北京市西城区2017_2018学年高一数学上学期期末考试试题扫描版
- 格式:doc
- 大小:22.10 MB
- 文档页数:12
2017-2018学年北京市首师大附中高一(上)期末数学试卷一、选择题(共8小题,每小题4分,满分32分)1.设A={x|﹣1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.a<2 B.a>﹣2 C.a>﹣1 D.﹣1<a≤22.若角α满足条件sin2α<0,cosα﹣sinα<0,则α在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若log a<1,则a的取值范围是()A.0<a<B.a>C.<a<1 D.0<a<或a>14.已知函数f(x)=2﹣x+x,将f(x)的图象向右平移3个单位,得到函数g(x)的图象,则g(x)的解析式是()A.g(x)=2﹣x+3+x﹣3 B.g(x)=2﹣x﹣3+x﹣3 C.g(x)=2﹣x+3+x+3 D.g(x)=2﹣x﹣3+x+35.在平行四边形ABCD中,若,则必有()A.B.或C.ABCD是矩形 D.ABCD是正方形6.函数y=xcosx+sinx的图象大致为()A.B.C.D.7.已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f (x)与y=log5x的图象的交点个数为()A.3 B.4 C.5 D.68.如图,四边形ABCD是正方形,延长CD至E,使得DE=CD.若动点P从点A出发,沿正方形的边按逆时针方向运动一周回到A点,其中,下列判断正确的是()A.满足λ+μ=2的点P必为BC的中点B.满足λ+μ=1的点P有且只有一个C.λ+μ的最大值为3D.λ+μ的最小值不存在二、填空题(共6小题,每小题4分,满分24分)9.cos70°cos335°+sin110°sin25°=______.10.若=(2,3),=(﹣1,1),则在方向上的正射影的数量为______.11.已知三个向量=(k,12),=(4,5),=(10,k),且A、B、C三点共线,则k=______.12.已知α∈(,π),β∈(﹣,0),且sinα=,cosβ=,则α﹣β的值为______.13.已知tanθ=3,则=______.14.使不等式sin2x+acosx+a2≥1+cosx对一切x∈R恒成立的负数a的取值范围是______.三、解答题(共4小题,满分44分)15.已知=(1,2),=(﹣3,2),当k为何值时:(1)k+与﹣3垂直;(2)k+与﹣3平行,平行时它们是同向还是反向?16.已知函数f(x)=sinxcosx﹣cos2x+.(1)求函数f(x)的周期;(2)求函数f(x)在[﹣,]的取值范围.17.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<).(1)若x∈[2,6]时,f(x)max=f(2)=2,f(x)min=f(6)=﹣2且f(x)在[2,6]上单调递减,求ω,φ的值;(2)若φ=且函数f(x)在[0,]上单调递增,求ω的取值范围;(3)若φ=0且函数f(x)=0在[﹣π,π]上恰有19个根,求ω的取值范围.18.如果f(x)是定义在R上的函数,且对任意的x∈R,均有f(﹣x)≠﹣f(x),则称该函数是“X﹣函数”.(Ⅰ)分别判断下列函数:①y=2x;②y=x+1;③y=x2+2x﹣3是否为“X﹣函数”?(直接写出结论)(Ⅱ)若函数f(x)=sinx+cosx+a是“X﹣函数”,求实数a的取值范围;(Ⅲ)已知f(x)=是“X﹣函数”,且在R上单调递增,求所有可能的集合A 与B.2017-2018学年北京市首师大附中高一(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1.设A={x|﹣1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.a<2 B.a>﹣2 C.a>﹣1 D.﹣1<a≤2【考点】集合关系中的参数取值问题.【分析】A={x|﹣1≤x<2},B={x|x<a},若A∩B≠∅,两个集合有公共元素,得到两个集合中所包含的元素有公共的元素,得到a与﹣1的关系.【解答】解:∵A={x|﹣1≤x<2},B={x|x<a},若A∩B≠∅,∴两个集合有公共元素,∴a要在﹣1的右边,∴a>﹣1,故选C.2.若角α满足条件sin2α<0,cosα﹣sinα<0,则α在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】象限角、轴线角;二倍角的正弦.【分析】由sin2α<0,确定2α的象限,确定α的象限范围,根据cosα﹣sinα<0,判定α的具体象限.【解答】解:∵sin2α<0,∴2α在第三、四象限或y的负半轴.2kπ+π<2α<2kπ+2π,k∈Z,∴kπ+<α<kπ+π,k∈Z∴α在第二、四象限.又∵cosα﹣sinα<0,∴α在第二象限.故选:B.3.若log a<1,则a的取值范围是()A.0<a<B.a>C.<a<1 D.0<a<或a>1【考点】指、对数不等式的解法.【分析】运用对数函数的单调性,分a>1,0<a<1两种情况,注意先求交集,再求并集即可.【解答】解:log a<1=log a a,当a>1时,不等式即为a>,则有a>1成立;当0<a<1时,不等式即为a<,即有0<a<.综上可得,a的范围为a>1或0<a<.故选D.4.已知函数f(x)=2﹣x+x,将f(x)的图象向右平移3个单位,得到函数g(x)的图象,则g(x)的解析式是()A.g(x)=2﹣x+3+x﹣3 B.g(x)=2﹣x﹣3+x﹣3 C.g(x)=2﹣x+3+x+3 D.g(x)=2﹣x﹣3+x+3【考点】函数的图象与图象变化.【分析】欲求g(x)的解析式,只须根据:“f(x)的图象向右平移3个单位,得到函数g (x)的图象”将x→x﹣3由f(x)的解析式即可得到.【解答】解:∵函数f(x)=2﹣x+x,将f(x)的图象向右平移3个单位,得到函数g(x)的图象,∴x→x﹣3,又∵f(x)=2﹣x+x∴g(x)=f(x﹣3)=2﹣x+3+x﹣3.故选A.5.在平行四边形ABCD中,若,则必有()A.B.或C.ABCD是矩形 D.ABCD是正方形【考点】向量在几何中的应用;向量的模;数量积判断两个平面向量的垂直关系.【分析】先由向量的加法运算法则知知对角线相等,再由矩形定义求解.【解答】解:在平行四边形ABCD中,∵∴平行四边形的对角线相等由矩形的定义知:平行四边形ABCD是矩形.故选C6.函数y=xcosx+sinx的图象大致为()A.B.C.D.【考点】函数的图象.【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求.【解答】解:由于函数y=xcosx+sinx为奇函数,故它的图象关于原点对称,所以排除选项B,由当x=时,y=1>0,当x=π时,y=π×cosπ+sinπ=﹣π<0.由此可排除选项A和选项C.故正确的选项为D.故选:D.7.已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f (x)与y=log5x的图象的交点个数为()A.3 B.4 C.5 D.6【考点】根的存在性及根的个数判断.【分析】由题意可得函数y=f(x)是周期为2的偶函数,数形结合可得函数y=f(x)与y=log5x 的图象的交点个数.【解答】解:由题意可得函数y=f(x)是周期为2的偶函数,再根据x∈[﹣1,1]时,f(x)=x2,可得函数y=f(x)的图象,数形结合可得函数y=f(x)与y=log5x的图象的交点个数为4,故选B.8.如图,四边形ABCD是正方形,延长CD至E,使得DE=CD.若动点P从点A出发,沿正方形的边按逆时针方向运动一周回到A点,其中,下列判断正确的是()A.满足λ+μ=2的点P必为BC的中点B.满足λ+μ=1的点P有且只有一个C.λ+μ的最大值为3D.λ+μ的最小值不存在【考点】向量的加法及其几何意义.【分析】建立坐标系可得=(λ﹣μ,μ),A,B选项可举反例说明,通过P 的位置的讨论,结合不等式的性质可得0≤λ+μ≤3,进而可判C,D的正误,进而可得答案.