-1<t2<2,即-2<t <4时,f (x )min =f ⎝⎛⎭⎫t 2=-1-t24. ③当t2≤-1,即t ≤-2时,f (x )在[-1,2]上单调递增,∴f (x )min =f (-1)=t .综上有g (t )=⎩⎪⎨⎪⎧t ,t ≤-2,-1-t24,-2<t <4,3-2t ,t ≥4.延伸探究 本例条件不变,求当x ∈[-1,2]时,f (x )的最大值G (t ). 解 f (-1)=t ,f (2)=3-2t , f (2)-f (-1)=3-3t , 当t ≥1时,f (2)-f (-1)≤0, ∴f (2)≤f (-1), ∴f (x )max =f (-1)=t ; 当t <1时,f (2)-f (-1)>0, ∴f (2)>f (-1), ∴f (x )max =f (2)=3-2t ,综上有G (t )=⎩⎪⎨⎪⎧t ,t ≥1,3-2t ,t <1.教师备选1.(多选)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论正确的是( )A .当x >3时,y <0B .4a +2b +c =0C .-1≤a ≤-23D .3a +b >0答案 AC解析 依题意知,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0),顶点坐标为(1,n ), ∴函数与x 轴的另一交点为(3,0), ∴当x >3时,y <0,故A 正确;当x =2时,y =4a +2b +c >0,故B 错误;∵抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),且a <0, ∴a -b +c =0,∵b =-2a ,∴a +2a +c =0, ∴3a +b <0,c =-3a ,∵2≤c ≤3,∴2≤-3a ≤3,∴-1≤a ≤-23, 故C 正确,D 错误.2.(2022·沈阳模拟)已知f (x )=ax 2-2x +1.(1)若f (x )在[0,1]上单调,求实数a 的取值范围;(2)若x ∈[0,1],求f (x )的最小值g (a ).解 (1)当a =0时,f (x )=-2x +1单调递减;当a >0时,f (x )的对称轴为x =1a ,且1a>0, ∴1a≥1,即0<a ≤1; 当a <0时,f (x )的对称轴为x =1a 且1a<0, ∴a <0符合题意.综上有,a ≤1.(2)①当a =0时,f (x )=-2x +1在[0,1]上单调递减,∴f (x )min =f (1)=-1.②当a >0时,f (x )=ax 2-2x +1的图象开口方向向上,且对称轴为x =1a. (ⅰ)当1a<1,即a >1时,f (x )=ax 2-2x +1图象的对称轴在[0,1]内, ∴f (x )在⎣⎡⎦⎤0,1a 上单调递减,在⎣⎡⎦⎤1a ,1上单调递增. ∴f (x )min =f ⎝⎛⎭⎫1a =1a -2a +1=-1a+1. (ⅱ)当1a≥1,即0<a ≤1时,f (x )在[0,1]上单调递减. ∴f (x )min =f (1)=a -1.③当a <0时,f (x )=ax 2-2x +1的图象的开口方向向下,且对称轴x =1a<0,在y 轴的左侧, ∴f (x )=ax 2-2x +1在[0,1]上单调递减.∴f (x )min =f (1)=a -1.综上所述,g (a )=⎩⎪⎨⎪⎧a -1,a ≤1,-1a +1,a >1.思维升华 二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.跟踪训练3 (1)若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均单调递增,则实数a 的取值范围是( )A.⎣⎡⎦⎤-113,-3 B .[-6,-4] C .[-3,-22]D .[-4,-3] 答案 B解析 ∵f (x )为偶函数,∴f (x )在[1,2]上单调递减,在[3,+∞)上单调递增,当x >0时,f (x )=x 2+ax +2,对称轴为x =-a 2,∴2≤-a 2≤3, 解得-6≤a ≤-4.(2)(2022·抚顺模拟)已知函数f (x )=-x 2+2x +5在区间[0,m ]上有最大值6,最小值5,则实数m 的取值范围是________.答案 [1,2]解析 由题意知,f (x )=-(x -1)2+6,则f (0)=f (2)=5=f (x )min ,f (1)=6=f (x )max ,函数f (x )的图象如图所示,则1≤m ≤2.课时精练1.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( )A .g (x )=2x 2-3xB .g (x )=3x 2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x答案 B解析 二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,设二次函数为g (x )=ax 2+bx ,可得⎩⎪⎨⎪⎧ a +b =1,a -b =5,解得a =3,b =-2,所求的二次函数为g (x )=3x 2-2x .2.(2022·延吉检测)若函数y =()222433mm m m x +--+为幂函数,且在(0,+∞)上单调递减,则实数m 的值为( )A .0B .1或2C .1D .2答案 C解析 由于函数y =()222433m m m m x +--+为幂函数,所以m 2-3m +3=1,解得m =1或m =2,当m =1时,y =x -1=1x,在(0,+∞)上单调递减,符合题意. 当m =2时,y =x 4,在(0,+∞)上单调递增,不符合题意.3.(2022·长沙模拟)已知函数f (x )=x 2-2mx -m +2的值域为[0,+∞),则实数m 的值为( )A .-2或1B .-2C .1D .1或2答案 A解析 因为f (x )=x 2-2mx -m +2=(x -m )2-m 2-m +2≥-m 2-m +2,且函数f (x )=x 2-2mx -m +2的值域为[0,+∞),所以-m 2-m +2=0,解得m =-2或m =1.4.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为直线x =-1.下面四个结论中正确的是( )A .b 2<4acB .2a -b =1C .a -b +c =0D .5a <b 答案 D解析 因为二次函数y =ax 2+bx +c 的图象过点A (-3,0),对称轴为直线x =-1,所以⎩⎪⎨⎪⎧-b 2a =-1,9a -3b +c =0, 解得⎩⎪⎨⎪⎧b =2a ,c =-3a ,因为二次函数的图象开口方向向下,所以a <0,对于A ,因为二次函数的图象与x 轴有两个交点,所以b 2-4ac =4a 2+12a 2=16a 2>0, 所以b 2>4ac ,故选项A 不正确;对于B ,因为b =2a ,所以2a -b =0,故选项B 不正确;对于C ,因为a -b +c =a -2a -3a =-4a >0,故选项C 不正确;对于D ,因为a <0,所以5a <2a =b ,故选项D 正确.5.(多选)(2022·宜昌质检)已知函数f (x )=x 2-2x +a 有两个零点x 1,x 2,以下结论正确的是( )A .a <1B .若x 1x 2≠0,则1x 1+1x 2=2aC .f (-1)=f (3)D .函数y =f (|x |)有四个零点答案 ABC解析 二次函数对应二次方程根的判别式Δ=(-2)2-4a =4-4a >0,a <1,故A 正确; 由根与系数的关系得,x 1+x 2=2,x 1x 2=a ,1x 1+1x 2=x 1+x 2x 1x 2=2a,故B 正确; 因为f (x )的对称轴为x =1,点(-1,f (-1)),(3,f (3))关于对称轴对称,故C 正确; 当a <0时,y =f (|x |)只有两个零点,故D 不正确.6.(多选)已知幂函数f (x )=()2231m m m m x +---,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,都满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R 且f (a )+f (b )<0,则下列结论可能成立的有( ) A .a +b >0且ab <0B .a +b <0且ab <0C .a +b <0且ab >0D .以上都可能答案 BC解析 因为f (x )=()2231mm m m x +---为幂函数,所以m 2-m -1=1,解得m =2或m =-1.依题意f (x )在(0,+∞)上单调递增,所以m =2,此时f (x )=x 3,因为f (-x )=(-x )3=-x 3=-f (x ),所以f (x )=x 3为奇函数.因为a ,b ∈R 且f (a )+f (b )<0,所以f (a )<f (-b ).因为y =f (x )为增函数,所以a <-b ,所以a +b <0.7.(2022·张家口检测)已知幂函数f (x )=mx n +k 的图象过点⎝⎛⎭⎫116,14,则m -2n +3k =________. 答案 0解析 因为f (x )是幂函数,所以m =1,k =0,又f (x )的图象过点⎝⎛⎭⎫116,14,所以⎝⎛⎭⎫116n =14,解得n =12, 所以m -2n +3k =0.8.