关于起钻时安全油气上窜速度探讨
- 格式:docx
- 大小:49.55 KB
- 文档页数:10
油气上窜速度计算方法的完善措施研究摘要:为了研究钻井过程中油气上窜速度计算方法的完备性,防止溢流等复杂工况,确保油气田安全高效的开采。
本文基于笔者西部钻探克拉玛依钻井公司实际工作经验,针对近年来笔者遇到的高压油气井的油气上窜速度规律展开探讨,为同行提供建设性意见。
关键词:钻井;油气上窜;速度;计算1引言随着石油工程开采技术的提升,边远、小型、高压油气藏正在不断被开发,在储量动用前,由于地层资料缺失和计算误差对地层压力往往把握不稳。
给后续开采带来一定安全隐患,而在石油工程环节就需要进行一定程度的实验计算极大降低前期地质勘探误差,防止溢流等复杂工况,确保油气田安全高效的开采。
在此本文基于笔者西部钻探克拉玛依钻井公司实际工作经验,针对近年来笔者遇到的高压油气井的油气上窜速度规律展开探讨,为同行提供建设性意见。
2传统油气上窜速度计算中误差原因分析油气上窜为钻井过程中常见现象,需要预先核算并制定相关应急措施防止事故发生。
该工况具体定义为:钻井过程中,当相应油气储层被打开后,由于地层异常压力诱发长时间或者短暂油气层压力大于钻井液液柱压力,在异常压差作用下油气涌入钻井液并上涌喷出井筒的现象。
而相关技术人员为防止井喷事故,制定合适钻井液和相关循环工艺进行压井就必须事先核算油气上窜速度。
顾名思义,单位时间内油气上窜移动的距离为油气上窜速度。
而不同算法得出的油气上窜速度往往因为计算方法和取值的不同产生相应误差。
根据笔者工作所知,当前业内最为普遍的计算方法有迟到时间法和体积法两种。
而体积法较为粗放,通常用于预估或者数据收集不全情况下,具体使用过程中主要受井眼环空体积的影响导致较大误差。
所以相关企业大多选用迟到时间法,根据相关仪器进行气测录井,然后根据相应数据资料通过软件充分核算油气上窜速度。
该方法通用计算公式为:V=[H油-(H钻头t显/t迟)]/T静其中,V,代表油气上窜速度,m/h;H油,代表相应油气储层深度,m;H钻头,代表循环钻井液时钻头的深度,m;t迟,代表气测迟到时间,min;t显,代表从开泵循环至见油气显示的时间,min;T静,代表上次起钻停泵至本次开泵的间隔静止时间,h;根据公式可以看出,各参数数据测点都能直接或间接影响计算结果。
油气上窜速度计算在钻井过程中,当钻穿油、气层后,因某种原因起钻,而到下次下钻循环时,常有油气侵现象,这就是在压差作用下的油气上窜。
单位时间内油气上窜的距离称油气上窜速度,其计算公式如下:V=H/T其中:H=H1—H2H2=排量(l/s)×未气侵泥浆返出时间(s)/每米井眼环空容积(l/m)式中:V—油气上窜速度,米/小时。
H—油气上窜高度,米。
T—静止时间,小时。
H1—油气层深度,米。
H2—未气侵泥浆的深度,米。
H – 60Q/V ·(T1-T2)u==———―――――――――――― (1—4一1)T上式中u——油气上窜速度,m/h;H——油气层深度,m;Q——钻井泵排量,L/s;T1——见到油气显示时间,min;T2——下完钻后的开泵时间,min;V----单位长度井眼环空的理论容积,L/m;T——井内钻井液静止时间,min。
例:某井在2 160 m钻遇油气层后即循环钻井液,18:00开始停泵起钻,次日14:00下完钻开泵,开泵后14:20发现钻井液油气侵,当时钻井泵排量为18 L/s,该井环形空间每1 m容积为24 L,问油气上窜速度是多少?解:由题意已知:H=2 160 m,Q=18 L/s,V=24 L/mT1=14:20,T2=14:00R=(24—18)+14=20 h将已知数据代入式(14-1),则H – 60Q/V ·(T1-T2) 2160- (60×18)/24 ×(14:20-14:00)U==------------------------ == ---------------------------------------==63 (m/h)T20答:该井油气上窜速度为63 m/h。
关于起钻时安全油气上窜速度探讨目前,中石化对进入气层后起钻前的油气上窜速度要求十分严格,比如中石化安全技术规范Q/SHS0003.1-2004中规定油气上窜速度不得高于10m/h,川东北含硫天然气井安全技术规范中规定起钻前油气上窜速度不得高于30m/h,而中石油或石油天然气行业标准并无如此规定,比如钻井井控技术规程SY/T6426-2005、石油天然气安全规程AQ2012-2007中并未在起钻前有如此规定。
近几年的生产管理统计结果表明,这些规定并未有效起到防止出现井涌溢流等复杂情况及事故,反而给生产管理带来很大的难度,不但增加了井漏及井控风险,也加重了对油气层的污染程度,并严重影响开发进度。
下面就起钻前油气上窜速度控制什么范围内合理进行探讨:一、天然气在井筒中的运动规律天然气在储层中根据组分的不同一般以气态或者气液两相存在,由于储层压力很高,气体被高度压缩,相对密度较大。
当储层被揭开后,储层岩屑气、交换气、溢流气变混入钻井液中,天然气气泡此时的受力主要为浮力、自身重力G和界面张力。
上窜的主要动力F上窜=-N 界面其中F浮应遵循阿基米德定律,F浮=p钻井液gV =pg пr3 自身重力G=p天然气Vg 界面张力与钻井液结构强度及气泡表面积有关N界面=k..S=k .4/3пr2 由上面的关系式可以知道,如果密度差产生的上浮力大于界面张力,气泡就能自动加速上升,如果界面张力大于上浮力,气泡就被包在钻井液中不上升,但现场一般都要求钻井液具有良好的脱气性,钻井液胶粒之间的结构力以及与气泡间的界面张力一般都小于上浮力,因此,天然气进入钻井液中后会自动上升。
当液柱压力已经高于地层压力时,储层气体不会大量自动进入井筒,但在一段时间内还存在少量交换气和渗透气进入井筒,如果为了降低后效全烃值而不断提高钻井液密度,这将导致进入井筒的气泡受到的浮力增大,在流变性保持不变的情况下,这将使气泡上升的速度加快。
另外气泡在上窜过程中也遵循PV=nRT定律,R为常数,当n值一定,温度T影响很小的情况下,气泡体积V基本与液柱压力P成反比,也就是说气泡在上升过程中体积不段增加,密度不断降低,与钻井液的密度差越来越大,受到的浮力也越来越大,当然体积增加了,表面积也增加了,但是表面积的增加幅度是比体积增加的幅度小,一个是r2 ,一个是r3,由此分析得出气泡在上。
油气上窜速度的计算及应用武庆河(中原油田录井公司)一、引言储层被打开的油气侵入井筒,并沿井眼上窜是一种常见的现象。
油气上窜速度与地层压力、钻井液参数等因素直接相关。
准确地检测、计算出油气上窜速度是提高其应用价值的关键,因此,必须正确理解和应用计算公式中的每一项参数。
在油气勘探过程中,钻井施工人员对井涌的发生特别敏感。
在测后效循环时,一旦出现井涌情况,就立即盲目提高钻井液密度,结果造成对油气层的损害,测试结果常常出乎人们的意料之外。
要保护油气层,必须使油气上窜速度保持一定的数值。
上窜速度过快,可能导致严重的井涌或井喷事故的发生;上窜速度过慢,油气层又可能被压死。
所以。
在录井过程中,要密切注意对上窜速度的跟踪分析,指导钻井液密度的合理调整,保护油气层。
二、上窜速度的计算上窜速度的计算一般采用下列公式。
1、迟到时间法V上窜=[H-(H B/T C)×(T j-T k)]/T jz (1)2、体积法V上窜=[H×Q(T j-T k)/V c]/T jz (2)3、全烃曲线法V上窜= Q(T fj-T k)/V c×T jz(3)——油气上窜速度,m/h。
H——油气层深度,m。
H B——循环钻井液时钻头位置,式中:V上窜m。
T j——见油气显示时间,hh:mm。
T C——钻头位置所对应的迟到时间,min。
T k——开泵时间,hh:mm。
Q——排量,L/min。
V c——裸眼环空每米理论容积,L。
T fj——在全烃曲线上油气显示值开始下降的时间,hh:mm。
T jz——上次起钻停泵至本次开泵钻井液静止时间,h。
上窜速度计算过去一直是采用公式(1)、(2),公式(3)是以公式(1)、(2)为基础推导出来的,经过多口井的应用证明该公式正确。
从公式(3)可以看出:一是由于其计算上窜速度只与出现显示时的排量有关,不考虑从开始循环到出现显示之间变泵的影响,消除了有关排量的影响因素。
二是所采用时间为(Tfj-Tj),该时间可直接从气测曲线上读取,并且由于(Tfj-Tj)一般小于公式(1)、(2)中的(T j -Tk),因此该时间段内停泵、变泵的几率很小。
油气上窜速度计算方法的改进摘要:现场录井中,准确计算油气上窜速度对安全钻井、油气层的保护和后期的测试、油气产能评价意义重大。
为此,提出了一种计算油气上窜速度的方法,该方法考虑了井深结构和钻具结构等影响环空体积的因素,现场作业表明,该方法是可行的。
关键词:油气上窜速度;后效录井;深度归位;排代法一、引言后效录井(亦称循环钻井液气测录井)是指工程停钻或起下钻作业过程中钻井液静止一段时间后,下钻到需要的深度进行钻井液循环时,测定通过扩散和渗透作用进入井筒钻井液中烃类气体的含量。
取全取准后效显示资料,准确计算油气上窜速度,对于评价油气水层,保证安全施工,保护油气层,提高勘探的整体效益均具有十分重要的意义。
而长期以来关于油气上窜速度的一般采用迟到时间法和累计泵冲数法,由于现在随着深井和超深井的出现,井身结构越来越复杂,计算出来的结果与实际的结果偏差较大,为此,笔者基于泥浆体积排代法得到了一种计算油气上窜速度的新方法。
二、油气上窜速度的影响因素首先,由于井眼结构及钻具结构的上部和下部都会不同,因此不同位置上返速度就会不同。
其次,钻井液排量也不会固定不变,在刚开泵循环时,由于钻井液静止时间长,钻井液稠,需要先用小排量循环,循环一段时间后再提高泵速使排量增大,而且还会经常倒换泵,这样就无法准确计算出随时间变化的排量,也就影响了深度的准确归位,至使深度归位误差增大。
此外,还有其他一些因素也对循环钻井液深度归位造成影响,如泵的上水效率,起钻灌浆、下钻钻井液返出和井径扩大率的影响等。
为了消除上述影响,准确计算出环空体积和累计排出的钻井液体积,为此采用钻井液排代法,计算出累计排出的钻井液体积,即可比较精确的计算油气上窜速度。
三、排代法计算油气上窜速度的原理表1 几种常见套管和井眼与钻具间的环空面积由上式可以得出:图1 钻具与井身结构示意图四、结束语1.等体积排量法计算油气上窜速度,用了单位时间内泵的总排代体积相对量,涉及了循环排量,在现场录井过程之中,考虑具体的井眼与井深结构,公式中仅需要测量出现最大值时泵向井内的实际体积,其它都为已知量,计算结果准确,适用于现场录井对于油气上窜速度的计算。
油气上窜速度实用计算方法摘要:本文介绍了用相对时间计算钻井及井下作业施工中油气上窜速度的方法。