【解答】解:由题意,不妨设正方形的边长为1,建立如图所示的坐标系,则B(1,0),E(﹣1,1),故=(1,0),=(﹣1,1),所以=(λ﹣μ,μ),当λ=μ=1时,=(0,1),此时点P与D重合,满足λ+μ=2,但P不是BC的中点,故A 错误;当λ=1,μ=0时,=(1,0),此时点P与B重合,满足λ+μ=1,当λ=,μ=时,=(0,),此时点P为AD的中点,满足λ+μ=1,故满足λ+μ=1的点不唯一,故B错误;当P∈AB时,有0≤λ﹣μ≤1,μ=0,可得0≤λ≤1,故有0≤λ+μ≤1,当P∈BC时,有λ﹣μ=1,0≤μ≤1,所以0≤λ﹣1≤1,故1≤λ≤2,故1≤λ+μ≤3,当P∈CD时,有0≤λ﹣μ≤1,μ=1,所以0≤λ﹣1≤1,故1≤λ≤2,故2≤λ+μ≤3,当P∈AD时,有λ﹣μ=0,0≤μ≤1,所以0≤λ≤1,故0≤λ+μ≤2,综上可得0≤λ+μ≤3,故C正确,D错误.故选C二、填空题(共6小题,每小题4分,满分24分)9.cos70°cos335°+sin110°sin25°=.【考点】两角和与差的正弦函数;两角和与差的余弦函数.【分析】根据诱导公式和两角差的余弦公式计算即可.【解答】解:cos70°cos335°+sin110°sin25°=cos70°cos25°+sin70°sin25°=cos(70°﹣25°)=cos45°=,10.若=(2,3),=(﹣1,1),则在方向上的正射影的数量为.【考点】平面向量数量积的运算.【分析】根据向量数量积的关系进行化简,结合向量投影的定义进行求解即可.【解答】解:∵=(2,3),=(﹣1,1),∴在方向上的正射影的数量||cos<,>===,故答案为:11.已知三个向量=(k,12),=(4,5),=(10,k),且A、B、C三点共线,则k=﹣2或11.【考点】平面向量共线(平行)的坐标表示.【分析】先求出和的坐标,利用和共线的性质x1y2﹣x2y1=0,解方程求出k的值.【解答】解:由题意可得=(4﹣k,﹣7),=(6,k﹣5),由于和共线,故有(4﹣k)(k﹣5)+42=0,解得k=11或k=﹣2.故答案为:﹣2或11.12.已知α∈(,π),β∈(﹣,0),且sinα=,cosβ=,则α﹣β的值为.【考点】两角和与差的余弦函数.【分析】根据αβ的取值范围,利用同角三角函数的基本关系分别求得cosα和sinβ,由两角差的和正弦公式求得sin(α﹣β),根据α﹣β∈(,),即可求得α﹣β的值.【解答】解:由α∈(,π),β∈(﹣,0),sinα=,cosβ=,∴α﹣β∈(,),cosα<0,sinβ<0,cosα=﹣=﹣=﹣,sinβ=﹣=﹣=﹣,sin(α﹣β)=sinαcosβ﹣cosαsinβ,=×﹣(﹣)(﹣),=﹣,∴α﹣β=.13.已知tanθ=3,则=.【考点】三角函数的化简求值.【分析】利用二倍角公式以及平方关系式化简表达式为正切函数的形式,代入求解即可.【解答】解:tanθ=3,则====.故答案为:.14.使不等式sin2x+acosx+a2≥1+cosx对一切x∈R恒成立的负数a的取值范围是a≤﹣2.【考点】其他不等式的解法.【分析】利用公式1=cos2x+sin2x,进行代换,可得cos2x+(1﹣a)cosx﹣a2≤0,然后利用换元法和二次函数的性质列出性质进行求解.【解答】解:1﹣cos2x+acosx+a2≥1+cosx⇒cos2x+(1﹣a)cosx﹣a2≤0,令t=cosx,∵x∈R,∴t∈[﹣1,1],t2+(1﹣a)t﹣a2≤0,由题意知a<0∴.故答案为a≤﹣2.三、解答题(共4小题,满分44分)15.已知=(1,2),=(﹣3,2),当k为何值时:(1)k+与﹣3垂直;(2)k+与﹣3平行,平行时它们是同向还是反向?【考点】平面向量数量积的运算;平行向量与共线向量.【分析】(1)由题意可得k+和﹣3的坐标,由k+与﹣3垂直可得它们的数量积等于0,由此解得k的值.(2)由k+与﹣3平行的性质,可得(k﹣3)(﹣4)﹣(2k+2)×10=0,解得k的值.再根据k+和﹣3的坐标,可得k+与﹣3方向相反.【解答】解:(1)由题意可得k+=(k﹣3,2k+2),﹣3=(10,﹣4),由k+与﹣3垂直可得(k﹣3,2k+2)•(10,﹣4)=10(k﹣3)+(2k+2)(﹣4)=0,解得k=19.(2)由k+与﹣3平行,可得(k﹣3)(﹣4)﹣(2k+2)×10=0,解得k=﹣,此时,k+=﹣+=(﹣,),﹣3=(10,﹣4),显然k+与﹣3方向相反.16.已知函数f(x)=sinxcosx﹣cos2x+.(1)求函数f(x)的周期;(2)求函数f(x)在[﹣,]的取值范围.【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法.【分析】(1)化简函数f(x)为Asin(ωx+φ)的形式,求出最小正周期;(2)由x∈[﹣,]求出相位的取值范围,再计算f(x)的取值范围即可.【解答】解:(1)函数f(x)=sinxcosx﹣cos2x+=sin2x﹣+=sin2x﹣cos2x=sin(2x﹣),…由T=得,最小正周期T=π;…(2)∵x∈[﹣,],∴﹣≤2x﹣≤π,…∴﹣1≤sin(2x﹣)≤1,…函数f(x)在[﹣,]的取值范围:[﹣1,1].17.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<).(1)若x∈[2,6]时,f(x)max=f(2)=2,f(x)min=f(6)=﹣2且f(x)在[2,6]上单调递减,求ω,φ的值;(2)若φ=且函数f(x)在[0,]上单调递增,求ω的取值范围;(3)若φ=0且函数f(x)=0在[﹣π,π]上恰有19个根,求ω的取值范围.【考点】正弦函数的单调性;三角函数的最值.【分析】(1)根据正弦型函数f(x)的图象与性质,结合题意求出周期T,即可得出ω的值,再根据f(x)的最值求出φ的值;(2)根据φ=时函数f(x)在[0,]上单调递增,列出不等式求出ω的取值范围;(3)根据φ=0时f(x)为奇函数,结合正弦函数的图象与性质即可求出满足条件的ω的取值范围.【解答】解:(1)函数f(x)=2sin(ωx+φ)(ω>0,|φ|<),当x∈[2,6]时,f(x)max=f(2)=2,f(x)min=f(6)=﹣2,∴T=2(6﹣2)=8=,∴ω=,∴f(x)=2sin(x+φ);把(2,2)代入f(x)得2=2sin(+φ),∴cosφ=1;∵|φ|<,∴φ=0;(2)当φ=时,函数f(x)=2sin(ωx+)在[0,]上单调递增,∴≤ωx+≤ω+,∴ω+≤,解得ω≤1;又ω>0,∴ω的取值范围是(0,1];(3)当φ=0时,f(x)=2sinωx,∵f(x)为奇函数,要使f(x)=0在[﹣π,π]上恰有19个根,只需f(x)=0在(0,π]上恰有9个根,∴T≤π<5T,即•≤π<5•,解得9≤ω<10,即ω的取值范围是[9,10).18.如果f(x)是定义在R上的函数,且对任意的x∈R,均有f(﹣x)≠﹣f(x),则称该函数是“X﹣函数”.(Ⅰ)分别判断下列函数:①y=2x;②y=x+1;③y=x2+2x﹣3是否为“X﹣函数”?(直接写出结论)(Ⅱ)若函数f(x)=sinx+cosx+a是“X﹣函数”,求实数a的取值范围;(Ⅲ)已知f(x)=是“X﹣函数”,且在R上单调递增,求所有可能的集合A与B.【考点】函数单调性的判断与证明.【分析】(Ⅰ)根据“X﹣函数”的定义即可判断所给的3个函数是否为“X﹣函数”;(Ⅱ)由题意,对任意x∈R,f(﹣x)≠﹣f(x),利用不等式求出a的取值范围;(Ⅲ)(1)根据题意,判断对任意的x≠0,x与﹣x恰有一个属于A,另一个属于B;(2)用反证法说明(﹣∞,0)⊆B,(0,+∞)⊆A;(3)用反证法说明0∈A,即得A、B.【解答】解:(Ⅰ)①、②是“X﹣函数”,③不是“X﹣函数”;﹣﹣﹣﹣(说明:判断正确一个或两个函数给1分)(Ⅱ)由题意,对任意的x∈R,f(﹣x)≠﹣f(x),即f(﹣x)+f(x)≠0;因为f(x)=sinx+cosx+a,所以f(﹣x)=﹣sinx+cosx+a,故f(x)+f(﹣x)=2cosx+2a;由题意,对任意的x∈R,2cosx+2a≠0,即a≠﹣cosx;﹣﹣﹣又cosx∈[﹣1,1],所以实数a的取值范围为(﹣∞,﹣1)∪(1,+∞);﹣﹣﹣(Ⅲ)(1)对任意的x≠0,(i)若x∈A且﹣x∈A,则﹣x≠x,f(﹣x)=f(x),这与y=f(x)在R上单调递增矛盾,(舍去),(ii)若x∈B且﹣x∈B,则f(﹣x)=﹣x=﹣f(x),这与y=f(x)是“X﹣函数”矛盾,(舍去);此时,由y=f(x)的定义域为R,故对任意的x≠0,x与﹣x恰有一个属于A,另一个属于B;(2)假设存在x0<0,使得x0∈A,则由x0<,故f(x0)<f();(i)若∈A,则f()=+1<+1=f(x0),矛盾,(ii)若∈B,则f()=<0<+1=f(x0),矛盾;综上,对任意的x<0,x∉A,故x∈B,即(﹣∞,0)⊆B,则(0,+∞)⊆A;(3)假设0∈B,则f(﹣0)=﹣f(0)=0,矛盾,故0∈A;故A=[0,+∞),B=(﹣∞,0];经检验A=[0,+∞),B=(﹣∞,0),符合题意.﹣﹣﹣2018年9月28日。