(2022·江苏海安高级中学模拟)函数f (x )=x 2-4x +2在区间[a ,b ]上的值域为[-2,2],则b -a 的取值范围是________.答案 [2,4]解析 解方程f (x )=x 2-4x +2=2,解得x =0或x =4,解方程f (x )=x 2-4x +2=-2,解得x =2,由于函数f (x )在区间[a ,b ]上的值域为[-2,2].若函数f (x )在区间[a ,b ]上单调,则[a ,b ]=[0,2]或[a ,b ]=[2,4],此时b -a 取得最小值2;若函数f (x )在区间[a ,b ]上不单调,且当b -a 取最大值时,[a ,b ]=[0,4],所以b -a 的最大值为4.所以b -a 的取值范围是[2,4].9.已知二次函数f (x )=ax 2+(b -2)x +3,且-1,3是函数f (x )的零点.(1)求f (x )的解析式,并解不等式f (x )≤3;(2)若g (x )=f (sin x ),求函数g (x )的值域.解 (1)由题意得⎩⎪⎨⎪⎧ -1+3=-b -2a ,-1×3=3a ,解得⎩⎪⎨⎪⎧a =-1,b =4, ∴f (x )=-x 2+2x +3,∴当-x 2+2x +3≤3时,即x 2-2x ≥0,解得x ≥2或x ≤0,∴不等式的解集为(-∞,0]∪[2,+∞).(2)令t =sin x ,则g (t )=-t 2+2t +3=-(t -1)2+4,t ∈[-1,1],当t =-1时,g (t )有最小值0,当t =1时,g (t )有最大值4,故g (t )∈[0,4].所以g (x )的值域为[0,4].10.(2022·烟台模拟)已知二次函数f (x )=ax 2+bx +c ,且满足f (0)=2,f (x +1)-f (x )=2x +1.(1)求函数f (x )的解析式;(2)当x ∈[t ,t +2](t ∈R )时,求函数f (x )的最小值g (t )(用t 表示).解 (1)因为二次函数f (x )=ax 2+bx +c 满足f (0)=2,f (x +1)-f (x )=2x +1, 所以⎩⎪⎨⎪⎧c =2,a (x +1)2+b (x +1)+c -(ax 2+bx +c )=2x +1,即⎩⎪⎨⎪⎧ c =2,2ax +b +a =2x +1, 所以⎩⎪⎨⎪⎧ c =2,2a =2,b +a =1,解得⎩⎪⎨⎪⎧ c =2,a =1,b =0,因此f (x )=x 2+2.(2)因为f (x )=x 2+2是图象的对称轴为直线x =0,且开口向上的二次函数,当t ≥0时,f (x )=x 2+2在x ∈[t ,t +2]上单调递增,则f (x )min =f (t )=t 2+2;当t +2≤0,即t ≤-2时,f (x )=x 2+2在x ∈[t ,t +2]上单调递减,则f (x )min =f (t +2)=(t +2)2+2=t 2+4t +6;当t <0<t +2,即-2<t <0时,f (x )min =f (0)=2,综上g (t )=⎩⎪⎨⎪⎧ t 2+2,t ≥0,2,-2<t <0,t 2+4t +6,t ≤-2.11.(2022·福州模拟)已知函数f (x )=2x 2-mx -3m ,则“m >2”是“f (x )<0对x ∈[1,3]恒成立”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件答案 C解析 若f (x )<0对x ∈[1,3]恒成立,则⎩⎪⎨⎪⎧f (1)=2-4m <0,f (3)=18-6m <0, 解得m >3,{m |m >3}是{m |m >2}的真子集,所以“m >2”是“f (x )<0对x ∈[1,3]恒成立”的必要不充分条件.12. 幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a ,y =x b 的图象三等分,即有BM =MN =NA ,那么a -1b 等于( )A .0B .1 C.12D .2 答案 A解析 由BM =MN =NA ,点A (1,0),B (0,1),∴M ⎝⎛⎭⎫13,23,N ⎝⎛⎭⎫23,13, 将两点坐标分别代入y =x a ,y =x b ,得a =132log 3,b =231log 3, ∴a -1b =132log 3-2311log 3=0.13.(多选)关于x 的方程(x 2-2x )2-2(2x -x 2)+k =0,下列命题正确的有( )A .存在实数k ,使得方程无实根B .存在实数k ,使得方程恰有2个不同的实根C .存在实数k ,使得方程恰有3个不同的实根D .存在实数k ,使得方程恰有4个不同的实根答案 AB解析 设t =x 2-2x ,方程化为关于t 的二次方程t 2+2t +k =0.(*)当k >1时,方程(*)无实根,故原方程无实根;当k =1时,可得t =-1,则x 2-2x =-1,原方程有两个相等的实根x =1;当k <1时,方程(*)有两个实根t 1,t 2(t 1<t 2),由t 1+t 2=-2可知,t 1<-1,t 2>-1.因为t =x 2-2x =(x -1)2-1≥-1,所以x 2-2x =t 1无实根,x 2-2x =t 2有两个不同的实根.综上可知,A ,B 项正确,C ,D 项错误.14.设关于x 的方程x 2-2mx +2-m =0()m ∈R 的两个实数根分别是α,β,则α2+β2+5的最小值为________.答案 7解析 由题意有⎩⎪⎨⎪⎧α+β=2m ,αβ=2-m , 且Δ=4m 2-4(2-m )≥0,解得m ≤-2或m ≥1,α2+β2+5=(α+β)2-2αβ+5=4m 2+2m +1,令f (m )=4m 2+2m +1,而f (m )图象的对称轴为m =-14, 且m ≤-2或m ≥1,所以f (m )min =f (1)=7.15.(2022·台州模拟)已知函数f (x )=(x 2-2x -3)(x 2+ax +b )是偶函数,则f (x )的值域是________.答案 [-16,+∞)解析 因为f (x )=(x 2-2x -3)(x 2+ax +b )=(x -3)(x +1)(x 2+ax +b )是偶函数,所以有⎩⎪⎨⎪⎧ f (-3)=f (3)=0,f (1)=f (-1)=0, 代入得⎩⎪⎨⎪⎧ 9-3a +b =0,1+a +b =0, 解得⎩⎪⎨⎪⎧a =2,b =-3. 所以f (x )=(x 2-2x -3)(x 2+2x -3)=(x 2-3)2-4x 2=x 4-10x 2+9=(x 2-5)2-16≥-16.16.已知a ,b 是常数且a ≠0,f (x )=ax 2+bx 且f (2)=0,且使方程f (x )=x 有等根.(1)求f (x )的解析式;(2)是否存在实数m ,n (m <n ),使得f (x )的定义域和值域分别为[m ,n ]和[2m,2n ]? 解 (1)由f (x )=ax 2+bx ,且f (2)=0,则4a +2b =0,又方程f (x )=x ,即ax 2+(b -1)x =0有等根,得b =1,从而a =-12, 所以f (x )=-12x 2+x . (2)假定存在符合条件的m ,n ,由(1)知f (x )=-12x 2+x =-12(x -1)2+12≤12, 则有2n ≤12,即n ≤14. 又f (x )图象的对称轴为直线x =1,则f (x )在[m ,n ]上单调递增,于是得⎩⎪⎨⎪⎧ m <n ≤14,f (m )=2m ,f (n )=2n ,即⎩⎪⎨⎪⎧ m <n ≤14,-12m 2+m =2m ,-12n 2+n =2n , 解方程组得m =-2,n =0,所以存在m =-2,n =0,使函数f (x )在[-2,0]上的值域为[-4,0].。
2023年高考数学总复习第二章函数概念与基本初等函数第4节二次函数性质的再研究与幂函数考试要求 1.了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=x 12,y=1x的图像,了解它们的变化情况;2.理解二次函数的图像和性质,能用二次函数、方程、不等式之间的关系解决简单问题.1.幂函数(1)幂函数的定义如果一个函数,底数是自变量x,指数是常量α,即y=xα,这样的函数称为幂函数.(2)常见的五种幂函数的图像(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图像都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图像都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数的图像和性质1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.2.若f (x )=ax 2+bx +c (a ≠0),>0,<0时,恒有f (x )>0;<0,<0时,恒有f (x )<0.3.(1)幂函数的图像一定会出现在第一象限内,一定不会出现在第四象限;(2)幂函数的图像过定点(1,1),如果幂函数的图像与坐标轴相交,则交点一定是原点.1.思考辨析(在括号内打“√”或“×”)(1)函数y =2x 13是幂函数.()(2)当α>0时,幂函数y =x α在(0,+∞)上是增函数.()(3)二次函数y =ax 2+bx +c (a ≠0)的两个零点可以确定函数的解析式.()(4)二次函数y=ax2+bx+c(x∈[a,b])的最值一定是4ac-b24a.