该方法通过一次下钻测量记录两个时间,就能计算油气上窜速度,解决了一般开发井不测量迟到时间和传统方法计算中数据取值一致性差、精度低的问题。
对等直径井眼与复合直径井眼分别进行了理论分析并推导出了相应的计算公式。
本文包括前言、基本原理与计算方法、注意事项及结论认识等。
对传统的迟到时间法、容积法进行了简要分析并提出了主要不足。
主题词:钻井井下作业油气上窜速度计算方法一、对传统计算方法的分析及问题提出在钻井和井下作业施工中,油气上窜速度是衡量井下安全的重要技术数据,是确定下一步施工方案措施的重要技术依据。
油气上窜速度过高,将导致井涌井喷问题发生,造成对地下油气资源的破坏、对地面环境的破坏和对钻井施工安全的严重威胁。
特别是随着油气勘探开发区域的逐年扩大和地下状况的不断复杂化,对钻井和井下作业技术与安全提出了更高的要求,对油气上窜速度的测量计算也要求更准确、更方便。
对于油气上窜速度的计算,传统的方法包括“迟到时间法”和“容积法”两种方法。
毋庸置疑,这两种计算方法在理论上是正确的。
但是,这两种方法涉及到的关键参数——迟到时间、泥浆泵排量的准确性问题,对计算的准确性带来了很大影响。
迟到时间法是钻井现场一直采用的方法。
这种方法的主要不足,一是迟到时间的测量比较繁琐;二是迟到时间的测量计算中受到“钻井液运载比”影响和钻具内部下行时间影响,很难保证计算的精确性;三是迟到时间的测量计算与油气上窜速度测量计算是在不同的下入钻具次数和状态下,数据一致性差;四是没有将油气侵段的显示时间引入上窜速度计算中,缺乏全面性;五是用钻屑的迟到时间计算油气上窜速度不合理;六是没有考虑复合井眼情况;等等。
同时,开发井钻井和井下作业现场一般不测量迟到时间的实际情况,也是影响该方法进行计算的现实情况。
对于容积法,现场应用较少。
主要是泥浆泵排量的具体值精确性差,井眼容积也不容易准确确定,因此计算精度低。
油气上窜速度计算方法的改进与应用宋广健;严建奇;王丽珍;王春耘;卢印生【摘要】油气上窜速度反映了钻开油气层能量的大小,其准确与否直接关系到钻井施工的井控安全,也与评价和保护好油气层有密切的关系.为了确保施工井控安全和后效原始资料准确,针对目前施工现场油气上窜速度计算方法不统一、误差大等问题,结合现场实际,通过对油气上窜速度计算中存在误差原因的分析,从如何确定关键计算参数出发,提出了完善油气上窜速度计算的具体方法和措施.该方法经过一年来近50口井的现场试用,取得良好的效果,可以在钻井施工现场推广应用.【期刊名称】《石油钻采工艺》【年(卷),期】2010(032)005【总页数】3页(P17-19)【关键词】油气上窜速度;计算方法;积极井控;油气层保护【作者】宋广健;严建奇;王丽珍;王春耘;卢印生【作者单位】华北油田公司工程监督部,河北任丘,062552;华北油田公司工程监督部,河北任丘,062552;渤海钻探第二录井公司综合录井作业部,河北任丘,062552;华北油田公司工程监督部,河北任丘,062552;华北油田公司工程监督部,河北任丘,062552【正文语种】中文【中图分类】TE271油气上窜是指钻开油气层后,由于油气层压力大于钻井液液柱压力,在压差作用下油气进入钻井液并沿井筒向上流动的现象。
单位时间内油气上窜的距离即为油气上窜速度。
油气上窜速度计算不准确极易导致严重的井涌、井喷等井控事故。
近年来在华北油田冀中地区钻探的一些高压油气井,由于油气实际上窜速度较快,与计算油气上窜速度误差较大,施工中多次出现了溢流等复杂情况。
针对后效录井油气上窜速度计算方法不统一、误差大等问题,通过对油气上窜速度计算中存在的问题进行调查研究,提出了相应的改进方法,经近一年的现场应用,取得较好的效果。
Error analysis in traditional calculation of oil& gas ascending velocity油气上窜速度的计算一般有2种方法:迟到时间法和体积法。
工艺技术深水钻井油气上窜速度的一种计算方法蒋钱涛①㊀曹鹏飞②㊀关利军①㊀杜克拯②㊀周志军②(①中海石油(中国)有限公司深圳分公司;②中海油能源发展股份有限公司工程技术深圳分公司)蒋钱涛,曹鹏飞,关利军,杜克拯,周志军.深水钻井油气上窜速度的一种计算方法.2019,30(4):40G43摘㊀要㊀油气上窜速度是现场进行油气层评价和井控安全评估的重要参数.在南海东部海域深水作业过程中,使用常规油气上窜速度计算方法,发现计算结果会产生较大误差.通过使用泵冲数与容积相结合的方法,并在开启增压泵的情况下引入有效泵冲数,解决了增压泵开启对油气上窜速度计算的影响.通过在南海东部多口深水井的现场实际应用表明,该计算方法正确可靠㊁效果明显,为钻井和井下作业安全施工提供了重要依据.关键词㊀泵冲数㊀深水㊀增压泵㊀钻具排替㊀油气上窜㊀速度中图分类号:T E132.1㊀㊀文献标识码:A㊀㊀D O I :10.3969/j.i s s n .1672G9803.2019.04.008㊀蒋钱涛㊀工程师,1982年生,2007年毕业于长江大学地球科学学院资源勘查工程专业,现在中海石油深圳分公司勘探部从事海上油气勘探工作.通信地址:518067广东省深圳市南山区后海滨路3168号中海油大厦A 座.电话:(0755)26022624.E Gm a i l :j i a n g qt @c n o o c .c o m.c n 0㊀引㊀言随着世界对石油资源需求的不断增长,对深水区油气资源勘探开发势在必行.深水区作为近年来勘探的重点,钻井数量呈逐年上升趋势,必然对传统录井方法及工艺提出新的挑战,准确计算油气上窜速度即是其中的一项课题.油气上窜是指钻开油气层后,在油气层压力与钻井液液柱压力的压差作用下,地层中的油气以扩散㊁渗滤两种途径进入井筒钻井液中,并沿井筒向上移动的现象.油气上窜速度是指单位时间内油气上窜的距离.油气上窜速度是定性反映油气活跃的一个重要数据,其计算也是钻井施工现场一项非常重要的工作,它的准确与否直接影响施工现场的井控安全,如果油气上窜速度计算不准确,很容易导致井涌㊁井喷等井控事故[1].在南海东部海域深水钻探作业中,油气上窜速度受多种因素影响,比如长隔水管及增压泵的使用,会使岩屑稳定上返被打乱,而传统的计算方法未能有效排除影响因素,导致与实际的油气上窜速度存在较大误差.这使得依据传统计算方法所得的油气上窜速度不能有效㊁合理地评价油气层和评估井控安全,甚至形成对井筒压差的误判,造成工程事故.为此,分析油气上窜速度计算影响因素,有针对性地改进计算方法对深水钻探作业十分必要.1㊀油气上窜速度的常规计算方法现场常用的油气上窜速度计算方法主要有迟到时间法㊁容积法和泵冲数法[2].迟到时间法:v =[H -(h /t )(t 1-t 2)]/t 0(1)式中:v 为上窜速度,m /h ;H 为油气层顶深,m ;h 为循环时钻头深度,m ;t 为钻头位置的迟到时间,m i n ;t 1为见到油气显示的时刻,m i n ;t 2为下钻至井深h 的开泵时刻,m i n ;t 0为钻井液静止时间,h .容积法:v =[H -(Q /V c )(t 1-t 2)]/t 0(2)式中:Q 为钻井液循环排量,L /m i n ;V c 为环空理论每米容积,L /m .泵冲数法:v =[H -(h /S 1)S 2]/t 0(3)式中:S 1为钻头所在位置的迟到泵冲数,无量纲;S 2为见油气显示时总泵冲数,无量纲.上述3种方法具备涉及参数少㊁计算简单㊁使用方便等优点,在现场应用时间较长.但缺点也是显而易见的,因其公式过于简化,计算时没有排除气管线延迟㊁环空尺寸变化㊁钻具排替等因素的影响,故计算结果准确性相对较差[3]. 04 ㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀录井工程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2019年12月2㊀深水钻井工艺对计算结果影响因素分析在深水作业中,需要下入较长的隔水管来完成钻井液的循环,隔水管的直径较大,井眼直径则随井身结构的改变而逐渐变小,这导致井眼内的环空分为上㊁下两部分:下部自井底至海底井口,由钻杆与裸眼或者套管之间的环空形成,上部自海底井口至转盘面,由隔水管与钻杆之间的环空形成,并且上部环空体积相对下部较大.这就造成了钻井液由井底上返至井口的过程中,因环空截面发生变化,钻井液稳定上返被打乱,对钻井液及岩屑的迟到时间造成影响.另外深水钻井过程中为了加速钻井液在隔水管内的上返速度以及减少岩屑在海底井口的滞留时间,要在隔水管底部增设增压泵辅助钻井液循环,而增压泵的应用改变了钻井液在隔水管中的总排量,使实际迟到时间在计算过程中受到钻井液排量改变的影响(图1).图1㊀深水钻井液循环示意钻具排替作用是指起下钻或短起下钻测后效期间,钻具下入后替换部分钻井液而导致油气侵(后效)液面上升的作用.钻具排替作用按照排替方式不同可分为开排和闭排.开排是指钻具组合未使用浮阀等内防喷工具,钻具水眼双向畅通,排替的体积等于钻具组合本体的体积;闭排是指钻具组合使用浮阀等内防喷工具,钻井液只能单向向下畅通,排替的体积等于钻具组合外径的体积.迟到时间法公式(1)和容积法公式(2)中的t㊁t1㊁t2这三个关键参数,会受钻头下钻到底开泵循环时开泵数量㊁泵冲数变化㊁泵的上水效率等诸多因素影响.一般刚下钻到底开泵循环时,由于钻井液静止时间长,钻井液粘度高,只能使用小排量循环,泵冲数较小,循环一定时间后再提高循环排量,升高泵冲数,并逐渐趋于平稳[4].简单地以(t1-t2)等同于后效气的迟到时间,会使油气上窜速度计算值误差较大.泵冲数法公式(3),由于裸眼尺寸和套管尺寸不同,以及隔水管增压泵的影响,循环时钻头深度h与泵冲数不成比例,若直接使用冲数折算h,则会使油气上窜速度计算值误差很大,故无法直接使用泵冲数折算h.3㊀泵冲数与容积相结合计算油气上窜速度油气上窜速度的计算中不仅要考虑到钻具排替的影响,还要根据钻井现场实际情况,当增压泵开启时,需要排除增压泵对油气上窜的影响.3.1㊀泵冲数与容积相结合计算方法原理从开泵到井口见到油气显示这段时间,钻井液推动油气界面向上运移的高度所对应的环空容积等于环空排出钻井液的体积,即井深h视(单位:m)以上的环空容积,同时油层所在井深H对应的环空容积等于其所对应的排出钻井液的体积.所以井深H与h视之间的环空容积,等于实际见油气显示时相对油气层深度处少排出的钻井液体积.故可以将环空容积与钻井液体积进行关联,进而与泵冲数进行关联.如图2所示,油气层自身上窜至井深h纯上(单位:m),下钻至井深h纯上后,继续下钻,受到钻具的排替作用,油气被向上挤[5],由于此时钻井液的终切(钻井液静止10m i n时所测的切力)较大,可以认可此模型,最终下钻至井深h(单位:m),此时油气被上挤至井深h视.故钻具的排替量等于h纯上与h视之间的环空容积.