2017-2018学年北京市101中学高一(上)期末数学试卷一、选择题(本大题共10小题,共50.0分)1.计算:sin2π3=()A. −√32B. √32C. √22D. −√22【答案】B【解析】解:sin2π3=sin(π−π3 )=sinπ3=√32.故选:B.把所求式子中的角2π3变形为π−π3,利用诱导公式sin(π−α)=sinα化简后,再利用特殊角的三角函数值即可求出值.此题考查了运用诱导公式化简求值,以及特殊角的三角函数值,熟练掌握诱导公式,灵活变换角度是解本题的关键.2.若0<a<1,则函数f(x)=a x+6的图象一定经过()A. 第一、二象限B. 第二、四象限C. 第一、二、四象限D. 第二、三、四象限【答案】A【解析】解:当0<a<1时,由于函数y=a x经过第一、第二象限,函数f(x)=a x+6的图象是把y=a x向上平移6个单位得到的,故函数f(x)的图象一定过第一、第二象限,故选:A.根据函数y=a x经过第一、第二象限,可得函数f(x)=a x+6的图象经过的象限.本题主要考查指数函数的单调性和特殊点,指数函数的图象特征,属于基础题.3.下列函数是奇函数且在定义域内是增函数的是()A. y=e xB. y=tanxC. y=lnxD. y=x3+x【答案】D【解析】解:根据题意,依次分析选项:对于A,y=e x为指数函数,不是奇函数,不符合题意;对于B,y=tanx为正切函数,在其定义域内不是增函数,不符合题意;对于C,y=lnx为对数函数,不是奇函数,不符合题意;对于D,y=x3+x,有f(−x)=−(x3+x)=−f(x),为奇函数,且其导数y′=3x2+1>0,在其在定义域内是增函数,符合题意;故选:D.根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性.4.已知函数g(x)=f(x)−x,若f(x)是偶函数,且f(2)=1,则g(−2)=()A. 1B. 2C. 3D. 4【答案】C 【解析】解:∵函数g(x)=f(x)−x,f(x)是偶函数,若f(2)=1,则f(−2)=1,g(−2)=f(−2)+2=3,故选:C.由已知可得f(−2)=1,代入可得答案.本题考查的知识点是函数的奇偶性,函数求值,难度不大,属于基础题.5.若向量a⃗,b⃗ 满足|a⃗+b⃗ |=|a⃗−b⃗ |=√m,则a⃗⋅b⃗ =()A. 0B. mC. −mD. m2【答案】A【解析】解:∵向量a⃗,b⃗ 满足|a⃗+b⃗ |=|a⃗−b⃗ |=√m,∴|a⃗+b⃗ |2=|a⃗−b⃗ |2,∴a⃗2+2a⃗⋅b⃗ +b⃗ 2=a⃗2−2a⃗⋅b⃗ +b⃗ 2,∴a⃗⋅b⃗ =0.故选:A.推导出|a⃗+b⃗ |2=|a⃗−b⃗ |2,由此能求出a⃗⋅b⃗ =0.本题考查向量的数量积的求法,考查向量的数量积公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.6.不等式3 −x2+6>3x的解集是()A. (−3,2)B. (−2,3)C. (−∞,−3)∪(2,+∞)D. (−∞,−2)∪(3,+∞)【答案】A【解析】解:不等式3 −x2+6>3x等价于−x2+6>x,∴x2+x−6<0,−3<x<2,∴不等式的解集是(−3,2).故选:A.根据指数函数的单调性把不等式化为一元二次不等式,再求解即可.本题考查了可化为一元二次不等式的指数不等式解法问题,是基础题.7.函数y=ln(−x2+2x+3)的减区间是()A. (−1,1]B. [1,3)C. (−∞,1]D. [1,+∞)【答案】B【解析】解:令t=−x2+2x+3>0,求得−1<x<3,故函数的定义域为(−1,3),且y=lnt,故本题即求函数t在定义域内的减区间.再利用二次函数的性质求得t=−(x−1)2+4在定义域内的减区间为[1,3),故选:B.令t=−x2+2x+3>0,求得函数的定义域,本题即求函数t在定义域内的减区间,再利用二次函数的性质求得t=−(x−2)2+9在定义域内的减区间.本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于基础题.8.已知函数y=Asin(ωx+φ)+B(A>0,ω>0,|φ|<π2)的周期为T,在一个周期内的图象如图所示,则正确的结论是()A. A=3,T=2πB. B=−1,ω=2C. T =4π,φ=−π6 D. A =3,φ=π6【答案】C【解析】解:由图可得:{−A +B =−4A+B=2⇒{B =−1A=3T2=4π3−(−2π3)=2π⇒T =4π,ω=2πT=2π4π=12,12×4π3+ϕ=π2⇒ϕ=−π6.故选:C .从图象可得最大值和最小值,相邻的最大值与最小值的横坐标之差的绝对值是半个周期,可求ω,由最值求ϕ. 本题很好的考查了由函数y =Asin(ωx +ϕ)+B 的部分图象求其解析式.9. 某学生在期中考试中,数学成绩较好,英语成绩较差,为了在后半学期的月考和期末这两次考试中提高英语成绩,他决定重点加强英语学习,结果两次考试中英语成绩每次都比上次提高了10%,但数学成绩每次都比上次降低了10%,期末时这两科分值恰好均为m 分,则这名学生这两科的期末总成绩和期中比,结果( ) A. 提高了 B. 降低了 C. 不提不降(相同) D. 是否提高与m 值有关系 【答案】B【解析】解:设期中考试英语成绩为a ,数学成绩为b ,则(1+10%)2a =m ,(1−10%)2b =m , 所以a =m1.21,b =m0.81,则a +b =m1.21+m0.81≈2.06m >2m ,所以总成绩比期中成绩降低了. 故选:B .本题主要考查函数模型及其应用.本题考查了归纳推理的应用,和计算能力,属于比较基础的题目.10. 已知菱形ABCD 的边长为2,∠BAD =120∘,点E ,F 分别在边BC ,DC 上,BEBC =λ,DFDC =μ.若AE ⃗⃗⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ =1,CE ⃗⃗⃗⃗⃗ ⋅CF ⃗⃗⃗⃗⃗ =−23,则λ+μ=( )A. 12B. 23C. 34D. 56【答案】D【解析】解:由题意可得AE ⃗⃗⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ )⋅(AD ⃗⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ⋅DF ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ ⋅AD⃗⃗⃗⃗⃗⃗ +BE ⋅DF ⃗⃗⃗⃗⃗ =2×2×cos120∘+AB ⃗⃗⃗⃗⃗ ⋅μAB ⃗⃗⃗⃗⃗ +λAD ⃗⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ +λAD ⃗⃗⃗⃗⃗⃗ ⋅μAB ⃗⃗⃗⃗⃗ =−2+4μ+4λ+λμ×2×2×cos120∘=4λ+4μ−2λμ−2=1, ∴4λ+4μ−2λμ=3①.CE⃗⃗⃗⃗⃗ ⋅CF ⃗⃗⃗⃗⃗ ⋅=−EC ⃗⃗⃗⃗⃗ −⋅(−FC ⃗⃗⃗⃗⃗ )=EC ⃗⃗⃗⃗⃗ ⋅FC ⃗⃗⃗⃗⃗ =(1−λ)BC ⃗⃗⃗⃗⃗ ⋅(1−μ)DC ⃗⃗⃗⃗⃗ =(1−λ)AD ⃗⃗⃗⃗⃗⃗ ⋅(1−μ)AB ⃗⃗⃗⃗⃗ =(1−λ)(1−μ)×2×2×cos120∘=(1−λ−μ+λμ)(−2)=−23, 即−λ−μ+λμ=−②. 由①②求得λ+μ=56,故选:D .利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义由AE ⃗⃗⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ =1,求得4λ+4μ−2λμ=3①;再由CE ⃗⃗⃗⃗⃗ ⋅CF ⃗⃗⃗⃗⃗ =−23,求得−λ−μ+λμ=−23②.结合①②求得λ+μ的值. 