()答案(1)×(2)√(3)×(4)×解析(1)由于幂函数的解析式为f(x)=xα,故y=2x 13不是幂函数,(1)错误.(3)确定二次函数的解析式需要三个独立的条件,两个零点不能确定函数的解析式.(4)对称轴x=-b2a,当-b2a不在给定定义域内时,最值不是4ac-b24a,故(4)错误.2.(2021·全国甲卷)下列函数中是增函数的为()A.f(x)=-xB.f(x)C.f(x)=x2D.f(x)=3x答案D解析取x1=-1,x2=0,对于A项有f(x1)=1,f(x2)=0,所以A项不符合题意;对于B项有f(x1)=32,f(x2)=1,所以B项不符合题意;对于C项有f(x1)=1,f(x2)=0,所以C项不符合题意.故选D.3.(易错题)若函数y=mx2+x+2在[3,+∞)上是减函数,则m的取值范围是________.答案-∞,-16解析当m=0时,函数在给定区间上是增函数;当m≠0时,二次函数的对称轴为直线x=-12m,<0,-12m≤3,∴m≤-16.4.(易错题)已知幂函数f(x)=x-12,若f(a+1)<f(10-2a),则a的取值范围是________.答案(3,5)解析∵幂函数f(x)=x-12在定义域(0,+∞)上单调递减,∴由f(a+1)<f(10-2a),a +1>0,10-2a >0,a +1>10-2a ,∴3<a <5.5.(2018·上海卷)已知α-2,-1,-12,12,1,2,3若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=______.答案-1解析由y =x α为奇函数,知α取-1,1,3.又y =x α在(0,+∞)上递减,∴α<0,取α=-1.6.已知函数f (x )=-2x 2+mx +3(0≤m ≤4,0≤x ≤1)的最大值为4,则m 的值为________.答案22解析f (x )=-2x 2+mx +3=-x m 4+m 28+3,∵0≤m ≤4,∴0≤m4≤1,∴当x =m4时,f (x )取得最大值,∴m 28+3=4,解得m =2 2.考点一幂函数的图像和性质1.若幂函数y =f (x )的图像过点(4,2),则幂函数y =f (x )的大致图像是()答案C解析设幂函数的解析式为y =x α,因为幂函数y =f (x )的图像过点(4,2),所以2=4α,解得α=12.所以y=x,其定义域为[0,+∞),且是增函数,当0<x<1时,其图像在直线y =x的上方,对照选项,C正确.2.若幂函数f(x)=(2b-1)x a2-10a+23(a,b∈Z)为偶函数,且f(x)在(0,+∞)上是减函数,则a,b的值分别为()A.2,1B.4,1C.5,1D.6,1答案C解析由幂函数的定义得2b-1=1,∴b=1.又∵a2-10a+23=(a-5)2-2,函数f(x)为偶函数且在(0,+∞)上为减函数,∴(a-5)2-2<0,故a=4,5,6.又(a-5)2-2为偶数,∴a=5.3.如图是①y=x a;②y=x b;③y=x c在第一象限的图像,则a,b,c的大小关系为()A.c<b<aB.a<b<cC.b<c<aD.a<c<b答案D解析由幂函数的图像和单调性可知a<0,b>1,0<c<1,∴a<c<b.4.(2021·郑州质检)幂函数f(x)=(m2-3m+3)x m的图像关于y轴对称,则实数m=________.答案2解析由幂函数定义,知m2-3m+3=1,解得m=1或m=2,当m=1时,f(x)=x的图像不关于y轴对称,舍去,当m=2时,f(x)=x2的图像关于y轴对称,因此m =2.5.若(a +1)-13<(3-2a )-13,则实数a 的取值范围是________.答案(-∞,-1)23,32解析不等式(a +1)-13<(3-2a )-13等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得a <-1或23<a <32.感悟提升1.对于幂函数图像的掌握,需记住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.3.在区间(0,1)上,幂函数中指数越大,函数图像越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图像越远离x 轴.考点二二次函数的解析式例1已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.解法一(利用“一般式”)设f (x )=ax 2+bx +c (a ≠0).4a +2b +c =-1,a -b +c 1,4ac -b24a=8,a =-4,b =4,c =7.∴所求二次函数的解析式为f (x )=-4x 2+4x +7.法二(利用“顶点式”)设f (x )=a (x -m )2+n (a ≠0).因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12,所以m =12.又根据题意,函数有最大值8,所以n =8,所以y=f(x)=+8.因为f(2)=-1,所以+8=-1,解得a=-4,所以f(x)=-+8=-4x2+4x+7.法三(利用“零点式”)由已知f(x)+1=0的两根为x1=2,x2=-1,故可设f(x)+1=a(x-2)(x+1)(a≠0),即f(x)=ax2-ax-2a-1.又函数有最大值8,即4a(-2a-1)-(-a)24a=8.解得a=-4或a=0(舍).故所求函数的解析式为f(x)=-4x2+4x+7.感悟提升求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:训练1(1)已知二次函数f(x)=ax2+bx+1(a,b∈R),x∈R,若函数f(x)的最小值为f(-1)=0,则f(x)=________.(2)已知二次函数f(x)的图像经过点(4,3),在x轴上截得的线段长为2,并且对任意x∈R,都有f(2-x)=f(2+x),则f(x)=________.答案(1)x2+2x+1(2)x2-4x+3解析(1)设函数f(x)的解析式为f(x)=a(x+1)2=ax2+2ax+a,由已知f(x)=ax2+bx+1,所以a=1,b=2a=2,故f(x)=x2+2x+1.(2)因为f(2-x)=f(2+x)对x∈R恒成立,所以y=f(x)的图像关于x=2对称.又y=f(x)的图像在x轴上截得的线段长为2,所以f(x)=0的两根为2-22=1或2+22=3.所以二次函数f(x)与x轴的两交点坐标为(1,0)和(3,0).因此设f(x)=a(x-1)(x-3).又点(4,3)在y=f(x)的图像上,所以3a=3,则a=1.故f(x)=(x-1)(x-3)=x2-4x+3.考点三二次函数的图像和性质角度1二次函数的图像例2(1)二次函数y=ax2+bx+c的图像如图所示.则下列结论正确的是______(填序号).①b2>4ac;②c>0;③ac>0;④b<0;⑤a-b+c<0.(2)设函数f(x)=x2+x+a(a>0),若f(m)<0,则()A.f(m+1)≥0B.f(m+1)≤0C.f(m+1)>0D.f(m+1)<0答案(1)①②⑤(2)C解析(1)由题图知,a<0,-b2a>0,c>0,∴b>0,ac<0,故②正确,③④错误.又函数图像与x轴有两交点,∴Δ=b2-4ac>0,故①正确;又由题图知f(-1)<0,即a-b+c<0,故⑤正确.(2)因为f(x)的对称轴为x=-12,f(0)=a>0,所以f(x)的大致图像如图所示.由f(m)<0,得-1<m<0,所以m+1>0>-1 2,所以f(m+1)>f(0)>0.角度2二次函数的单调性与最值例3(1)函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上单调递减,则实数a的取值范围是()A.[-3,0)B.(-∞,-3]C.[-2,0]D.[-3,0]答案D解析当a=0时,f(x)=-3x+1在[-1,+∞)上单调递减,满足题意.当a≠0时,f(x)的对称轴为直线x=3-a 2a,由f(x)在[-1,+∞)a<0,3-a2a≤-1,解得-3≤a<0.综上,a的取值范围为[-3,0].(2)(2021·西安模拟)已知f(x)=ax2-2x(0≤x≤1),求f(x)的最小值.解①当a=0时,f(x)=-2x在[0,1]上递减,∴f(x)min=f(1)=-2.②当a>0时,f(x)=ax2-2x图像开口方向向上,且对称轴为x=1 a .(ⅰ)当1a≤1,即a≥1时,f(x)=ax2-2x图像的对称轴在[0,1]内,∴f(x)在0,1a上递减,在1a,1上递增.∴f(x)min=1a=1a-2a=-1a.(ⅱ)当1a>1,即0<a<1时,f(x)=ax2-2x图像的对称轴在[0,1]的右侧,∴f(x)在[0,1]上递减.∴f(x)min=f(1)=a-2.③当a<0时,f(x)=ax2-2x的图像的开口方向向下,且对称轴x=1a<0,在y轴的左侧,∴f(x)=ax2-2x在[0,1]上递减.∴f(x)min=f(1)=a-2.综上所述,f(x)min-2,a<1,-1a,a≥1.感悟提升 1.闭区间上二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合图像,根据函数的单调性及分类讨论的思想求解.2.二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.