基于上述两个相等关系分析,可以推导出油气上窜距离,进而得到油气上窜速度.3.2㊀公式推导根据3.1节的分析,井深H与h视之间的环空容积,等于实际见油气显示时比油气层深度处少排出的钻井液体积,据此可得到下列等式:(H-h视)ϕ环面=(S3-S2)q泵h视=H-(S3-S2)q泵/ϕ环面(4)14第30卷㊀第4期㊀㊀㊀㊀㊀㊀㊀㊀蒋钱涛等:深水钻井油气上窜速度的一种计算方法图2㊀下钻过程后效上挤示意式中:h视为经过钻具排替之后的后效气所处的井深,m;S3为油气层深度处的迟到泵冲数,无量纲; S2为见油气显示时的总泵冲数,无量纲;q泵为泵每冲的容积(已考虑泵效),m3;ϕ环面为钻杆外径与裸眼或套管之间的环形面积,m2.根据钻具排替原理[6],可得到下列等式:V闭排=(h-h视)q闭式中:V闭排为钻具闭端排替总量,m3;q闭为钻杆的闭端排替量,m3/m.V环容=(h纯上-h视)ϕ环面式中:V环容为被钻具排替上挤的环空容积,m3;h纯上为后效气原始上窜界面深度(未经钻具排替),m.因为V闭排=V环容(h-h视)q闭=(h纯上-h视)ϕ环面所以等式两端同时除以ϕ环面,得到下式:h纯上=h视-h视q闭/ϕ环面+h q闭/ϕ环面进而得到下式:h纯上=h视(ϕ环面-q闭)/ϕ环面+h q闭/ϕ环面(5)由速度公式可以得到下式:v=(H-h纯上)/t0(6)3.3㊀增压泵开启时油气上窜速度计算方法在后效气返出之前开启增压泵的情况下,公式(4)中的参数需要进行调整.公式(4)中的S3是油气层深度处的迟到泵冲数(返至钻台面),S2是见油气显示时的总泵冲数.由于隔水管增压泵的开启,此时的S3及S2不能直接代入该式进行计算,需要区分油气上返至钻台面和返至水下井口时的泵冲数(图1).这是因为当油气从h视上返至水下井口期间,增压泵不对其上返做功,即增压泵是无效泵冲数,只有上返至隔水管内后,增压泵才对其做功,这是有效泵冲数.另外,作用于立管管汇的钻井液泵,始终对油气的上返做功.由上述分析可知,S3在增压泵开启时,应为自油气层深度处返至水下井口时的迟到泵冲数;同时代替S2带入公式(4)进行计算的应为有效泵冲数,即(S井内立+S隔内)(其中:S井内立为油气返至水下井口时,作用于立管管汇钻井液泵的总泵冲数;S隔内为充满隔水管内容积所需的泵冲数,由理论环空体积公式计算得到).因为S井内立无法直接读取,需用(S2-S隔内)得到一个泵冲数,在录井数据库中可以查询该泵冲数(S2-S隔内)对应的时刻点(此时刻即为油气返至水下井口的时间),然后查询截止至该时刻,作用于立管管汇钻井液泵的总泵冲数,此值即为S井内立,最后使用(S井内立+S隔内)代替S2并代入公式(4)进行计算即可.4㊀应用实例4.1㊀L井概况L井是南海东部海域一口超深水预探井,钻具组合为(914.40mmˑ2580.17m)+(660.40mm ˑ4046.00m)+(444.50mmˑ4496.00m)+(311.15mmˑ5050.00m),套管组合为(914.40mmˑ2580.17m)+(508.00mmˑ4041.21m)+(339.72mmˑ4490.07m).使用149.225mm钻杆钻进,在444.50mm井眼井深4158m处钻遇气测异常显示层,起下钻作业期间钻井液静止时间12h,下钻至4483m开始循环钻井液,测得后效气全量6.3%.4.2㊀计算过程在泵的总冲数为S2=21500(立管+增压泵)时,测得后效气,减去隔水管所需要的泵冲数(S隔内=19014),得到冲数为2486,此时刻对应的立管冲数为S井内立=1414,得到实际后效气通过该冲数从井深4158m处的油气层返到水下井口位置;实际钻进期间,从井深4158m处返出至转盘面所用冲数为23952,S3-(S井内立+S隔内)可得气体上窜冲数3524,对应钻井液体积为78.947m3.因为油气层深度至上层套管鞋深度间的环空容积为16.363m3,所以气体已上窜至20i n(508mm)套管内,需要分段计算:查询q泵每冲的容积为22.86L, q闭为钻杆的闭端排替量17.898L/m,ϕ环面钻杆与24 ㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀录井工程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2019年12月508.0mm套管间环空面积为0.1654m2,钻杆与444.5mm裸眼间环空面积为0.1373m2.分段计算上窜高度.444.5mm裸眼段:4158-4041.21=116.79m508.0mm套管内:(78.947-16.363)/0.1654=378.38m所以,总上窜高度为:116.79+378.38=495.17m,h视=3662.83m将上述数据带入公式(5),计算得到:h纯上=3662.83-(3662.83-4483)ˑ0.017898/㊀㊀㊀㊀0.1654=3751.58m已知静止时间为12h,将数据带入公式(6),计算可得v=33.9m/h.4.3㊀应用效果在南海东部海域深水井多次的试验发现,相比其他计算方法,利用泵冲数与容积相结合计算的油气上窜速度排除了增压泵和钻具排替作用对计算结果的影响,与实际情况吻合度更好.表1为多口深水井使用不同上窜速度计算方法得到的结果对比.由表1可见,在C井中,按照迟到时间法计算测井安全时间为63.3h,由于处理测井复杂情况,在超过测井安全时间63.3h后,并未见气体涌出井口的情况发生,之后进行通井作业,使用泵冲数与容积结合法计算油气上窜速度,计算结果与实际情况更为吻合.表深水钻井油气上窜速度各方法计算结果对比5㊀结束语(1)计算油气上窜速度,综合考虑了下钻过程中钻具的排替作用,井身结构对油气上窜速度的影响.(2)在深水井增压泵开启情况下,油气上窜速度计算思路及方法与常规计算方法差别较大,本方法更能真实反映油气上窜的过程及速度.(3)公式推导建立在油气在钻井液中上窜高度与运移时间的基础上,未考虑油气在钻井液中的滑脱上升㊁气体膨胀等因素,有待进一步研究.参㊀考㊀文㊀献[1]㊀李振海,覃保锏,金庭科,等.油气上窜速度计算方法的修改[J].录井工程,2011,22(2):12G13,26.L I Z h e n h a i,Q I NB a o j i a n,J I NT i n g k e,e t a l.M o d i f i c a t i o no f t h e c a l c u l a t i o nm e t h o d o f o i l a n d g a s a s c e n d i n g v e l o c i t y[J].M u dL o g g i n g E n g i e e r i n g,2011,22(2):12G13,26.[2]㊀王守君,刘振江,谭忠健,等.勘探监督手册(地质分册) [M].北京:石油工业出版社,2013.WA N G S h o u j u n,L I U Z h e n j i a n g,T A N Z h o n g j i a n,e ta l.E x p l o r a t i o n s u p e r v i s i o nm a n u a l(G e o l o g i c a l f a s c i c l e)[M].B e i j i n g:P e t r o l e u mI n d u s t r y P r e s s,2013.[3]㊀马春林,黄浩.利用排量倒推法计算地层中油气上窜速度[J].录井工程,2018,29(2):37G41.MAC h u n l i n,HU A N G H a o.C a l c u l a t i o no f o i l a n d g a sa s c e n d i n g v e l o c i t y i n f o r m a t i o nb y d i s p l ac e m e n t i n v e rGs i o nm e t h o d[J].M u dL o g g i n g E n g i n e e r i n g,2018,29(2):37G41.[4]㊀宋广健,严建奇,王丽珍,等.油气上窜速度计算方法的改进与应用[J].石油钻采工艺,2010,32(5):17G19.S O N GG u a n g j i a n,Y A NJ i a n q i,WA N GL i z h e n,e t a l.I m p r o v e m e n t a n d a p p l i c a t i o no f t h e c a l c u l a t i o nm e t h o do f o i la n d g a sa s c e n d i n g v e l o c i t y[J].O i lD r i l l i n g&P r o d u c t i o nT e c h n o l o g y,2010,32(5):17G19.[5]㊀郇志鹏,邱斌,胡剑风,等.油气上窜速度计算方法的改进与现场应用[J].录井工程,2018,29(1):34G37.HU A N Z h i p e n g,Q I U B i n,HUJ i a n f e n g,e t a l.I mGp r o v e m e n t a n d f i e l d a p p l i c a t i o n o f t h e c a l c u l a t i o nm e t h o d o f o i l a n d g a s a s c e n d i n g v e l o c i t y[J].M u dL o gGg i n g E n g i n e e r i n g,2018,29(1):34G37.[6]㊀李基伟,柳贡慧,李军,等.油气上窜速度的精确计算方法[J].科学技术与工程,2014(22):180G184.L I J i w e i,L I U G o n g h u i,L I J u n,e t a l.A n a c c u r a t e c a lGc u l a t i o nm e t h o do f t h eo i l a nd g a su p w a r dc h a n ne l i n gs p e e d[J].S c i e n c eT e c h n o l o g y a n d E n g i n e e r i n g,2014(22):180G184.