本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义,属于中档题.二、填空题(本大题共6小题,共30.0分) 11. 计算:2 14×80.25+(−76)0+3log 32=______. 【答案】5【解析】解:2 14×80.25+(−76)0+3log 32=(2×8) 14+1+2=2+1+2=5.故答案为:5.利用指数、对数的性质、运算法则直接求解.本题考查指数式、对数式化简求值,考查指数、对数的性质、运算法则等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.12. 要得到y =sin(2x −π4)的图象,只需将函数y =sin2x 的图象至少向右平移______个单位. 【答案】π8【解析】解:要得到y =sin(2x −π4)的图象,只需将函数y =sin2x 的图象至少向右平移π8个单位, 故答案为:π8.根据函数y =Asin(ωx +φ)的图象变换规律,得出结论.本题主要考查函数y =Asin(ωx +φ)的图象变换规律,属于基础题.13. 函数y =cos 2x +3cosx +2的最小值为______. 【答案】0【解析】解:函数y =cos 2x +3cosx +2, =(cosx +32)2−14.当x =−1时,y min =(−1+32)2−14=0. 故函数的最小值为0. 故答案为:0首先通过函数的关系式的恒等变换,进一步利用函数的性质求出结果. 本题考查的知识要点:函数的关系式的恒等变换,三角函数的性质的应用.14. 已知向量a ⃗ ,b ⃗ 满足|a ⃗ |=2,|b ⃗ |=√3,a ⃗ 与b ⃗ 的夹角为5π6,a ⃗ ⊥(a ⃗ +λb ⃗ ),则实数λ=______.【答案】43【解析】解:向量a ⃗ ,b ⃗ 满足|a ⃗ |=2,|b ⃗ |=√3,a ⃗ 与b ⃗ 的夹角为5π6,则a ⃗ ⋅b ⃗ =2⋅√3⋅(−√32)=−3, 由于a ⃗ ⊥(a ⃗ +λb ⃗ ), 则a ⃗ ⋅(a ⃗ +λb ⃗ )=0, 所以:4−3λ=0, 解得λ=43. 故答案为:43.直接利用向量的数量积和夹角公式求出结果. 本题考查的知识要点:向量的数量积的应用.15. 已知函数f(x)={−x +4,x ≤3log 13x,x >3,定义函数g(x)=f(x)−k ,若函数g(x)无零点,则实数k 的取值范围为______.【答案】[−1,1)【解析】解:函数f(x)={−x +4,x ≤3log 13x,x >3,可得x >3时,f(x)=log 13x 递减, 可得f(x)<−1;当x ≤3时,f(x)=−x +4递减,可得f(x)≥1, 即有f(x)的值域为(−∞,−1)∪[1,+∞), 由函数g(x)=f(x)−k ,若函数g(x)无零点, 则f(x)−k =0无解,即f(x)=k 无解, 则k 的范围是[−1,1). 故答案为:[−1,1).运用一次函数和对数函数的单调性,可得f(x)的值域,由题意可得f(x)=k 无解,可得k 的范围.本题考查函数方程的转化思想和函数零点问题解法,注意运用对数函数和一次函数的单调性,考查运算能力,属于基础题.16. 已知数集X ={x 1,x 2,…,x n }(其中x i >0,i =1,2,…,n ,n ≥3),若对任意的x k ∈X(k =1,2,…n),都存在x i ,x j ∈X(x i ≠x j ),使得下列三组向量中恰有一组共线: ①向量(x i ,x k )与向量(x k ,x j ); ②向量(x i ,x j )与向量(x j ,x k );③向量(x k ,x i )与向量(x i ,x j ),则称X 具有性质P ,例如{1,2,4}具有性质P . (1)若{1,3,x}具有性质P ,则x 的取值为______(2)若数集{1,3,x 1,x 2}具有性质P ,则x 1+x 2的最大值与最小值之积为______. 【答案】13,√3,91003【解析】解:(1)由题意可得:(1,3)与(3,x);(1,x)与(x,3);(3,1)与(1,x)中恰有一组共线,当(1,3)与(3,x)共线时,可得x =9,此时另外两组不共线,符合题意, 当(1,x)与(x,3)共线时,可得x =√3,此时另外两组不共线,符合题意, 当(3,1)与(1,x)共线时,可得x =13,此时另外两组不共线,符合题意, 故x 的取值为:13,√3,9;(2)由(1)的求解方法可得x 1=13,√3,9, 当x 1=13时,由数集{1,3,13,x 2}具有性质P ,①若(1,3)与(3,x 2);(1,x 2)与(x 2,3);(3,1)与(1,x 2)中恰有一组共线,可得x 2=9,√3;②若(1,13)与(13,x 2);(1,x 2)与(x 2,13);(13,1)与(1,x 2)中恰有一组共线,可得x 2=√33,19;③若(3,13)与(13,x 2);(3,x 2)与(x 2,13);(13,3)与(3,x 2)中恰有一组共线,可得x 2=127,27;故{1,3,13,x 2}具有性质P 可得x 2=127,19,√33,√3,9,27;同理当x 1=√3时,{1,3,√3,x 2}具有性质P 可得x 2=13,√33,√34,√274,3√3,9; 同理当x 1=9时,可得x 2=19,13,√33,√3,3√3,27,81;则x 1+x 2的最大值为90,最小值为13+127=1027, 故x 1+x 2的最大值与最小值之积为90×1027=1003.故答案为:(1)13,√3,9;(2)1003.(1)由题意可得:(1,3)与(3,x);(1,x)与(x,3);(3,1)与(1,x)中恰有一组共线,分别求出相应的x 的值即可;(2)由(1)知,可得x 1=13,√3,9,再利用新定义验证,得到{1,3,13,x 2}具有性质P 时的x 2=127,19,√33,√3,9,27,同理分别得到{1,3,√3,x 2}以及{1,3,9,x 2}具有性质P 时的x 2的值,即可得到x 1+x 2的最大值与最小值之积. 本题考查新定义,考查平面向量共线的运用,考查学生分析解决问题的能力,难度较大.三、解答题(本大题共4小题,共40.0分) 17. 已知函数f(x)=2sin(x +π6).(I)若点P(1,−√3)在角α的终边上,求:cosα和f(α−π6)的值; (II)若x ∈[−π3,π2],求f(x)的值域. 【答案】解:(I)点P(1,−√3)在角α的终边上, ∴cosα=22=12. f(α−π6)=2sinα=√x 2+y2=−√32. (II)由x ∈[−π3,π2], 那么:x +π6∈[−π6,2π3].∴−12≤sin(x +π6)≤1. 故得f(x)的值域为[−1,2].【解析】(I)根据三角函数的定义,即可求解cosα,f(α−π6)的值; (II)由x ∈[−π3,π2],结合三角函数的性质可得f(x)的值域.本题考查三角函数的定义和函数的性质的应用,难度不大,属于基础题.18. 设函数f(x)的定义域为R +,且满足条件f(4)=1,对任意x 1,x 2∈R ﹢,有f(x 1⋅x 2)=f(x 1)+f(x 2),且当x 1≠x 2时,有f(x 2)−f(x 1)x 2−x 1>0.(1)求f(1)的值;(2)如果f(x +6)>2,求x 的取值范围.【答案】解:(1)由f(x 1⋅x 2)=f(x 1)+f(x 2),可得f(1)=f(1×1)=f(1)+f(1),故f(1)=0. (2)由条件可得f(16)=f(4)+f(4)=2,由f(x 2)−f(x 1)x 2−x 1>0,可得函数f(x)在定义域R 上是增函数,再根据f(x +6)>2,可得f(x +6)>f(16),∴x +6>16,x >10.【解析】(1)由f(x 1⋅x 2)=f(x 1)+f(x 2),可得f(1)=f(1)+f(1),由此求得f(1)的值. (2)由条件可得f(16)=2,再根据函数f(x)在定义域R 上是增函数以及f(x +6)>2,可得x +6>16,由此求得x 的值. 本题主要考查函数的单调性的判断,求函数的值,利用函数的单调性解不等式,属于基础题.19. 在平面直角坐标系中,O 为坐标原点,A 、B 、C 三点满足OC ⃗⃗⃗⃗⃗ =13OA ⃗⃗⃗⃗⃗ +23OB ⃗⃗⃗⃗⃗⃗ . (1)求证:A 、B 、C 三点共线;(2)已知A(1,cosx)、B(1+sinx,cosx),x ∈[0,π2],f(x)=OA ⃗⃗⃗⃗⃗⋅OC ⃗⃗⃗⃗⃗ +(2m +13)|AB ⃗⃗⃗⃗⃗ |+m 2的最小值为5,求实数m 的值.