无论哪种类型,解题的关键都是图像的对称轴与区间的位置关系,当含有参数时,要依据图像的对称轴与区间的位置关系进行分类讨论.角度3二次函数中的恒成立问题例4(1)已知a是实数,函数f(x)=2ax2+2x-3在x∈[-1,1]上恒小于零,则实数a的取值范围是________.(2)函数f(x)=a2x+3a x-2(a>1),若在区间[-1,1]上f(x)≤8恒成立,则实数a的最大值为________.答案(2)2解析(1)由题意知2ax2+2x-3<0在[-1,1]上恒成立,当x=0时,-3<0,符合题意,a∈R;当x≠0时,a-1 6,因为1x∈(-∞,-1]∪[1,+∞),所以当x=1时,不等号右边式子取最小值1 2,所以a<1 2 .综上,实数a∞(2)令a x=t,因为a>1,x∈[-1,1],所以1a≤t≤a,原函数化为g(t)=t2+3t-2,t∈1a,a,显然g(t)在1a,a上单调递增,所以f(x)≤8恒成立,即g(t)max=g(a)≤8成立,所以有a2+3a-2≤8,解得-5≤a≤2,又a>1,所以1<a≤2,所以a的最大值为2.感悟提升由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否易分离.其中分离参数的依据是:a≥f(x)恒成立⇔a≥f(x)max,a≤f(x)恒成立⇔a ≤f(x)min.训练2(1)(2021·长春五校联考)已知二次函数f(x)满足f(3+x)=f(3-x),若f(x)在区间[3,+∞)上单调递减,且f(m)≥f(0)恒成立,则实数m的取值范围是()A.(-∞,0]B.[0,6]C.[6,+∞)D.(-∞,0]∪[6,+∞)(2)(2022·泰安调研)当x∈(0,+∞)时,ax2-3x+a≥0恒成立,则实数a的取值范围是________.答案(1)B(2)32,+∞解析(1)设f(x)=ax2+bx+c(a,b,c∈R,且a≠0),∵f(3+x)=f(3-x),∴a(3+x)2+b(3+x)+c=a(3-x)2+b(3-x)+c,∴x(6a+b)=0,∴6a+b=0,∴f(x)=ax2-6ax+c=a(x-3)2-9a+c.又∵f(x)在区间[3,+∞)上单调递减,∴a<0,∴f(x)的图像是以直线x=3为对称轴,开口向下的抛物线,∴由f(m)≥f(0)恒成立,得0≤m≤6,∴实数m的取值范围是[0,6].(2)由ax2-3x+a≥0,得a≥3xx2+1=3x+1x,x∈(0,+∞),故x+1x≥2,当x=1时等号成立,∴y=3x+1x≤32,故a≥32.(3)设函数f(x)=x2-2x+2,x∈[t,t+1],t∈R,求函数f(x)的最小值.解f(x)=x2-2x+2=(x-1)2+1,x∈[t,t+1],t∈R,函数图像的对称轴为x=1.当t+1≤1,即t≤0时,函数图像如图(1)所示,函数f(x)在区间[t,t+1]上为减函数,所以最小值为f(t+1)=t2+1;当t<1<t+1,即0<t<1时,函数图像如图(2)所示,在对称轴x=1处取得最小值,最小值为f(1)=1;当t≥1时,函数图像如图(3)所示,函数f(x)在区间[t,t+1]上为增函数,所以最小值为f(t)=t2-2t+2.综上可知,当t≤0时,f(x)min=t2+1,当0<t<1时,f(x)min=1,当t≥1时,f(x)min=t2-2t+2.1.若f (x )是幂函数,且满足f (4)f (2)=3,则()A.3B.-3C.13D.-13答案C解析设f (x )=x α,则4α2α=2α=3,∴=13.2.若函数f (x )=(m 2-m -1)x m 是幂函数,且其图像与坐标轴无交点,则f (x )()A.是偶函数B.是定义域内的减函数C.是定义域内的增函数D.在定义域内没有最小值答案D解析幂函数f (x )=(m 2-m -1)x m 的图像与坐标轴无交点,可得m 2-m -1=1,且m ≤0,解得m =-1,则函数f (x )=x -1是奇函数,在定义域上不是减函数,且无最值.3.(2021·河南名校联考)函数y =1-|x -x 2|的图像大致是()答案C解析∵当0≤x ≤1时,y =x 2-x +1+34,又当x >1或x <0时,y =-x 2+x +1+54,因此,结合图像,选项C 正确.4.(2021·西安检测)已知函数f (x )=x -3,若a =f (0.60.6),b =f (0.60.4),c =f (0.40.6),则a ,b ,c 的大小关系是()A.a <c <bB.b <a <cC.b <c <aD.c <a <b答案B解析∵0.40.6<0.60.6<0.60.4,又y =f (x )=x -3在(0,+∞)上是减函数,∴b <a <c .5.若二次函数y =kx 2-4x +2在区间[1,2]上是单调递增函数,则实数k 的取值范围是()A.[2,+∞)B.(2,+∞)C.(-∞,0)D.(-∞,2)答案A解析二次函数y =kx 2-4x +2图像的对称轴为直线x =2k,当k >0时,要使函数y =kx 2-4x +2在区间[1,2]上是增函数,只需2k ≤1,解得k ≥2;当k <0时,2k <0,此时抛物线的对称轴在区间[1,2]的左侧,则函数y =kx 2-4x +2在区间[1,2]上是减函数,不符合要求.综上可得实数k 的取值范围是[2,+∞).6.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图像是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a ,y =x b 的图像三等分,即有BM =MN =NA ,那么a -1b=()A.0B.1C.12D.2答案A解析BM =MN =NA ,点A (1,0),B (0,1),所以将两点坐标分别代入y =x a ,y =x b ,得a =log 1323,b =log 2313,∴a -1b =log 1323-1log 2313=0.7.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.答案-22,解析因为函数图像开口向上,(m )=m 2+m 2-1<0,(m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0.8.(2021·青岛联考)已知函数f (x )=x 2-2ax +b (a >1)的定义域和值域都为[1,a ],则b =________.答案5解析f (x )=x 2-2ax +b 的图像关于x =a 对称,所以f (x )在[1,a ]上为减函数,又f (x )的值域为[1,a ],(1)=1-2a +b =a ,(a )=a 2-2a 2+b =1.消去b ,得a 2-3a +2=0,解得a =2(a >1),从而得b =3a -1=5.9.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 的值都有f (x )>0,则实数a的取值范围为________.答案解析由题意得a >2x -2x2对1<x <4恒成立,又2x -2x2=-+12,14<1x<1,max=12,∴a >12.10.已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R ).(1)若函数f (x )的图像过点(-2,1),且方程f (x )=0有且只有一个根,求f (x )的表达式;(2)在(1)的条件下,当x ∈[3,5]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解(1)因为f (-2)=1,即4a -2b +1=1,所以b =2a .因为方程f (x )=0有且只有一个根,所以Δ=b 2-4a =0.所以4a 2-4a =0,所以a =1,b =2.所以f (x )=x 2+2x +1.(2)g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1+1.由g (x )的图像知,要满足题意,则k -22≥5或k -22≤3,即k ≥12或k ≤8,所以所求实数k 的取值范围为(-∞,8]∪[12,+∞).11.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图像恒在函数y =2x +m 的图像的上方,求实数m 的取值范围.解(1)设f (x )=ax 2+bx +c (a ≠0),由f (x +1)-f (x )=2x ,得2ax +a +b =2x .所以,2a =2且a +b =0,解得a =1,b =-1,又f (0)=1,所以c =1.因此f(x)的解析式为f(x)=x2-x+1.(2)因为当x∈[-1,1]时,y=f(x)的图像恒在y=2x+m的图像上方,所以在[-1,1]上,x2-x+1>2x+m恒成立;即x2-3x+1>m在区间[-1,1]上恒成立.所以令g(x)=x2-3x+1-5 4,因为g(x)在[-1,1]上的最小值为g(1)=-1,所以m<-1.故实数m的取值范围为(-∞,-1).12.已知在(-∞,1]上递减的函数f(x)=x2-2tx+1,且对任意的x1,x2∈[0,t+1],总有|f(x1)-f(x2)|≤2,则实数t的取值范围是()A.[-2,2]B.[1,2]C.[2,3]D.[1,2]答案B解析由于f(x)=x2-2tx+1的图像的对称轴为x=t,又y=f(x)在(-∞,1]上是减函数,所以t≥1.