(返修收稿日期㊀2019G11G27㊀编辑㊀王丙寅)34第30卷㊀第4期㊀㊀㊀㊀㊀㊀㊀㊀蒋钱涛等:深水钻井油气上窜速度的一种计算方法m e t h o d.T h eb e n d i n g d e f o r m a t i o nd e g r e e o f t h e r o c k f o r m aGt i o n i s c h a r a c t e r i z e db y t h e p r i n c i p a l c u r v a t u r em e t h o d i nd i fGf e r e n t i a l g e o m e t r y.T h e p r i n c i p a l c u r v a t u r e r a n g eo f t h e l o s t c i r c u l a t i o n i s d e t e r m i n e dw i t ht h e a c t u a l d r i l l i n g c o n d i t i o na s t h e c o n s t r a i n i n g c o n d i t i o n,s o t h a t t h e d i s t r i b u t i o n c h a r a c t e rGi s t i c s o f t h e p r i n c i p a l c u r v a t u r e f i e l dc a nb eu s e dt o i n d i c a t e t h e s t r u c t u r a l f r a c t u r e d e v e l o p m e n t z o n e,s o a s t o a c h i e v e t h e p u r p o s eo f p r e d i c t i n g t h e l o s tc i r c u l a t i o n.T h i s m e t h o dh a s b e e n a p p l i e dt ot h ed r i l l i n g s i t eo fS h u n b e ib l o c ki n N o r t hGw e s tO i l f i e l d.T h er e s u l t ss h o wt h a t t h e p r i n c i p a l c u r v a t u r e m e t h o d c a ne f f e c t i v e l yp r e d i c t t h e l o s tc i r c u l a t i o na n d g u i d e t h ed r i l l i n g s i t et oc a r r y o u tt h es a f e t y a n dh i g he f f i c i e n c y c o n s t r u c t i o n.K e y w o r d s:S h u n b e i b l o c k,p r i n c i p a l c u r v a t u r em e t h o d,f r a cGt u r e,l o s t c i r c u l a t i o n,p r e d i c t i o nL u S h i h a o,F r o n t C o mm a n dB a s e,N o r t h w e s tO i l f i e l dC o m p aGn y,L u n t a i C o u n t y,B a z h o u,X i n j i a n g,841600,C h i n aA p p l i c a t i o no f t h e c o m b i n e dm u d l o g g i n g t e c h n o l o g y i n t h e d i sGc o v e r y o f h y d r o c a r b o n r e s e r v o i r si n T a i y u a n f o r m a t i o n o f G a n g b e i b u r i e dh i l l.T a nC h a o,W a n g C h a n g z a i,J iL i n g,H u F e n g b o,W a n g X i a o c h e n g,D o n g F e n g a n dX uJ i c e.M u dL o gGg i n g E n g i n e e r i n g,2019,30(4):22G28T h ea p p l i c a t i o no fn e wd r i l l i n g t e c h n i q u e ss u c ha sP D C a n dh i g hGp r e s s u r e j e t d r i l l i n g i nT a i y u a n f o r m a t i o no f b u r i e d h i l l s,n o r t h e r n D a g a n g b r i n g s g r e a tc h a l l e n g e st o m u dl o gGg i n g d i s c o v e r y o fs h o w o f g a sa n do i l i nt h i sb l o c k,w h i c h l e a d s t o t h e f a i l u r eo f c o n v e n t i o n a l g e o l o g i c a l l o g g i n g t o f i n d h y d r o c a r b o n r e s e r v o i r sa n dt h e i r l i t h o l o g y c o m b i n e dc h a r a cGt e r i s t i c s i nT a i y u a nf o r m a t i o ni nt i m e.I no r d e rt of i n do u t t h e g e o l o g i c i n f o r m a t i o no f t h es t r a t a i nt h i sa r e aa n dd e t e rGm i n et h e m o s ts u i t a b l ec o m b i n a t i o n o f m u dl o g g i n g t e c hGn i q u e s f o r t h i sk i n do f o i l a n d g a sd i s c o v e r y,t a k i n g t w oe xGp l o r a t i o n w e l l s o f h y d r o c a r b o n r e s e r v o i r si n b u r i e d h i l l, n o r t h e r nD a g a n g a s e x a m p l e s,t h e c o m b i n a t i o n s e r i e s a n d a pGp l i c a t i o ne f f e c t o fm u d l o g g i n g m e t h o d s a r e s u mm a r i z e d,a n d t h e l i t h o l o g y a n d p e t r o l i f e r o u s p r o p e r t y o fT a i y u a n f o r m a t i o n a r e r eGr e c o g n i z e d.F i n a l l y,i t i s c o n f i r m e d t h a t t h e c o m b i n e d m u d l o g g i n g t e c h n o l o g y o fc a r b o n a t ea n a l y s i s+t h i ns e c t i o n a n a l y s i s+X R D+X R Fh a sa g o o de f f e c t o nt h e i d e n t i f i c a t i o n o f c o m p l e x l i t h o l o g y a n d r e s e r v o i r i n t h i s a r e a,t h e c o m b i n e d m u dl o g g i n g t e c h n o l o g y o f g a sl o g g i n g+t h r e eGd i m e n s i o n a l q u a n t i t a t i v e f l u o r e s c e n c e+r o c k p y r o l y s i sa n a l y s i sc a ne f f e cGt i v e l y d e a lw i t ht h ed i s c r i m i n a t i o no f f o r m a t i o n p e t r o l i f e r o u s p r o p e r t y i n t h i s a r e a.K e y w o r d s:c o m b i n e d m u dl o g g i n g t e c h n o l o g y,T a i y u a nf o rGm a t i o n,o i l a n d g a s i d e n t i f i c a t i o n,c o a l s e a m,b u r i e dh i l l i n n o r t h e r nD a g a n gT a nC h a o,N o.1M u dL o g g i n g C o m p a n y,T u a n j i eE a s tR o a d, D a g a n g O i l f i e l d,T i a n j i n,300280,C h i n aO p t i m i z a t i o no fd r i l l i n g a n df r a c t u r i n g t e c h n o l o g y f o rd i r e cGt i o n a l a n dh o r i z o n t a l w e l l s i nY a nᶄa n g a s f i e l d.D e n g C h a n g s hGe n g,Z h a n g Y i,X i eX i a o f e i,S o n g J i a x u a n,M i W e i w e i,M a Q i a n g a n dX uM i n.M u d L o g g i n g E n g