【答案】解:(1)∵AC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =13OA ⃗⃗⃗⃗⃗ +23OB ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =23(OB ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=23AB ⃗⃗⃗⃗⃗ ∴AC ⃗⃗⃗⃗⃗ //AB ⃗⃗⃗⃗⃗ ,又AC ⃗⃗⃗⃗⃗ 与AB ⃗⃗⃗⃗⃗ 有公共点A ,故A 、B 、C 三点共线. (2)∵OA⃗⃗⃗⃗⃗ =(1,cosx),OB ⃗⃗⃗⃗⃗⃗ =(1+sinx,cosx), ∴OC ⃗⃗⃗⃗⃗ =13OA ⃗⃗⃗⃗⃗ +23OB ⃗⃗⃗⃗⃗⃗ =(1+23sinx,cosx),AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(sinx,0), 故 OA ⃗⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ =1+23sinx +cos 2x ,|AB ⃗⃗⃗⃗⃗ |=√sin 2x =sinx ,(x ∈[0,π2]). 从而f(x)=OA ⃗⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ +(2m +13)|AB ⃗⃗⃗⃗⃗ |+m 2 =1+23sinx +cos 2x +(2m +13)sinx +m 2=cos 2x +(2m +1)sinx +1+m 2 =−sin 2x +(2m +1)sinx +2+m 2=−(sinx −2m+12)2+2m 2+m +94,关于sinx 的二次函数的对称轴为sinx =2m+12,∵x ∈[0,π2],∴sinx ∈[0,1],又区间[0,1]的中点为12.①当2m+12≤12,即m ≤0时,当sinx =1时,f(x)min =m 2+2m +2.由f(x)min =5得m =−3或m =1,又m ≤0,∴m =−3; ②当2m+12>12,即m >0时,当sinx =0时,f(x)min =2+m 2, 由f(x)min =5得m =±√3,又m >0,∴m =√3.综上所述:m 的值为−3或√3.【解析】(1)利用向量共线定理证明AC ⃗⃗⃗⃗⃗ //AB ⃗⃗⃗⃗⃗ 即可;(2)利用数量积运算和二次函数的单调性即可得出.本题考查了向量共线定理、数量积运算、二次函数的单调性,考查了推理能力和计算能力,属于中档题.20. 已知函数f(x)的图象在[a,b]上连续不断.定义:f 1(x)=min{f(t)|a ≤t ≤x}(x ∈[a,b]), f 2(x)=max{f(t)|a ≤t ≤x}(x ∈[a,b]).其中,min{f(x)|x ∈D}表示函数在D 上的最小值, max{f(x)|x ∈D}表示函数在D 上的最大值.若存在最小正整数k ,使得f 2(x)−f 1(x)≤k(x −a)对任意的x ∈[a,b]成立,则称函数f(x)为[a,b]上的“k 阶收缩函数”.(I)若f(x)=sinx ,x ∈[−π2,π2],请直接写出f 1(x),f 2(x)的表达式;(II)已知函数f(x)=(x −1)2,x ∈[−1,4],试判断f(x)是否为[−1,4]上的“k 阶收缩函数”,如果是,求出对应的k ,如果不是,请说明理由.【答案】解:(Ⅰ)由题意可得,f 1(x)=−1,f 2(x)=sinx ,x ∈[−π2,π2]; (Ⅱ)函数f(x)=(x −1)2,x ∈[−1,4], 可得f 1(x)={0,1<x ≤4(x−1)2,−1≤x≤1, f 2(x)={(x −1)2,3<x ≤44,−1≤x≤3,若f(x)为[−1,4]上的“k 阶收缩函数,则f 2(x)−f 1(x)≤k(x +1)在[−1,4]上恒成立, 当−1≤x ≤1时,f 2(x)−f 1(x)=4−(x −1)2, 有4−(x −1)2≤k(x +1)在[−1,1]上恒成立, x =−1显然成立; 当−1<x ≤1时,k ≥4−(x−1)2x+1的最大值,由4−(x−1)2x+1=3−x ∈[2,4],可得k ≥4;当1<x ≤3时,f 2(x)−f 1(x)=4, 有4≤k(x +1)在(1,3]上恒成立, 即k ≥4x+1的最大值,可得k ≥2;当3<x ≤4时,f 2(x)−f 1(x)=(x −1)2. 有(x −1)2≤k(x +1)在(3,4]上恒成立,即k ≥(x−1)2x+1的最大值,由(x−1)2x+1=(x +1)+4x+1−4∈(1,95],可得k≥9,5综上可得k≥4,则存在k=4,f(x)为[−1,4]上的“4阶收缩函数”.【解析】(Ⅰ)利用新定义,代入计算,可得f1(x),f2(x)的表达式;(Ⅱ)运用新定义,求得f1(x),f2(x),可得f2(x)−f1(x),再由恒成立思想和参数分离,可得k的范围,即可判断存在k.本题考查新定义,考查导数知识的运用,考查学生对新问题的理解,考查学生的计算能力,属于难题.。
XXX2017-2018学年第一学期期末考试高一数学试卷XXX2017-2018学年第一学期期末考试高一年级数学试卷第I卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知向量a=(2,1),b=(λ−1,2),若a+b与a−b共线,则λ=()A.−2B.−1C.1D.2改写:向量a=(2,1),向量b=(λ-1,2),若a+b和a-b共线,则λ=() A。
-2 B。
-1 C。
1 D。
22.已知3sinα+4cosα=2,则1-sinαcosα-cos2α的值是() A。
- B。
C。
-2 D。
2改写:已知3sinα+4cosα=2,求1-sinαcosα-cos2α的值,答案为() A。
- B。
C。
-2 D。
23.已知在△ABC中,AB=AC=1,BC=3,则AB·AC=() A。
1/33 B。
- C。
-2 D。
-改写:在△ABC中,AB=AC=1,BC=3,求XXX的值,答案为() A。
1/33 B。
- C。
-2 D。
-4.在△ABC中,若AB2=AB·AC+BA·BC+CA·CB,则△ABC是() A.锐角三角形B.钝角三角形C.直角三角形D.不确定改写:在△ABC中,如果AB2=AB·AC+BA·BC+CA·CB,则△ABC是() A.锐角三角形B.钝角三角形C.直角三角形D.不确定5.已知△ABC中,内角A,B,C所对边的边长分别为a,b,c,且c=7/11,a+b=22/3,XXX-tanA-tanB=3,则△ABC的面积为() A。
3/33 B。
- C。
3 D。
33/2改写:已知△ABC中,内角A,B,C所对边的边长分别为a,b,c,且c=7/11,a+b=22/3,XXX-tanB=3,求△ABC的面积,答案为() A。
3/33 B。
- C。
北京市西城区2017 - 2018学年度第二学期期末考试高一数学试卷北京市西城区2017-2018学年度第二学期期末试卷高一数学2018.7 A卷 [立体几何初步与解析几何初步] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合要求的。
1.已知点 M(-1,2),N(3,0),则点 M 到点 N 的距离为()。
A) 2 (B) 4 (C) 5 (D) 2√52.直线 x-y-3=0 的倾斜角为()。
A) 45 (B) 60 (C) 120 (D) 1353.直线 y=2x-2 与直线 l 关于 y 轴对称,则直线 l 的方程为()。
A) y=-2x+2 (B) y=-2x-2 (C) y=2x+2 (D) y=1/x-14.已知圆 M: x^2+y^2=1 与圆 N: (x-2)^2+y^2=9,则两圆的位置关系是()。
A) 相交 (B) 相离 (C) 内切 (D) 外切5.设m,n 为两条不重合的直线,α,β 为两个不重合的平面,m,n 既不在α 内,也不在β 内。
则下列结论正确的是()。
A) 若m//α,n//α,则 m//n。
B) 若 m//n,n//α,则m//α。
C) 若 m⊥α,n⊥α,则 m⊥n。
D) 若 m⊥α,m⊥β,则α⊥β。