则在区间[0,t+1]上,f(x)max=f(0)=1,f(x)min=f(t)=t2-2t2+1=-t2+1,要使对任意的x1,x2∈[0,t+1],都有|f(x1)-f(x2)|≤2,只需1-(-t2+1)≤2,解得-2≤t≤ 2.又t≥1,∴1≤t≤ 2.13.(2022·太原调研)对于问题:当x>0时,均有[(a-1)x-1](x2-ax-1)≥0,求实数a的所有可能值.几位同学提供了自己的想法.甲:解含参不等式,其解集包含正实数集;乙:研究函数y=[(a-1)x-1](x2-ax-1);丙:分别研究两个函数y1=(a-1)x-1与y2=x2-ax-1;丁:尝试能否参变量分离研究最值问题.你可以选择其中某位同学的想法,也可以用自己的想法,可以得出的正确答案为______.答案3 2解析选丙.画出y2=x2-ax-1的草图,y2=x2-ax-1过定点C(0,-1).∴y2=x2-ax-1与x轴有两个交点,且两交点在原点两侧,又y1=(a-1)x-1也过定点C(0,-1),故直线y1=(a-1)x-1只有过点A,C才满足题意,∴a-1>0,即a>1,令y1=0得x=1a-1,y2=x2-ax-1,-aa-1-1=0,解得a=0(舍)或a=3 2 .14.已知函数f(x)=x2+(2a-1)x-3.(1)当a=2,x∈[-2,3]时,求函数f(x)的值域;(2)若函数f(x)在[-1,3]上的最大值为1,求实数a的值.解(1)当a=2时,f(x)=x2+3x-3,x∈[-2,3],函数图像的对称轴为直线x=-32∈[-2,3],∴f(x)min==94-92-3=-214,f(x)max=f(3)=15,∴f(x)的值域为-214,15.(2)函数图像的对称轴为直线x=-2a-12.①当-2a-12≤1,即a≥-12时,f(x)max=f(3)=6a+3,∴6a+3=1,即a=-13,满足题意;②当-2a-12>1,即a<-12时,f(x)max=f(-1)=-2a-1,∴-2a-1=1,即a=-1,满足题意.综上可知,a=-13或-1.。
第六节二次函数与幂函数[知识能否忆起]一、常用幂函数的图象与性质函数特征性质y=x y=x2y=x3y=x12y=x-1图象定义域R R R{x|x≥0}{x|x≠0}值域R{y|y≥0}R{y|y≥0}{y|y≠0奇偶性奇偶奇非奇非偶奇单调性增(-∞,0]减(0,+∞)增增增(-∞,0)和(0,+∞)减公共点(1,1)二、二次函数1.二次函数的定义形如f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.2.二次函数解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a≠0);(2)顶点式:f(x)=a(x-m)2+n(a≠0);(3)零点式:f(x)=a(x-x1)(x-x2)(a≠0).3.二次函数的图象和性质a>0a<0图象图象①对称轴:x=-b2a ;②顶点:⎝⎛⎭⎪⎫-b2a,4ac-b24a[小题能否全取]1.若f (x )既是幂函数又是二次函数,则f (x )可以是( ) A .f (x )=x 2-1 B .f (x )=5x 2C .f (x )=-x 2D .f (x )=x 2解析:选D 形如f (x )=x α的函数是幂函数,其中α是常数.2.(教材习题改编)设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3解析:选A 在函数y =x -1,y =x ,y =x 12,y =x 3中,只有函数y =x 和y =x 3的定义域是R ,且是奇函数,故α=1,3.3.(教材习题改编)已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,120B.⎝⎛⎭⎪⎫-∞,-120 C.⎝⎛⎭⎪⎫120,+∞D.⎝ ⎛⎭⎪⎫-120,0解析:选C 由题意知⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0得a >120.4.(教材习题改编)已知点M ⎝⎛⎭⎪⎫33,3在幂函数f (x )的图象上,则f (x )的表达式为________. 解析:设幂函数的解析式为y =x α,则3=⎝ ⎛⎭⎪⎫33α,得α=-2.故y =x -2. 答案:y =x -25.如果函数f (x )=x 2+(a +2)x +b (x ∈[a ,b ])的图象关于直线x =1对称,则函数f (x )的最小值为________.解析:由题意知⎩⎪⎨⎪⎧-a +22=1,a +b =2,得⎩⎪⎨⎪⎧a =-4,b =6.则f (x )=x 2-2x +6=(x -1)2+5≥5. 答案:51.幂函数图象的特点(1)幂函数的图象一定会经过第一象限,一定不会经过第四象限,是否经过第二、三象限,要看函数的奇偶性;(2)幂函数的图象最多只能经过两个象限内;(3)如果幂函数的图象与坐标轴相交,则交点一定是原点. 2.与二次函数有关的不等式恒成立问题(1)ax 2+bx +c >0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0.(2)ax 2+bx +c <0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0.[注意] 当题目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况.幂函数的图象与性质典题导入[例1] 已知幂函数f (x )=(m 2-m -1)x-5m -3在(0,+∞)上是增函数,则m =________. [自主解答] ∵函数f (x )=(m 2-m -1)x -5m -3是幂函数,∴m 2-m -1=1,解得m =2或m =-1. 当m =2时,-5m -3=-13,函数y =x-13在(0,+∞)上是减函数;当m =-1时,-5m -3=2,函数y =x 2在(0,+∞)上是增函数. ∴m =-1. [答案] -1由题悟法1.幂函数y =x α的图象与性质由于α的值不同而比较复杂,一般从两个方面考查:(1)α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸; 0<α<1时,曲线上凸;α<0时,曲线下凸.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数.借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.以题试法1.(1)如图给出4个幂函数大致的图象,则图象与函数对应正确的是( )A .①y =x 13,②y =x 2,③y =x 12,④y =x -1B .①y =x 3,②y =x 2,③y =x 12,④y =x -1C .①y =x 2,②y =x 3,③y =x 12,④y =x -1D .①y =x 13,②y =x 12,③y =x 2,④y =x -1解析:选B 由图①知,该图象对应的函数为奇函数且定义域为R ,当x >0时,图象是向下凸的,结合选项知选B.(2)(2013·淄博模拟)若a <0,则下列不等式成立的是( )A .2a >⎝ ⎛⎭⎪⎫12a >(0.2)aB .(0.2)a >⎝ ⎛⎭⎪⎫12a>2aC.⎝ ⎛⎭⎪⎫12a >(0.2)a>2aD .2a >(0.2)a>⎝ ⎛⎭⎪⎫12a 解析:选B 若a <0,则幂函数y =x a 在(0,+∞)上是减函数,所以(0.2)a >⎝ ⎛⎭⎪⎫12a >0.所以(0.2)a >⎝ ⎛⎭⎪⎫12a>2a .求二次函数的解析式典题导入[例2] 已知二次函数f (x )有两个零点0和-2,且它有最小值-1. (1)求f (x )解析式;(2)若g (x )与f (x )图象关于原点对称,求g (x )解析式.[自主解答] (1)由于f (x )有两个零点0和-2, 所以可设f (x )=ax (x +2)(a ≠0), 这时f (x )=ax (x +2)=a (x +1)2-a , 由于f (x )有最小值-1,所以必有⎩⎪⎨⎪⎧a >0,-a =-1,解得a =1.因此f (x )的解析式是f (x )=x (x +2)=x 2+2x .(2)设点P (x ,y )是函数g (x )图象上任一点,它关于原点对称的点P ′(-x ,-y )必在f (x )图象上, 所以-y =(-x )2+2(-x ), 即-y =x 2-2x ,y =-x 2+2x ,故g (x )=-x 2+2x .由题悟法求二次函数的解析式常用待定系数法.合理选择解析式的形式,并根据已知条件正确地列出含有待定系数的等式,把问题转化为方程(组)求解是解决此类问题的基本方法.以题试法2.设f (x )是定义在R 上的偶函数,当0≤x ≤2时,y =x ,当x >2时,y =f (x )的图象是顶点为P (3,4),且过点A (2,2)的抛物线的一部分.(1)求函数f (x )在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f (x )的草图; (3)写出函数f (x )的值域.解:(1)设顶点为P (3,4)且过点A (2,2)的抛物线的方程为y =a (x -3)2+4,将(2,2)代入可得a =-2, 则y =-2(x -3)2+4,即x >2时,f (x )=-2x 2+12x -14. 当x <-2时,即-x >2.