i n e e r i n g,2019,30(4):29G34I no r d e r t o i m p r o v e t h e s u c c e s s r a t e o f d r i l l i n g a n d f r a cGt u r i n g o f d i r e c t i o n a l a n dh o r i z o n t a lw e l l s i nY a nᶄa n g a s f i e l d a n de n h a n c e t h e e f f i c i e n c y o f n a t u r a l g a s e x p l o i t a t i o n,m i c r oGs e i s m i cm o n i t o r i n g o f f r a c t u r i n g f o rv e r t i c a lw e l l sa n dh o r iGz o n t a lw e l l s i nY a nᶄa n g a s f i e l d i s c a r r i e do u t,t h e c h a r a c t e rGi s t i c so f d i r e c t i o n a l w e l l f r a c t u r i n g a n d t h e l a wo f f r a c t u r e e xGt e n s i o na r ea n a l y z e d,a n dt h ec h a r a c t e r i s t i c so f w e l lb o r e s t r u c t u r ec u r r e n t l y u s e di nd i r e c t i o n a lw e l l sa n d h o r i z o n t a l w e l l s a r e s u mm a r i z e d.B a s e do nt h i s,t h e p r o b l e m s i nd r i l lGi n g a n d f r a c t u r i n g o f d i r e c t i o n a l a n dh o r i z o n t a lw e l l s i nY a nᶄa n g a s f i e l d a r e p o i n t e do u t,a n d t h e c o r r e s p o n d i n g o p t i m i z aGt i o n s c h e m e i s g i v e n f o r e a c h p r o b l e m.O p t i m i z i n g t h e d i r e cGt i o n a l w e l ls t r u c t u r ef r o m t r i p l eGs e c t i o n t o p e n t a dGs e c t i o n t y p e r e q u i r e s t h a t t h ea n g l ed r o p s i n t os t r a i g h tw e l l s e c t i o n b e f o r e d r i l l i n g i n t o t h em a i n t a r g e t s t r a t a o fY a nᶄa n g a s f i e l d.B y u s i n g o r i e n t e d f i x e da n g l e p e r f o r a t i n g t e c h n o l o g y,t h e e fGf e c t i v e r e s e r v o i r i s f r a c t u r e db y f o c u s i n g f r a c t u r i n g f l u i da n d p i p en e t w o r k p r e s s u r e,a n dt h ee n d p o i n t o f t h es e c o n ds e cGt i o no f t h eh o r i z o n t a lw e l l i sa d j u s t e du p w a r dt ot h e m i d d l e a n d l o w e r p a r t o f t h e d e v i a t e dw e l l s e c t i o n.T h i s s c h e m e c a n e f f e c t i v e l y i m p r o v e t h er e c o v e r y r a t i oo fn a t u r a l g a s i nY a nᶄa n g a s f i e l d,w i t h r e m a r k a b l e a p p l i c a t i o ne f f e c t.K e y w o r d s:Y a nᶄa n g a sf i e l d,d i r e c t i o n a l w e l l,h o r i z o n t a l w e l l,m i c r o s e i s m i cm o n i t o r i n g,w e l l b o r e s t r u c t u r e,o r i e n t e d p e r f o r a t i n g,o p t i m i z a t i o nD e n g C h a n g s h e n g,Y a n c h a n g P e t r o l e u m S c i e n t i f i c R e s e a r c h C e n t e r,61T a n g y a nR o a d,X iᶄa nH iGt e c h I n d u s t r i e sD e v e l o pGm e n t Z o n e,S h a a n x i P r o v i n c e,710065,C h i n aA p p l i c a t i o no fE x c e l f u n c t i o ni nt h e i d e n t i f i c a t i o no fv o l c a n i c r o c k si ne l e m e n tl o g g i n g.Q u S h u n c a i,Z u o T i e q i u,Z h a n g Y a n q i a n dZ h a n g P e n g.M u dL o g g i n g E n g i n e e r i n g,2019,30(4):35G39E l e m e n t l o g g i n g t e c h n o l o g y c a nb eu s e dt oo b t a i nt h e c o n t e n t o f e l e m e n t s i nr o c k sa n d m i c r o s c o p i c a l l y a n a l y z e t h e c o m p o s i t i o no f r o c k s.H o w e v e r,t h ea c c u r a t en a m i n g o f l iGt h o l o g y h a sb e c o m e a nu r g e n t p r o b l e mt ob e s o l v e d.T h e r eGf o r e,t h ea u t o m a t i cl i t h o l o g i cd i s c r i m i n a t i o na n dn a m i n g o f v o l c a n i c r o c k e l e m e n t l o g g i n g d a t a a r e r e a l i z e db y E x c e l f u n cGt i o n.T h a t i s,t h eT A Sc h a r tn u m b e ro fv o l c a n i cr o c ke l eGm e n t i d e n t i f i c a t i o ni sf o r m u l a t e di n E x c e l,a n dt h e E x c e l w o r k s h e e t o f v o l c a n i c r o c ke l e m e n t i d e n t i f i c a t i o n i s c o m p i l e d b a s e do nt h e l i t h o l o g y n a m i n g c o n d i t i o n s.T h e f i e l da p p l i e d e x a m p l e ss h o w t h a tt h e m e t h o di ss i m p l ea n dc o n v e n i e n t, w h i c hn o to n l y a c h i e v e st h ea c c u r a t en a m i n g o fe l e m e n t l iGt h o l o g y,b u t a l s o i m p r o v e s t h ew o r k e f f i c i e n c y.T h e a p p l i c aGt i o ne f f e c t o f e l e m e n t l o g g i n g t e c h n o l o g y i s e n h a n c e d.K e y w o r d s:e l e m e n t l o g g i n g,v o l c a n i cr o c k,c h a r t i d e n t i f i c aGt i o nm e t h o d,T A Sc h a r t,E x c e l f u n c t i o n,c h a r t f o r m u l a t i o n Q uS h u n c a i,D a t a A c q u i s i t i o n T e a m2,N o.1G e oGL o g g i n g C o m p a n y,D a q i n g D r i l l i n g&E x p l o r a t i o nE n g i n