6.若方程 x^2+y^2-4x+2y+5k=0 表示圆,则实数 k 的取值范围是()。
A) (-∞,1) (B) (-∞,1] (C) [1,+∞) (D) R7.圆柱的侧面展开图是一个边长为 2 的正方形,那么这个圆柱的体积是()。
A) π (B) π/2 (C) 2π (D) π/28.方程 x=1-y^2 表示的图形是()。
A) 两个半圆 (B) 两个圆 (C) 圆 (D) 半圆9.如图,四棱锥 P-ABCD 的底面 ABCD 是梯形,XXX。
若平面 PAD 平面 PBC∥l,则()。
北京市西城区2017 —2018学年度第二学期期末试卷高一数学2018.7试卷满分:150分考试时间:120分钟A卷[立体几何初步与解析几何初步] 本卷满分:100分一项是符合要求的.关于y轴对称,则直线的方程为()二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上. 11.已知点(,2)A m -,(3,0)B ,若直线AB 的斜率为12,则m =_____. 12.若直线1:280l ax y +-=与直线2:0l x y -=平行,则a =______.13.已知某三棱柱的三视图如图所示,那么该三棱柱最大侧面的面积为______.14.已知直线y kx k =+过定点,则定点的坐标为______.15.在直三棱柱111ABC A B C -中,D 为1AA 中点,点P 在侧面11BCC B 上运动,当点P 满足 条件_______________时,1//A P 平面BCD . (答案不唯一,填一个满足题意的条件即可)16. 如图,矩形ABCD 中AB 边与x 轴重合,(2,2)C ,(1,2)D -. BC 反射到CD 上,再经CD 反射到AD 上点Q 处. ①若OP 的斜率为12,则点Q 的纵坐标为______; ②若点Q 恰为线段AD 中点,则OP 的斜率为______.A DA ′三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,PA ⊥平面ABCD ,且2P A A D ==,点E 为线段PD 的中点. (Ⅰ)求证://PB 平面AEC ; (Ⅱ)求证:AE ⊥平面PCD ; (Ⅲ)求三棱锥A PCE -的体积.18.(本小题满分12分)已知直线:8l y x =-+与x 轴相交于点A ,点B 坐标为(0,4)-,过点B 作直线l 的垂线,交直线l 于点C .记过A 、B 、C 三点的圆为圆M . (Ⅰ)求圆M 的方程;(Ⅱ)求过点C 与圆M 相交所得弦长为8的直线方程.19.(本小题满分12分)如图,已知正方体1111ABCD A B C D -的棱长为1,点E 是棱AB 上的动点,F 是棱1CC 上一点,1:1:2CF FC =. (Ⅰ)求证:111B D A F ⊥;(Ⅱ)若直线1A F ⊥平面11B D E ,试确定点E 的位置,并证明你的结论;(Ⅲ)设点P 在正方体的上底面1111A B C D 上运动,求总能使BP 与1A F 垂直的点P 所形成的轨迹的长度.(直接写出答案)ABCDPEB 卷 [学期综合]本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上. 1.在区间[2,4]-内随机选取一个实数x ,则[1,3]x ∈的概率为_____.2.如图所示,茎叶图记录了甲、乙两组各四名工人1天加工的零件数,且甲、乙两组工人平均每人加工零件的个数相同,则m =_____;甲、乙两组工人加工零件数方差较大的一组的方差为______.3.从1,2,3,4这四个数中一次随机选取两个数,所取两个数之和不小于5的概率为_____. 4.一艘货船以15km /h 的速度向东航行,货船在A 处看到一个灯塔P 在北偏东60方向上,行驶4小时后,货船到达B 处,此时看到灯塔P 在北偏东15方向上,这时船与灯塔的距离为_____km .5.在△ABC 中,角,,A B C 所对的边分别为,,a b c .已知△ABC 面积S 满足12S ≤≤,且1sin sin sin 8A B C =. 给出下列结论: ①16abc ≥; ②228a b ab +>; ③32ab <; 其中正确结论的序号是_____.(写出所有正确结论的序号)DBCA 1B 1C 1D 1A EF甲0 乙 9 8 1 9 2 1 2 0 0 m二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分8分)在某地区高二年级的一次英语口语测试中,随机抽取M 名同学的成绩,数据的分组统计表如下:(Ⅰ)求出表中,,,m n M N 的值;(Ⅱ)根据上表,请在答题纸中给出的坐标系中完整画出频率分布直方图;(Ⅲ)若该地区高二年级学生有5000人,假设同一组中的每个数据可用该组区间的中点值代替,试估计这次测试中该地区高二年级学生的平均分数及分数在区间(60,90]内的学生人数.7.(本小题满分10分)在△ABC 中,角,,A B C 所对的边分别为,,a b c.b =4B π=. (Ⅰ)若3a =,求sin A 及sin C 的值; (Ⅱ)若△ABC 的面积等于1,求a 的值.8.(本小题满分12分)已知圆22:(3)25C x y +-=与x 轴的负半轴相交于点M . (Ⅰ)求点M 的坐标及过点M 与圆C 相切的直线方程;(Ⅱ)一般把各边都和圆相切的三角形叫做圆的外切三角形.记圆C 的外切三角形为△DEF ,且(5,2)D --,(,2)(5)E t t ->.试用t 表示△DEF 的面积;(Ⅲ)过点M 作,MA MB 分别与圆相交于点,A B ,且直线,MA MB 关于x 轴对称,试问直线AB 的斜率是否为定值?若是,请求出这个值;若不是,请说明理由.北京市西城区2017— 2018学年度第二学期期末试卷高一数学参考答案及评分标准2018.7 A 卷[立体几何初步与解析几何初步] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.C2.A3. B4.C5.B6. A7. A8.D9.D 10.C.PC′B ′A′PC ′ B ′A ′P二、填空题:本大题共6小题,每小题4分,共24分. 11.1-12.2-13.14. (1,0)-15.P 是1CC 中点,等16.33,25注:第16题每空两分.三、解答题:本大题共3小题,共36分. 17.(本小题满分12分)(Ⅰ)证明:连结BD ,交AC 于点O ,连结OE . 因为O 是正方形ABCD 对角线交点,所以O 为BD 中点, 由已知E 为线段PD 的中点,所以//PB OE .…………………2分 又OE ⊂平面ACE ,PB ⊄平面ACE , 所以//PB 平面ACE .…………………5分(Ⅱ)证明:因为PA AD =,E 为线段PD 的中点, 所以AE PD ⊥,…………………6分 因为PA ⊥平面ABCD ,所以PA CD ⊥,…………………7分 在正方形ABCD 中,CD AD ⊥, 又PA AD A =I ,所以CD ⊥平面PAD ,…………………8分 又AE ⊂平面PAD ,所以CD AE ⊥,…………………9分 又PD CD D =I ,所以AE ⊥平面PCD ,…………………10分(Ⅲ)因为AE ⊥平面PCD ,所以三棱锥A PCE -的体积.13PCE V S AE =⋅V 11112232323PE CD AE =⨯⋅⋅=⨯. …………………12分18.(本小题满分12分) 解:(Ⅰ)由已知(8,0)A ,依题意,圆M 的圆周角90ACB ∠=,A BCDPEO所以过A 、B 、C 三点的圆M 即为以AB 为直径的圆.…………………3分 所以,圆M 的圆心为AB 的中点(4,2)-.因为AB =M的半径为5分所以圆M 的方程为22(4)(2)20x y -++=. …………………6分 (Ⅱ)因为所求直线与圆M 相交所得弦长为8,由垂径定理,圆M2.…………………7分 易知,直线6x =满足题意.…………………8分 由已知,直线:4AC y x =-,解4,8y x y x =-⎧⎨=-+⎩得点C 的坐标为(6,2)C . …………………9分 设斜率存在且满足题意的直线方程为2(6)y k x -=-,即620kx y k --+=. 则圆心(4,2)-到直线620kx y k --+==,……10分2=,解得34k =. …………………11分 所以,所求直线方程为6x =和34100x y --=. …………………12分19.