又f (x )为偶函数,f (x )=f (-x )=-2×(-x )2-12x -14, 即f (x )=-2x 2-12x -14.所以函数f (x )在(-∞,-2)上的解析式为f (x )=-2x 2-12x -14.(2)函数f (x )的图象如图,(3)由图象可知,函数f (x )的值域为(-∞,4].二次函数的图象与性质典题导入[例3] 已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数.[自主解答] (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6]. 所以f (x )在[-4,2]上单调递减,在[2,6]上单调递增,故f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4.故a 的取值范围为(-∞,-6]∪[4,+∞).本例条件不变,求当a =1时,f (|x |)的单调区间. 解:当a =1时,f (x )=x 2+2x +3,则f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3,x ∈0,6],x 2-2x +3,x ∈[-6,0],故f (|x |)的单调递增区间是(0,6], 单调递减区间是[-6,0].由题悟法解决二次函数图象与性质问题时要注意:(1)抛物线的开口,对称轴位置,定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论.(2)要注意数形结合思想的应用,尤其是给定区间上二次函数最值问题的求法.以题试法3.(2012·泰安调研)已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,则a 的值为________.解析:f (x )=-(x -a )2+a 2-a +1, 当a >1时,y max =a ;当0≤a ≤1时,y max =a 2-a +1; 当a <0时,y max =1-a .根据已知条件⎩⎪⎨⎪⎧a >1,a =2或⎩⎪⎨⎪⎧0≤a ≤1,a 2-a +1=2或⎩⎪⎨⎪⎧a <0,1-a =2,解得a =2或a =-1. 答案:2或-1二次函数的综合问题典题导入[例4] (2012·衡水月考)已知函数f (x )=x 2,g (x )=x -1. (1)若存在x ∈R 使f (x )<b ·g (x ),求实数b 的取值范围;(2)设F (x )=f (x )-mg (x )+1-m -m 2,且|F (x )|在[0,1]上单调递增,求实数m 的取值范围. [自主解答] (1)∃x ∈R ,f (x )<bg (x )⇒∃x ∈R ,x 2-bx +b <0⇒(-b )2-4b >0⇒b <0或b >4.故b 的取值范围为(-∞,0)∪(4,+∞). (2)F (x )=x 2-mx +1-m 2,Δ=m 2-4(1-m 2)=5m 2-4.①当Δ≤0,即-255≤m ≤255时,则必需⎩⎪⎨⎪⎧m2≤0,-255≤m ≤255⇒-255≤m ≤0.②当Δ>0,即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2).若m2≥1,则x 1≤0,即⎩⎪⎨⎪⎧ m 2≥1,F 0=1-m 2≤0⇒m ≥2;若m2≤0,则x 2≤0, 即⎩⎪⎨⎪⎧m 2≤0,F 0=1-m 2≥0⇒-1≤m ≤-255.综上所述,m 的取值范围为[-1,0]∪[2,+∞).由题悟法二次函数与二次方程、二次不等式统称“三个二次”,它们之间有着密切的联系,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.因此,有关“三个二次”的问题,数形结合,密切联系图象是探求解题思路的有效方法.以题试法4.若二次函数f (x )=ax 2+bx +c (a ≠0)满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 解:(1)由f (0)=1,得c =1.即f (x )=ax 2+bx +1. 又f (x +1)-f (x )=2x ,则a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x , 即2ax +a +b =2x ,所以⎩⎪⎨⎪⎧2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1.因此,f (x )=x 2-x +1.(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可.∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减, ∴g (x )min =g (1)=-m -1, 由-m -1>0得,m <-1.因此满足条件的实数m 的取值范围是(-∞,-1).1.已知幂函数f (x )=x α的部分对应值如下表:x 1 12 f (x )122则不等式f (|x |)≤2的解集是( ) A .{x |0<x ≤2} B .{x |0≤x ≤4} C .{x |-2≤x ≤2}D .{x |-4≤x ≤4}解析:选D 由f ⎝ ⎛⎭⎪⎫12=22⇒α=12,即f (x )=x 12,故f (|x |)≤2⇒|x |12≤2⇒|x |≤4,故其解集为{x |-4≤x ≤4}.2.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )解析:选D ∵a >b >c ,且a +b +c =0, ∴a >0,c <0.∴图象开口向上与y 轴交于负半轴.3.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1bB .f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1b<f (b )<f (a )C .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1b <f ⎝ ⎛⎭⎪⎫1aD .f ⎝ ⎛⎭⎪⎫1a <f (a )<f ⎝ ⎛⎭⎪⎫1b <f (b ) 解析:选C 因为函数f (x )=x 12在(0,+∞)上是增函数,又0<a <b <1b <1a ,故f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1b <f ⎝ ⎛⎭⎪⎫1a .4.已知f (x )=x 2+bx +c 且f (-1)=f (3),则( )A .f (-3)<c <f ⎝ ⎛⎭⎪⎫52B .f ⎝ ⎛⎭⎪⎫52<c <f (-3)C .f ⎝ ⎛⎭⎪⎫52<f (-3)<cD .c <f ⎝ ⎛⎭⎪⎫52<f (-3) 解析:选D 由已知可得二次函数图象关于直线x =1对称,则f (-3)=f (5),c =f (0)=f (2),二次函数在区间(1,+∞)上单调递增,故有f (-3)=f (5)>f ⎝ ⎛⎭⎪⎫52>f (2)=f (0)=c . 5.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是( )A .(-∞,0]B .[2,+∞)C .(-∞,0]∪[2,+∞)D .[0,2]解析:选D 二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0,f ′(x )=2a (x -1)≤0,x ∈[0,1],所以a >0,即函数图象的开口向上,对称轴是直线x =1. 所以f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2.6.若方程x 2-2mx +4=0的两根满足一根大于1,一根小于1,则m 的取值范围是( ) A.⎝⎛⎭⎪⎫-∞,-52B.⎝ ⎛⎭⎪⎫52,+∞C .(-∞,-2)∪(2,+∞)D.⎝ ⎛⎭⎪⎫-52,+∞ 解析:选B 设f (x )=x 2-2mx +4,则题设条件等价于f (1)<0,即1-2m +4<0,解得m >52.7.对于函数y =x 2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增; ③它们的图象关于直线y =x 对称; ④两个函数都是偶函数;⑤两个函数都经过点(0,0)、(1,1); ⑥两个函数的图象都是抛物线型. 其中正确的有________.解析:从两个函数的定义域、奇偶性、单调性等性质去进行比较. 答案:①②⑤⑥8.(2012·北京西城二模)已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________.解析:因为f (x )=x 2+bx +1是R 上的偶函数,所以b =0,则f (x )=x 2+1,解不等式(x -1)2+1<x ,即x 2-3x +2<0得1<x <2.答案:0 {x |1<x <2}9.若x ≥0,y ≥0,且x +2y =1,那么2x +3y 2的最小值为________. 解析:由x ≥0,y ≥0,x =1-2y ≥0知0≤y ≤12,令t =2x +3y 2=3y 2-4y +2,则t =3⎝ ⎛⎭⎪⎫y -232+23.在⎣⎢⎡⎦⎥⎤0,12上递减,当y =12时,t 取到最小值,t min =34. 答案:3410.如果幂函数f (x )=x -12p 2+p +32(p ∈Z)是偶函数,且在(0,+∞)上是增函数.