e e r i n g C o rGp o r a t i o n,R a n g h u l u D i s t r i c t,D a q i n g C i t y,H e i l o n g j i a n g P r o v i n c e,163411,C h i n aM e t h o d f o r c a l c u l a t i n g o i l a n d g a s u p w a r d f l o wv e l o c i t y i nd e e p w a t e rd r i l l i n g.J i a n gQ i a n t a o,C a oP e n g f e i,G u a nL i j u n,D u K e z h e n g a n dZ h o uZ h i j u n.M u dL o g g i n g E n g i n e e r i n g,2019,30(4):40G43T h e o i l&g a su p w a r d f l o wv e l o c i t y i s a n i m p o r t a n t p aGr a m e t e r f o r h y d r o c a r b o n r e s e r v o i r e v a l u a t i o n a n dw e l l c o n t r o l641 ㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀录井工程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2019年12月s a f e t y a s s e s s m e n t.I n t h e p r o c e s so f d e e p w a t e r o p e r a t i o n i n t h eE a s t e r nS o u t hC h i n aS e a,i t i s f o u n d t h a t t h e c a l c u l a t i o n r e s u l t sw i l l p r o d u c e l a r g ee r r o r sw i t ht h ec o n v e n t i o n a l c o mGp u t i n g m e t h o do f o i l a n d g a su p w a r d f l o wv e l o c i t y.B y u s i n g t h em e t h o do f c o m b i n i n gp u m p s t r o k e r a t e a n dv o l u m e,a n d i n t r o d u c i n g t h ee f f e c t i v e p u m p s t r o k er a t ew h e nt h eb o o s t e r p u m p i s t u r n e d o n,t h e i n f l u e n c e o f s t a r t i n g b o o s t e r p u m p o n t h e c a l c u l a t i o no f o i l a n d g a su p w a r d f l o wv e l o c i t y i s s o l v e d.T h e f i e l d p r a c t i c a l a p p l i c a t i o no f s e v e r a l d e e p w a t e rw e l l s i n t h eE a s t e r nS o u t hC h i n a S e a s h o w s t h a t t h e c o m p u t i n g m e t hGo d i s c o r r e c t,r e l i a b l ea n de f f e c t i v e,a n d p r o v i d e sa n i m p o rGt a n t b a s i s f o r s a f e d r i l l i n g a n dd o w n h o l e s e r v i c i n g o p e r a t i o n.K e y w o r d s:p u m p s t r o k er a t e,d e e p w a t e r,b o o s t e r p u m p, d r i l l i n g t o o l d i s p l a c e m e n t,u p w a r d f l o wv e l o c i t yJ i a n gQ i a n t a o,B l o c k A,C N O O C T o w e r,3168H o u h a i b i n R o a d,N a n s h a n D i s t r i c t,S h e n z h e n C i t y,G u a n g d o n g P r o vGi n c e,518067,C h i n aS i m u l a t i o nm o d e l i n g m e t h o do f d r i l l i n g e n g i n e e r i n gp a r a m e t e r s f o r e a r l y o v e r f l o w m o n i t o r i n g.Z h a n g B o,H u X u g u a n g,L i u G u i y i,L iY i j u n,S u n W e i f e n g a n dD a iY o n g s h o u.M u dL o gGg i n g E n g i n e e r i n g,2019,30(4):44G50T h er e s e a r c h s h o w st h a tt h ei n t e l l i g e n ti d e n t i f i c a t i o n m e t h o dc a n e f f e c t i v e l y i m p r o v e t h e a c c u r a c y o f e a r l y o v e r f l o w m o n i t o r i n g.H o w e v e r,b e c a u s e t h e o v e r f l o wi s a s m a l l p r o bGa b i l i t y e v e n t i nd r i l l i n gp r o c e s s,t h eo v e r f l o ws a m p l ed a t aaGv a i l a b l e i n t h e f i e l d i s v e r y l i m i t e d,w h i c h l i m i t s t h e a p p l i c aGt i o no f i n t e l l i g e n t i d e n t i f i c a t i o n m e t h o d.T os o l v e t h i s p r o bGl e m,b a s e do n t h ea n a l y s i so f t h e r e l a t i o n s h i p b e t w e e nc o mGm o no v e r f l o w m o n i t o r i n gp a r a m e t e r sa n dd r i l l i n g d e s i g n p aGr a m e t e r s,g e o l o g i c a lr e l a t e d p a r a m e t e r sa n dd r i l l i n g c o n d iGt i o n s,t h en u m e r i c a l s i m u l a t i o nm o d e l s o f c o mm o n l y u s e doGv e r f l o w m o n i t o r i n g p a r a m e t e r s u n d e rt h r e e c o n d i t i o n s o f d r i l l i n g,c o m eo u to f t h eh o l ea n d g o i nt h eh o l ea r ee s t a bGl i s h e d t o p r o v i d ed a t ab a s i s f o r t h ea p p l i c a t i o no f i n t e l l i g e n t o v e r f l o wi d e n t i f i c a t i o n m e t h o d.T h e m o d e l sa r ev e r i f i e db y t h em e a s u r e dd a t a i n t h e f i e l d.U n d e r t h e g i v e nd r i l l i n g c o nGd i t i o n s,t h es i m i l a r i t y b e t w e e nt h es i m u l a t e dd a t aa n dt h e f i e l dm e a s u r e dd a t a i su p t o83.85%,w i t hah i g hd e g r e eo f c o i n c i d e n c e.T h ei d e n t i f i c a t i o na c c u r a c y o fo v e r f l o wi n t e l l iGg e n t i d e n t i f i c a t i o n m o d e l i s23.1%h i g h e rt h a nt h a to ft h e e x p e r t e m p i r i c a lm o d e lw i t h o u t t r a i n i n g s a m p l e s,a n dt h e iGd e n t i f i c a t i o na c c u r a c y i s s i g n i f i c a n t l y i m p r o v e d.K e y w o r d s:e