(本小题满分12分)(Ⅰ)证明:连结11A C .1111A B C D 是正方形,所以1111B D A C ⊥. …………………1分在正方体1111ABCD A B C D -中,1CC ⊥平面1111A B C D , 所以111CC B D ⊥, …………………2分 又1111CC A C C =I ,所以11B D ⊥平面11A C C , …………………3分 因为1A F ⊂平面11A C C ,所以11B D ⊥1A F . …………………4分 (Ⅱ)当:1:2AE EB =时,直线1A F ⊥平面11D B E .…5分证明如下:过点F 在平面11BCC B 作//FG BC 交1BB 于点G , 连结1A G ,交1B E 于点H ,DBC A 1B 1C 1D 1AEF G H因为1:1:2CF FC =,所以1:1:2BG GB =,在11Rt A B G △与1Rt B BE △中,1B G BE =,111A B B B =, 所以111A B G B BE ≅△△,111B A G BB E ∠=∠.又111190B A G A GB ∠+∠=,所以11190BB E A GB ∠+∠=. 所以190B HG ∠=o ,11A G B E ⊥.…………………7分 在正方体1111ABCD A B C D -中,CB ⊥面11ABB A , 所以FG ⊥面11ABB A , 所以1FG B E ⊥, 又1A G FG G =I ,所以1B E ⊥面1A FG ,…………………8分 所以1B E ⊥1A F .又11B D ⊥1A F ,1111B D B E B =I ,所以直线1A F ⊥平面11B D E .…………………9分. …………………12分B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分. 1.13 2.1,2.5 3.234.②③. 注:第5题少选得2分,多选、错选不得分.第2题每空2分. 二、解答题:本大题共3小题,共30分. 6.(本小题满分8分) 解:(Ⅰ)1N =. 因为20.02M=,所以100M =. 从而100(23123815)30m =-++++=, 0.30mn M==.…………………4分 (Ⅱ)直方图如下:分数…………………6分(Ⅲ)平均分约为450.02550.04650.12750.38850.30950.1578.6⨯+⨯+⨯+⨯+⨯+⨯=.该地区高二年级同学分数在区间(60,90]内的人数约为5000(0.120.380.30)4000⨯++=(人). …………………8分7.(本小题满分10分)解:(Ⅰ)在△ABC 中,3a =,b 4B π=,sin sin a bA B=.所以sin sin4a A B b π==. …………………2分当A 为锐角时,cos A =sin sin()sin cos cos sin C A B A B A B =+=+…………………3分=…………………4分当A 为钝角时,cos A =,sin C =. …………………5分(Ⅱ)△ABC 的面积1sin 24ABC S ac ∆π==,1=. …………① …………………7分 在ABC ∆中,2222cos4b ac ac π=+-, …………………9分所以225a c =+. …………②由①得c =22854a a=+-, 所以42980a a -+=.解得1a =或a =. …………………10分8.(本小题满分12分)解:(Ⅰ)点M 的坐标为(4,0)-. …………………1分直线CM 的斜率3030(4)4CM k -==--,…………………2分 所以过点M 圆C 的切线斜率43k =-, 所以,过点M 的切线方程为40[(4)]3y x -=---,即43160x y ++=. …………3分 (Ⅱ)已知(5,2)D --,所以直线DF 方程为5x =-.设直线EF 的斜率为k ,则直线EF 方程为()2y k x t =--,即20kx y kt ---=.5=,所以22(25)100t k tk -+=,解得0k =(舍)或21025t k t -=-, …………………5分 所以直线EF 方程为210()225t y x t t -=---. 当5x =-时,210810(5)2525t t y t t t -+=---=--.…………………6分 所以810(5,)5t F t +--, 所以△DEF 的面积18105(5)(5)(2)255DEF t t t S t t t ∆++=⋅+⋅+=--,(5t >).…………7分 (Ⅲ)解法一(解析法):设点(,),(,)A A B B A x y B x y ,设直线MA 的方程为:4x my =-. 由224,(3)25x my x y =-⎧⎪⎨+-=⎪⎩得22(1)(86)0m y m y +-+=. 所以28601A m y m ++=+,2861A m y m +=+. …………8分 所以2861B m y m -+=+,…………………9分 所以2161A B m y y m -=+. 又直线MB 的方程为4x my =--,所以4A A x my =-,4B B x my =--,212()1A B A B A B m x x my my m y y m -=+=+=+.…………………11分所以直线AB 的斜率2216411231A B AB A B m y y m k m x x m -+===-+. 即直线AB 的斜率为定值,其值为43. …………………12分 注:其他解法相应给分.解法二(几何法):如图,设圆与x 轴的正半轴相交于点M '.由,MA MB 关于x 轴对称可知,AMM BMM ''∠=∠, 所以M '为»AB 的中点,连结CM ',则CM AB '⊥, 因为直线CM '的斜率303044CM k '-==--, 所以43AB k =. 即直线AB 的斜率为定值,其值为43. 附:B 卷5. 略解:因为1sin sin sin 8A B C =, 所以111sin sin sin 888ab bc ca A B C ab bc ca ⋅⋅=⨯⋅⋅; 所以222364a b c S =. 因为12S ≤≤,所以2221864a b c ≤≤,8abc ≤≤所以①不正确.因为22()8a b ab ab a b abc +=+>≥. 所以②正确. 因为1sin sin sin 8A B C =,所以1sin 8C >,所以111sin 282ab C ab >⨯, 所以16ab S <,所以32ab <.所以③正确.。
2017-2018学年北京市首师大附中高一(上)期末数学试卷一、选择题(本大题共8小题,共32.0分)1.已知集合A={1,3,5},B={x|(x-1)(x-3)=0},则A∩B=()A. B. C. D.2.=()A. B. C. D.3.若幂函数y=f(x)的图象经过点(-2,4),则在定义域内()A. 为增函数B. 为减函数C. 有最小值D. 有最大值4.下列函数为奇函数的是()A. B. ,C. D.5.如图,在平面内放置两个相同的三角板,其中∠A=30°,且B,C,D三点共线,则下列结论不成立的是()A. B.C. 与共线D.6.函数f(x)的图象如图所示,为了得到y=2sin x函数的图象,可以把函数f(x)的图象()A. 每个点的横坐标缩短到原来的纵坐标不变,再向左平移个单位B. 每个点的横坐标伸长到原来的2倍纵坐标不变,再向左平移个单位C. 先向左平移个单位,再把所得各点的横坐标伸长到原来的2倍纵坐标不变D. 先向左平移个单位,再把所得各点的横坐标缩短到原来的纵坐标不变7.已知,若实数a,b,c满足,且,实数满足,那么下列不等式中,一定成立的是A. B. C. D.8.如图,以AB为直径在正方形内部作半圆O,P为半圆上与A,B不重合的一动点,下面关于的说法正确的是()A. 无最大值,但有最小值B. 既有最大值,又有最小值C. 有最大值,但无最小值D. 既无最大值,又无最小值二、填空题(本大题共6小题,共24.0分)9.已知向量=(1,2),写出一个与共线的非零向量的坐标______.10.已知角θ的终边经过点(3,-4),则cosθ=______.11.已知向量,在边长为1 的正方形网格中的位置如图所示,则=______.12.函数,,<<(t>0)是区间(0,+∞)上的增函数,则t的取值范围是______.13.有关数据显示,中国快递行业产生的包装垃圾在2015年约为400万吨,2016年的年增长率为50%.