求p 的值,并写出相应的函数f (x )的解析式.解:∵f (x )在(0,+∞)上是增函数, ∴-12p 2+p +32>0,即p 2-2p -3<0.∴-1<p <3.又∵f (x )是偶函数且p ∈Z , ∴p =1,故f (x )=x 2.11.已知二次函数f (x )的图象过点A (-1,0)、B (3,0)、C (1,-8). (1)求f (x )的解析式;(2)求f (x )在x ∈[0,3]上的最值; (3)求不等式f (x )≥0的解集.解:(1)由题意可设f (x )=a (x +1)(x -3), 将C (1,-8)代入得-8=a (1+1)(1-3),得a =2. 即f (x )=2(x +1)(x -3)=2x 2-4x -6. (2)f (x )=2(x -1)2-8,当x ∈[0,3]时,由二次函数图象知,f (x )min =f (1)=-8,f (x )max =f (3)=0.(3)f (x )≥0的解集为{x |x ≤-1,或x ≥3}.12.已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2. (1)求a ,b 的值;(2)若b <1,g (x )=f (x )-m ·x 在[2,4]上单调,求m 的取值范围. 解:(1)f (x )=a (x -1)2+2+b -a . 当a >0时,f (x )在[2,3]上为增函数, 故⎩⎪⎨⎪⎧f 3=5,f2=2,⇒⎩⎪⎨⎪⎧9a -6a +2+b =5,4a -4a +2+b =2,⇒⎩⎪⎨⎪⎧a =1,b =0.当a <0时,f (x )在[2,3]上为减函数,故⎩⎪⎨⎪⎧f 3=2,f 2=5,⇒⎩⎪⎨⎪⎧9a -6a +2+b =2,4a -4a +2+b =5,⇒⎩⎪⎨⎪⎧a =-1,b =3.(2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2.g (x )=x 2-2x +2-mx =x 2-(2+m )x +2,∵g (x )在[2,4]上单调, ∴2+m 2≤2或m +22≥4.∴m ≤2或m ≥6.1.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎢⎡⎦⎥⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13 B.12 C.34D .1解析:选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2, ∵x ∈⎣⎢⎡⎦⎥⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1.2.(2012·青岛质检)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎢⎡⎦⎥⎤-94,-2,故当m ∈⎝ ⎛⎦⎥⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.答案:⎝ ⎛⎦⎥⎤-94,-23.(2013·滨州模拟)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f x ,x >0,-f x ,x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知得c =1,a -b +c =0,-b2a=-1,解得a =1,b =2.则f (x )=(x +1)2.则F (x )=⎩⎪⎨⎪⎧x +12,x >0,-x +12,x <0.故F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x-x 的最大值为-2,故-2≤b ≤0.1.比较下列各组中数值的大小. (1)30.8,30.7;(2)0.213,0.233;(3)4.125,3.8-25,(-1.4)35;(4)0.20.5,0.40.3.解:(1)函数y =3x 是增函数,故30.8>30.7. (2)y =x 3是增函数,故0.213<0.233.(3)4.125>1,0<3.8-25<1,而(-1.4)35<0,故4.125>3.8-25>(-1.4)35.(4)先比较0.20.5与0.20.3,再比较0.20.3与0.40.3,y =0.2x 是减函数,故0.20.5<0.20.3;y =x 0.3在(0,+∞)上是增函数,故0.20.3<0.40.3.则0.20.5<0.40.3.2.设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )解析:选D 当-b2a <0时,ab >0,从而c >0,可排除A ,C ;当-b2a >0时,ab <0,从而c <0,可排除B ,选D.3.已知函数f (x )=ax 2-2x +1. (1)试讨论函数f (x )的单调性;(2)若13≤a ≤1,且f (x )在[1,3]上的最大值为M (a ),最小值为N (a ),令g (a )=M (a )-N (a ),求g (a )的表达式;(3)在(2)的条件下,求证:g (a )≥12.解:(1)当a =0时,函数f (x )=-2x +1在(-∞,+∞)上为减函数; 当a >0时,抛物线f (x )=ax 2-2x +1开口向上,对称轴为x =1a,故函数f (x )在⎝ ⎛⎦⎥⎤-∞,1a 上为减函数,在⎣⎢⎡⎭⎪⎫1a ,+∞上为增函数;当a <0时,抛物线f (x )=ax 2-2x +1开口向下,对称轴为x =1a,故函数f (x )在⎝ ⎛⎦⎥⎤-∞,1a 上为增函数,在⎣⎢⎡⎭⎪⎫1a ,+∞上为减函数.(2)∵f (x )=a ⎝ ⎛⎭⎪⎫x -1a 2+1-1a,由13≤a ≤1得1≤1a ≤3,∴N (a )=f ⎝ ⎛⎭⎪⎫1a =1-1a . 当1≤1a <2,即12<a ≤1时,M (a )=f (3)=9a -5,故g (a )=9a +1a-6;当2≤1a ≤3,即13≤a ≤12时,M (a )=f (1)=a -1,故g (a )=a +1a-2.∴g (a )=⎩⎪⎨⎪⎧a +1a -2,a ∈⎣⎢⎡⎦⎥⎤13,12,9a +1a -6,a ∈⎝ ⎛⎦⎥⎤12,1.(3)证明:当a ∈⎣⎢⎡⎦⎥⎤13,12时,g ′(a )=1-1a 2<0,∴函数g (a )在⎣⎢⎡⎦⎥⎤13,12上为减函数;当a ∈⎝ ⎛⎦⎥⎤12,1时,g ′(a )=9-1a 2>0, ∴函数g (a )在⎝ ⎛⎦⎥⎤12,1上为增函数,∴当a =12时,g (a )取最小值,g (a )min =g ⎝ ⎛⎭⎪⎫12=12.故g (a )≥12.。
§2.5幂函数、函数与方程考纲解读考点内容解读要求五年高考统计常考题型预测热度2013 2014 2015 2016 20171.二次函数与幂函数1.二次函数的图象与性质2.幂函数的概念B13题5分填空题解答题★★★2.函数的零点与方程的根1.求函数零点2.由函数零点求参数B13题5分填空题解答题★★★分析解读二次函数的图象与性质和函数零点问题是江苏高考的热点内容,试题一般难度较大,综合性较强.五年高考考点一二次函数与幂函数1.(2016课标全国Ⅲ理改编,6,5分)已知a=,b=,c=2,则a,b,c的大小关系是(用<连接).答案b<a<c2.(2015四川改编,9,5分)如果函数f(x)=(m-2)x2+(n-8)x+1(m≥0,n≥0)在区间上单调递减,那么mn的最大值为.答案183.(2014辽宁,16,5分)对于c>0,当非零实数a,b满足4a2-2ab+4b2-c=0且使|2a+b|最大时,-+的最小值为.答案-24.(2013辽宁理改编,11,5分)已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则A-B=.答案-165.(2013江苏,13,5分)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点.若点P,A之间的最短距离为2,则满足条件的实数a的所有值为.答案-1,教师用书专用(6—7)6.(2014浙江改编,7,5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是(填序号).答案④7.(2015浙江,18,15分)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[-1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.解析(1)证明:由f(x)=+b-,得f(x)图象的对称轴为直线x=-.由|a|≥2,得≥1,故f(x)在[-1,1]上单调,所以M(a,b)=max{|f(1)|,|f(-1)|}.当a≥2时,由f(1)-f(-1)=2a≥4,得max{f(1),-f(-1)}≥2,即M(a,b)≥2.当a≤-2时,由f(-1)-f(1)=-2a≥4,得max{f(-1),-f(1)}≥2,即M(a,b)≥2.综上,当|a|≥2时,M(a,b)≥2.(2)由M(a,b)≤2得|1+a+b|=|f(1)|≤2,|1-a+b|=|f(-1)|≤2,故|a+b|≤3,|a-b|≤3,由|a|+|b|=得|a|+|b|≤3.当a=2,b=-1时,|a|+|b|=3,且|x2+2x-1|在[-1,1]上的最大值为2,即M(2,-1)=2.