a r l y o v e r f l o w m o n i t o r i n g,i n t e l l i g e n t i d e n t i f i c aGt i o n,d a t a s a m p l e,s i m u l a t i o nm o d e l i n gD a i Y o n g s h o u,C o l l e g eO f I n f o r m a t i o na n dC o n t r o lE n g i n e e rGi n g,C h i n aU n i v e r s i t y O fP e t r o l e u m(E a s tC h i n a),H u a n g d a o D i s t r i c t,Q i n g d a oC i t y,S h a n d o n g P r o v i n c e,266580,C h i n aA n a l y s i s o f d o l o m i z a t i o n c h a r a c t e r i s t i c s o fM5G5s u b m e m b e r i n D a n i u d iG a sF i e l db a s e do ne l e m e n t l o g g i n g t e c h n o l o g y.J i a n g H a i s h e n,Q i u T i a n m i n,W a n g X i a o y a n g,J i a n g R o n g a n d C h e n g H a o h u a.M u dL o g g i n g E n g i n e e r i n g,2019,30(4):51G54D o l o m i z a t i o ni st h e k e y f a c t o ra f f e c t i n g t h er e s e r v o i r p h y s i c a l p r o p e r t i e s o f M5G5s u b m e m b e ro f D a n i u d i G a s F i e l d.T h e e l e m e n t l o g g i n g t e c h n o l o g y c a nd i r e c t l y a n dc o nGt i n u o u s l y d e t e r m i n e t h e e l e m e n t c o n t e n t i n t h e c u t t i n g s,d eGd u c e t h e t y p e a n d c o n t e n t o fm i n e r a l s i n t u r n,a n d t h e n r e a lGi z e t h e a c c u r a t e n a m i n g o f l i t h o l o g y a n d t h e e v a l u a t i o no f d oGl o m i z a t i o nd e g r e e.At o t a lo f28k e y w e l l si n D a n i u d iG a s F i e l dw e r e s e l e c t e d f o r e l e m e n t l o g g i n g i n t e r p r e t a t i o n a n d d oGl o m i z a t i o n c h a r a c t e r i s t i c sa n a l y s i s,a n dt h e f o l l o w i n g u n d e rGs t a n d i n g sw e r e o b t a i n e d.M o s t o f t h ew e l l s(a b o u t68%)i n t h e g a s f i e l d a r e ah a v e d i f f e r e n t d e g r e e s o f d o l o m i z a t i o n i n M 5G5s u b m e m b e r,a n d t h ed o l o m i t e i sc o n c e n t r a t e da t t h e t o p l o n g i t u d i n a l l y.T h e d o l o m i t e s i nM5G5s u b m e m b e r a r em a i nGl y d e v e l o p e d i n t h en o r t h w e s t a n dn o r t h e a s t o f t h e g a s f i e l d, a n da r eb a s i c a l l y d i s t r i b u t e d i n g i r d l e b a n d.T h e t o p o fM5G5s u b m e m b e r a n d t h en o r t h w e s t a n dn o r t h e a s t o f t h e g a s f i e l d s h o u l db e t h em a i n a r e a s f o r t h ew e l l l o c a t i o n a r r a n g e m e n t o f D a n i u d iG a sF i e l d i n t h e f u t u r e.K e y w o r d s:D a n i u d iG a sF i e l d,M5G5s u b m e m b e r,d o l o m i z aGt i o n,e l e m e n t l o g g i n gJ i a n g H a i s h e n,197F u n i uR o a d,Z h o n g y u a nD i s t r i c t,Z h e n gGz h o uC i t y,H e n a nP r o v i n c e,450000,C h i n aS t u d y o nm u d l o g g i n g i n t e r p r e t a t i o na n de v a l u a t i o n m e t h o do f s h a l e o i l i nG u l o n g s a g,S o n g l i a oB a s i n.Z h a n g L i y a na n d Q i n W e n k a i.M u dL o g g i n g E n g i n e e r i n g,2019,30(4):55G61U n c o n v e n t i o n a l h y d r o c a r b o n r e s o u r c e s a r e an e wa r e a i n o i l a n d g a s e x p l o r a t i o na n dd e v e l o p m e n t i nD a q i n g O i l f i e l d a t p r e s e n t,i n w h i c hs h a l eo i le x p l o r a t i o na n dd e v e l o p m e n t i s a d v a n c i n gg r a d u a l l y.I no r d e r t or e a l i z e t h e r a p i d i n t e r p r e t aGt i o na n de v a l u a t i o n i ns h a l eo i l d r i l l i n g,t h r o u g ht h ea n a l y s i s o fw e l l b o r em u d l o g g i n g d a t a,t h e a p p l i c a t i o n o fm u d l o g g i n g r e l a t e dt e c h n i c a l p a r a m e t e r si ns h a l eo i lw e l l i n t e r p r e t a t i o n a n de v a l u a t i o n i s s t u d i e d.As e t o fm u d l o g g i n g i n t e r p r e t a t i o n m e t h o d s s u i t a b l e f o r s h a l e o i l e v a l u a t i o n h a s b e e n p r e l i m i n a r iGl y e s t a b l i s h e d.T h a t i s,t h e s h a l e o i l i s e v a l u a t e d f r o mt h e a sGp e c t so fl i t h o l o g y,p h y s i c a l p r o p e r t i e s(f r a c t u r e d e v e l o pGm e n t),p e t r o l i f e r o u s p r o p e r t i e s,s o u r c er o c k p r o p e r t i e sa n d b r i t t l e n e s sb y u s i n g t h e c o m b i n a t i o no fm u d l o g g i n gp a r a m eGt e r s s u c ha s g a s l o g g i n gp a r a m e t e r s,l i t h o l o g y a n dc o r e f r a cGt u r e o b s e r v a t i o n,g e o c h e m i c a l p y r o l y s i s p a r a m e t e r s,r e s i d u a l c a r b o na n a l y s i s a n d e l e m e n ta n a l y s i s,a n d t h e e v a l u a t i o n r a n g eo fe a c h p a r a m e t e ra n db r i t t l e n e s sc a l c u l a t i o n m e t h o d a r e d e t e r m i n e d.T h e r e s u l t s o f t h e s t u d y h a v e c e r t a i n g u i d i n g s i g n i f i c a n c e f o r t h e i n t e r p r e t a t i o na n de v a l u a t i o no f s h a l eo i l m u d l o g g i n g i nG u l o n g s a g,S o n g l i a oB a s i n,a n d a l s o p r o v i d e a r e l i a b l e b a s i s f o r t h e f u r t h e r d e v e l o p m e n t o f s h a l e o i l i n t h i s a r e a.K e y w o r d s:G u l o n g s a g,s h a l eo i l,i n t e r p r e t a t i o na n de v a l u aGt i o n,h y d r o c a r b o ne x p u l s i o n t h r e s h o l dv a l u eZ h a n g L i y a n,N o.8,C h e n g f e n g z h u a n g,R a n g h u l u D i s t r i c t, D a q i n g C i t y,H e i l o n g j i a n g P r o v i n c e,163411,C h i n aA p p l i c a t i o n o f g a s l o g g i n g i n r e s e r v o i r i n t e r p r e t a t i o n a n d e v a l uGa t i o no fY a n c h a n g f o r m a t i o n i nS a n b i a na r e a.L iY o n g s h e n g, D u Q i a o j u a n,L i uZ h i h e n g,H a oJ i n m e i,Z h u G e n g g e n g a n d W uM i n g s o n g.M u dL o g g i n g E n g i n e e r i n g,2019,30(4):62G67T h e o i lGw a t e r r e l a t i o n s h i p i n t h e r e s e r v o i r so fY a n c h a n g f o r m a t i o n i nS a n b i a na r e ao fC h a n g q i n g O i l f i e l di sc o m p l e x a n d i t i s d i f f i c u l t t o i d e n t i f y t h e f l u i d p r o p e r t i e s.I t i su r g e n t t os t r e n g t h e nt h er e s e a r c h o fi n t e r p r e t a t i o na n de v a l u a t i o n m e t h o d sb e c a u s e o f t h e l o wc o i n c i d e n c e r a t e o f t h e t r a d i t i o n a l741第30卷㊀第4期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀英文摘要。
安全管理编号:LX-FS-A22849 关于起钻时安全油气上窜速度探讨
In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or
activity reaches the specified standard
编写:_________________________
审批:_________________________
时间:________年_____月_____日
A4打印/ 新修订/ 完整/ 内容可编辑
关于起钻时安全油气上窜速度探讨
使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。
资料内容可按真实状况进行条款调整,套用时请仔细阅读。
目前,中石化对进入气层后起钻前的油气上窜速度要求十分严格,比如中石化安全技术规范
Q/SHS0003.1-2004中规定油气上窜速度不得高于10m/h,川东北含硫天然气井安全技术规范中规定起钻前油气上窜速度不得高于30m/h,而中石油或石油天然气行业标准并无如此规定,比如钻井井控技术规程SY/T6426-2005、石油天然气安全规程
AQ2012-2007中并未在起钻前有如此规定。
近几年的生产管理统计结果表明,这些规定并未有效起到防止出现井涌溢流等复杂情况及事故,反而给生产管理带来很大的难度,不但增加了井漏及井控风险,也加
重了对油气层的污染程度,并严重影响开发进度。
下面就起钻前油气上窜速度控制什么范围内合理进行探讨:
一、天然气在井筒中的运动规律
天然气在储层中根据组分的不同一般以气态或者气液两相存在,由于储层压力很高,气体被高度压缩,相对密度较大。
当储层被揭开后,储层岩屑气、交换气(储层压力低于钻井液液柱压力)、溢流气(储层压力高于钻井液液柱压力)变混入钻井液中,天然气气泡此时的受力主要为浮力(F浮)、自身重力G和界面张力(N界面)。
上窜的主要动力F上窜=(F浮-G)-N界面(1)
其中F浮应遵循阿基米德定律,
F浮=p钻井液gV =pg пr3 (2)
自身重力G=p天然气Vg (3)
界面张力与钻井液结构强度及气泡表面积有关N界面=k..S=k .4/3пr2 (4)
由上面的关系式可以知道,如果密度差产生的上浮力(F浮-G)大于界面张力,气泡就能自动加速上升,如果界面张力大于上浮力,气泡就被包在钻井液中不上升,但现场一般都要求钻井液具有良好的脱气性,钻井液胶粒之间的结构力以及与气泡间的界面张力一般都小于上浮力(遇到井塌后大幅提高粘切的钻井液及高粘切的堵漏浆除外),因此,天然气进入钻井液中后会自动上升。
当液柱压力已经高于地层压力时,储层气体不会大量自动进入井筒(即无溢流气),但在一段时间内还存在少量交换气和渗透气进入井筒,如果为了降低
后效全烃值而不断提高钻井液密度,这将导致进入井筒的气泡受到的浮力增大,在流变性保持不变的情况下,这将使气泡上升的速度加快。
另外气泡在上窜过程中也遵循PV=nRT定律,R为常数,当n值一定,温度T影响很小的情况下,气泡体积V基本与液柱压力P成反比,也就是说气泡在上升过程中体积不段增加,密度不断降低,与钻井液的密度差越来越大,受到的浮力也越来越大,当然体积增加了,表面积也增加了,但是表面积的增加幅度是比体积增加的幅度小,一个是r2 ,一个是r3,由此分析得出气泡在上窜过程中加速度越来越大,而v上窜=∫dv/dt(0,t),由此,可以得出以下结论:
(1)天然气在从井底向井口的运移过程中速度以非线性倍增的结论。
(2) 即使钻井液密度很高,液柱压力远远大于储层地层压力,只要储层有气体,深井的岩屑气和交换气后效也有可能使全烃值达到很高,甚至引起池体积增加的现象。
(3)提高钻井液密度存在增加油气上窜速度的可能,起钻是否安全应综合短起后效强弱、持续时间以及是否存在液面上涨等情况。
二、上窜速度30m/h存在的问题
前现场采用迟到时间法测定的油气上窜速度是从井底到井口的平均速度,针对川东北深井,井深一般都在5000~8000m,油气层就按4000m计算,如果必须严格执行30m/h以内的油气上窜速度,天然气从井底上窜到井口需要的时间
t=4000/30=133.33h,而对于4000m的井,按5分钟一根立柱的最慢速度,起下一趟钻所需时间为
4000/27×5/60×2=24.7h。
即使上窜速度不倍增,下钻到底时,油气才上窜到井深3200m左右,实际根本就不到3200m。
即使有其他特殊情况再耽误30h,油气上窜井深也不到2000m,循环排气还需要很长时间,这样就会影响纯钻进效率。
根据现场监督反映和跟踪调查,发现很多井在起钻前油气上窜速度根本就达不到小于30m/h的要求,这给现场监督管理带来很大难度,如果让起钻,说明监督不作为,不负责,不准起钻,只得循环加重,且需要多次短起下钻和循环来测定油气上窜速度,使钻井作业方的短起下、循环时间大大增加,严重耽误生产失效,同时为了要达到这个要求,钻井液液柱压力要大大超过储层地层压力,这就增加了井漏风险并容易引起漏、喷同存的井控复杂事故。
另外钻井液密度过高也会加重钻井液对储层的污染,降低机
械钻速。
三、井深/上窜速度=2~3倍作业时间的合理和安全性
按(一)中的结论,把井筒人为分为3段,这样各段的平均上窜速度可能依次为上2v,中v,下段为1/2v,气泡经过各段的时间分别为1/7t(上段),2/7t(中段)4/7t(下段),这里的t是气泡从井底窜到井口所需时间,也就=井深/上窜速度,如果=2倍作业时间,下钻到底后油气上窜高度应该还不到井深的1/3,完全能保证井控安全。
我们举例来进行实际核算,如果井深4000m,起下钻一趟作业时间25h,我们取井深/上窜速度=2倍作业时间,也就是50h,允许的最大油气上窜速度为4000/50=80m/h,也就是说起下钻到底后油气
上窜高度为1300m以内,即使耽误20h,下钻到底后油气也还没有窜到井口。
为了进一步保证安全,还可以取井深/上窜速度=3倍作业时间,对应的油气上窜速度为4000/(25×3)=53m/h。
如果井深6000m,起下钻一趟作业时间40h,如果按2倍作业时间取,允许的最大油气上窜速度为6000/(40×2)=75 m/h。
按3倍作业时间取,允许的最大油气上窜速度为6000/(40×3)=50 m/h。
通过现场调查,井队起钻时的油气上窜速度一般都为50~80m/h范围内,有些时候100m/h以上也在起钻,都没有出什么问题,根据上面的计算,如果井深/上窜速度=2~3倍作业时间话,算出的最大允许油气上窜速度与现场比较一致,说明这种方法是比
较合理的。
2011.5.25
请在该处输入组织/单位名称
Please Enter The Name Of Organization / Organization Here。