所以|a|+|b|的最大值为3.考点二函数的零点与方程的根1.(2017山东理改编,10,5分)已知当x∈[0,1]时,函数y=(mx-1)2的图象与y=+m的图象有且只有一个交点,则正实数m的取值范围是.答案(0,1]∪[3,+∞)2.(2016山东,15,5分)已知函数f(x)=其中m>0.若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.答案(3,+∞)3.(2016天津,14,5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2-恰有两个不相等的实数解,则a的取值范围是.答案4.(2015北京,14,5分)设函数f(x)=①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.答案①-1 ②∪[2,+∞)5.(2015天津改编,8,5分)已知函数f(x)=函数g(x)=b-f(2-x),其中b∈R.若函数y=f(x)-g(x)恰有4个零点,则b的取值范围是.答案6.(2015湖南,15,5分)已知函数f(x)=若存在实数b,使函数g(x)=f(x)-b有两个零点,则a的取值范围是.答案(-∞,0)∪(1,+∞)7.(2014江苏,13,5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时, f(x)=.若函数y=f(x)-a在区间[-3,4]上有10个零点(互不相同),则实数a的取值范围是.答案8.(2014天津,14,5分)已知函数f(x)=|x2+3x|,x∈R.若方程f(x)-a|x-1|=0恰有4个互异的实数根,则实数a 的取值范围为.答案(0,1)∪(9,+∞)9.(2013安徽理改编,10,5分)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是.答案 3教师用书专用(10—11)10.(2017课标全国Ⅲ理改编,11,5分)已知函数f(x)=x2-2x+a(e x-1+e-x+1)有唯一零点,则a=.答案11.(2013安徽理,20,13分)设函数f n(x)=-1+x+++…+(x∈R,n∈N*).证明:(1)对每个n∈N*,存在唯一的x n∈,满足f n(x n)=0;(2)对任意p∈N*,由(1)中x n构成的数列{x n}满足0<x n-x n+p<.证明(1)对每个n∈N*,当x>0时, f 'n(x)=1++…+>0,故f n(x)在(0,+∞)内单调递增.由于f1(1)=0,当n≥2时, f n(1)=++…+>0,故f n(1)≥0.又f n=-1++≤-+=-+·=-·<0,所以存在唯一的x n∈,满足f n(x n)=0.(2)当x>0时, f n+1(x)=f n(x)+>f n(x),故f n+1(x n)>f n(x n)=f n+1(x n+1)=0.由f n+1(x)在(0,+∞)内单调递增知,x n+1<x n.故{x n}为单调递减数列.从而对任意n,p∈N*,x n+p<x n.对任意p∈N*,由于f n(x n)=-1+x n++…+=0,①f n+p(x n+p)=-1+x n+p++…+++…+=0,②①式减去②式并移项,利用0<x n+p<x n≤1,得x n-x n+p=+≤≤<=-<.因此,对任意p∈N*,都有0<x n-x n+p<.三年模拟A组2016—2018年模拟·基础题组考点一二次函数与幂函数1.(2018江苏常熟高三期中调研)已知幂函数y=(m∈N*)在(0,+∞)上是增函数,则实数m的值是. 答案 12.(2018江苏东台安丰高级中学月考)已知幂函数y=f(x)的图象过点,则log2f(8)=.答案3.(2018江苏海安中学阶段测试)若幂函数f(x)=xα的图象经过点,则其单调减区间为.答案(0,+∞)4.(苏教必1,三,3,2,变式)设α∈,则使函数y=xα的定义域为R且为奇函数的所有α值为.答案1,35.(2016江苏淮阴中学期中)下列幂函数:①y=;②y=x-2;③y=;④y=,其中既是偶函数,又在区间(0,+∞)上单调递增的函数是.(填相应函数的序号)答案③考点二函数的零点与方程的根6.(2018江苏金陵中学高三月考)记函数y=ln x+2x-6的零点为x0,若k满足k≤x0且k为整数,则k的最大值为.答案 27.(2018江苏姜堰中学高三期中)函数f(x)=log2(3x-1)的零点为.答案8.(2018江苏东台安丰高级中学月考)若函数f(x)=在其定义域上恰有两个零点,则正实数a的值为.答案 e9.(2018江苏扬州中学月考)方程xlg(x+2)=1有个不同的实数根.答案 210.(2018江苏天一中学调研)已知函数f(x)=若函数g(x)=f(x)-k有三个零点,则k的取值范围是.答案11.(苏教必1,三,4,2,变式)函数f(x)=2x|log0.5 x|-1的零点个数为.答案 212.(苏教必1,三,4,8,变式)若函数f(x)=(m-2)x2+mx+(2m+1)的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是.答案13.(2017江苏苏州期中,9)已知函数f(x)=若函数g(x)=f(x)-m有三个零点,则实数m的取值范围是.答案14.(2016江苏泰州中学质检,10)关于x的一元二次方程x2+2(m+3)x+2m+14=0有两个不同的实根,且一根大于3,一根小于1,则m的取值范围是.答案B组2016—2018年模拟·提升题组(满分:35分时间:20分钟)一、填空题(每小题5分,共20分)1.(2017江苏苏州学情调研,11)已知函数f(x)=若关于x的方程f(x)=k(x+1)有两个不同的实数根,则实数k的取值范围是.答案2.(2017南京、盐城第二次模拟考试,12)若函数f(x)=x2-mcos x+m2+3m-8有唯一零点,则满足条件的实数m组成的集合为.答案{2}3.(2017江苏苏北四市期末,14)已知函数f(x)=若函数f(x)的图象与直线y=x有三个不同的公共点,则实数a的取值范围为.答案{a|-20<a<-16}4.(2016江苏淮阴中学期中,10)已知关于x的一元二次方程x2-2ax+a+2=0的两个实数根是α,β,且有1<α<2<β<3,则实数a的取值范围是.答案二、解答题(共15分)5.(2017江苏泰州二中期初,20)设函数f(x)=x2+ax+b(a,b∈R).(1)当b=+1时,求函数f(x)在[-1,1]上的最小值g(a)的表达式;(2)已知函数f(x)在[-1,1]上存在零点,0≤b-2a≤1,求b的取值范围.解析(1)当b=+1时,f(x)=+1,图象的对称轴为x=-,当a<-2时,->1,函数f(x)在[-1,1]上递减,则g(a)=f(1)=+a+2;当-2≤a≤2时,-1≤-≤1,g(a)=f=1;当a>2时,-<-1,函数f(x)在[-1,1]上递增,则g(a)=f(-1)=-a+2.综上可得,g(a)=(2)设s,t是方程f(x)=0的解,且-1≤t≤1,则由于0≤b-2a≤1,故≤s≤(-1≤t≤1),当0≤t≤1时,≤st≤.易知-≤≤0,-≤≤9-4,所以-≤b≤9-4;当-1≤t<0时,≤st≤,由于-2≤<0,-3≤<0,所以-3≤b<0,故b的取值范围是[-3,9-4].C组2016—2018年模拟·方法题组方法1 判断函数零点个数的常用方法1.(2016江苏扬州中学月考)偶函数f(x)满足f(x-1)=f(x+1),且当x∈[0,1]时,f(x)=-x+1,则关于x的方程f(x)=lg(x+1)在x∈[0,9]上解的个数是.答案9方法2 利用函数零点求参数的值或取值范围2.(2018江苏无锡高三期中)关于x的方程2|x+a|=e x有3个不同的实数解,则实数a的取值范围为.答案(1-ln 2,+∞)3.(2016上海闸北区调研)已知函数f(x)=若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是.答案(0,1)D组2016—2018年模拟·突破题组(2016江苏南京调研,14)已知函数f(x)=x3+ax+,g(x)=-ln x,设函数h(x)=min{f(x),g(x)}(x>0),若h(x)有3个零点,则实数a的取值范围是.答案。
第05节二次函数与幂函数
【考纲解读】
【知识清单】
1.幂函数
(1)幂函数的定义
一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.
(2)常见的5种幂函数的图象
(3)常见的5种幂函数的性质
对点练习
【2017山东济南诊断】已知幂函数f (x )=k ·x α
的图象过点⎝ ⎛
⎭⎪⎫12,22,则k +α
等于( )
A.12
B.1
C.32
D.2
【答案】
32
【解析】由幂函数的定义知1k =.又1()22f =
,所以1()22
α=,解得12a =,从而
3
2
k α+=
. 2.二次函数
(1)二次函数解析式的三种形式: 一般式:f (x )=ax 2
+bx +c (a ≠0).
顶点式:f (x )=a (x -m )2
+n (a ≠0),顶点坐标为(m ,n ). 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点. (2)二次函数的图象和性质
对点练习
【2017浙江湖州、衢州、丽水4月联考】已知函数()()2
,,f x ax bx c a b c R =++∈若存在实。