有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从______年开始,快递行业产生的包装垃圾超过4000万吨.(参考数据:lg2≈0.3010,lg3≈0.4771)14.函数f(x)=sinωx在区间,上是增函数,则下列结论正确的是______(将所有符合题意的序号填在横线上)①函数f(x)=sinωx在区间,上是增函数;②满足条件的正整数ω的最大值为3;③.三、解答题(本大题共4小题,共44.0分)15.已知向量=(sin x,1),=(1,k),f(x)=.(Ⅰ)若关于x的方程f(x)=1有解,求实数k的取值范围;(Ⅱ)若且α(0,π),求tanα.16.已知二次函数f(x)=x2+bx+c满足f(1)=f(3)=-3.(Ⅰ)求b,c的值;(Ⅱ)若函数g(x)是奇函数,当x≥0时,g(x)=f(x),(ⅰ)直接写出g(x)的单调递减区间:______;(ⅱ)若g(a)>a,求a的取值范围.17.某同学用“五点法”画函数f(x)=A sin(ωx+φ)>,>,<在某一个周期内的图象时,列表并填(Ⅰ)请将上表数据补充完整,函数()的解析式为()(直接写出结果即可);(Ⅱ)求函数f(x)的单调递增区间;(Ⅲ)求函数f(x)在区间,上的最大值和最小值.18.定义:若函数f(x)的定义域为R,且存在非零常数T,对任意x R,f(x+T)=f(x)+T恒成立,则称f(x)为线周期函数,T为f(x)的线周期.(Ⅰ)下列函数,①y=2x,②y=log2x,③y=[x],(其中[x]表示不超过x的最大整数),是线周期函数的是______ (直接填写序号);(Ⅱ)若g(x)为线周期函数,其线周期为T,求证:函数G(x)=g(x)-x为线周期函数;(Ⅲ)若φ(x)=sin x+kx为线周期函数,求k的值.答案和解析1.【答案】D【解析】解:∵B={x|(x-1)(x-3)=0}={1,3},∴A∩B={1,3},故选:D.根据集合的交集的定义进行计算即可.本题主要考查集合的基本运算,比较基础.2.【答案】A【解析】解:=-sin=-.故选:A.利用诱导公式化简求解即可.本题考查诱导公式的应用,特殊角的三角函数取值,是基本知识的考查.3.【答案】C【解析】【分析】本题主要考查幂函数的解析式和性质,利用待定系数法是解决本题的关键.利用待定系数法求出函数的解析式,结合幂函数的性质进行判断即可.【解答】解:设幂函数f(x)=xα,由f(-2)=4,得(-2)α=4=(-2)2,在α=2,即f(x)=x2,则在定义域内有最小值0,故选C.4.【答案】C【解析】解:y=2x为指数函数,没有奇偶性;y=sinx,x[0,2π],定义域不关于原点对称,没有奇偶性;y=x3定义域为R,f(-x)=-f(x),为奇函数;y=lg|x|的定义域为{x|x≠0},且f(-x)=f(x),为偶函数.故选:C.运用奇偶性的定义和常见函数的奇偶性,即可得到结论.本题考查函数的奇偶性的判断,注意运用定义法和常见函数的奇偶性,属于基础题.5.【答案】D【解析】解:设BC=DE=m,∵∠A=30°,且B,C,D三点共线,则CD═AB=,AC=EC=2m,∴∠ACB=∠CED=60°,∠ACE=90°,∴,,故A、B、C成立;故选:D.根据直角三角形的性质、向量的线性运算,即可判定.本题考查了直角三角形的性质,向量线性运算,属于中档题.6.【答案】C【解析】解:根据函数f(x)的图象,设f(x)=Asin(ωx+φ),可得A=2,=-,ω=2.再根据五点法作图可得2×+φ=0,φ=-,f(x)=2sin(2x-),故可以把函数f(x)的图象先向左平移个单位,得到y=2sin(2x+-)=2sin2x的图象,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),即可得到y=2sinx函数的图象,故选:C.由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得f(x)的解析式,再利用y=Asin (ωx+φ)的图象变换规律,得出结论.本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值.y=Asin(ωx+φ)的图象变换规律,属于基础题.7.【答案】B【解析】解:∵f(x)=log2x-()x在(0,+∞)上是增函数,0<a<b<c,且f(a)f(b)f(c)<0,∴f(a)、f(b)、f(c)中一项为负,两项为正数;或者三项均为负数;即:f(a)<0,0<f(b)<f(c);或f(a)<f(b)<f(c)<0;由于实数x0是函数y=f(x)的一个零点,当f(a)<0,0<f(b)<f(c)时,a<x0<b,当f(a)<f(b)<f(c)<0时,x0>a,故选:B.结合f(x0)=0,可得当x<x0时,f(x)>0,当x>x0时,f(x)<0,由此可得x0>a一定成立.本题考查函数零点判定定理,考查函数单调性的性质,是中档题.8.【答案】A【解析】解:设正方形的边长为2,如图建立平面直角坐标系,则D(-1,2),P(cosθ,sinθ),(其中0<θ<π)C(1,2)+=2+=(-2cosθ,-2sinθ)+(-1-cosθ,2-sinθ)+(1-cosθ,2-sinθ)=(-4cosθ,4-4sinθ)∴==∵cosθ(0,1],∴[0,4)故选:A设正方形的边长为2,如图建立平面直角坐标系,则D(-1,2),P(cosθ,sinθ),(其中0<θ<π)=2+=(-2cosθ,-2sinθ)+(-1-cosθ,2-sinθ)=(-1-3cosθ,-3sinθ)即可求得.本题考查了向量的坐标运算,属于中档题.9.【答案】(2,4)【解析】解:向量=(1,2),与共线的非零向量的坐标纵坐标为横坐标2倍,例如(2,4).故答案为:(2,4).答案不唯一,纵坐标为横坐标2倍即可.本题考查向量的坐标的求法,考查共线向量等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.10.【答案】【解析】解:∵角θ的终边经过点(3,-4),∴x=3,y=-4,r=5,则cosθ==.故答案为:.根据任意角的三角函数的定义,求得cosθ的值.本题主要考查任意角的三角函数的定义,属于基础题.11.【答案】3【解析】解:由题意可知:=(3,0),=(1,1),则=3×1+1×0=3.故答案为:3.向量坐标,利用向量的数量积求解即可.本题考查平面向量的数量积是定义域,平面向量的坐标运算,考查计算能力.12.【答案】[1,+∞)【解析】解:函数(t>0)的图象如图:函数(t>0)是区间(0,+∞)上的增函数,所以t≥1.故答案为:[1,+∞).画出分段函数的图象,即可判断t的取值范围.本题考查函数的图象的画法,分段函数的应用,函数的单调性的应用,考查数形结合以及计算能力.13.【答案】2021【解析】解:设快递行业产生的包装垃圾为y万吨,n表示从2015年开始增加的年份的数量,由题意可得y=400×(1+50%)n=400×()n,由于第n年快递行业产生的包装垃圾超过4000万吨,∴4000=400×()n,∴()n=10,两边取对数可得n(lg3-lg2)=1,∴n(0.4771-0.3010)=1,解得0.176n=1,解得n≈6,∴从2015+6=2021年开始,快递行业产生的包装垃圾超过4000万吨,故答案为:2021.快递行业产生的包装垃圾为y万吨,n表示从2015年开始增加的年份的数量,由题意可得y=400×(1+50%)n=400×()n,代值计算即可求出答案.本题考查了对数的运算和性质在实际生活中的应用,属于中档题.14.【答案】①②③【解析】解:函数f(x)=sinωx在区间上是增函数,由f(-x)=sin(-ωx)=-sinωx=-f(x),可得f(x)为奇函数,则①函数f(x)=sinωx在区间上是增函数,正确;由ω≤,可得∅≤3,即有满足条件的正整数ω的最大值为3,故②正确;由于+==2×,由题意可得对称轴x≥,即有f()≤f(),故③正确.故答案为:①②③.运用函数的奇偶性和单调性可判断①;由单调性可得ω≤,即可判断②;运用正弦函数的对称性,即可判断③.本题考查正弦函数的图象和性质,主要是对称性和单调性的运用,考查运算能力,属于中档题.15.【答案】解:(Ⅰ)∵向量a=(sin x,1),b=(1,k),f(x)=,∴f(x)==sin x+k.--------------------------(2分)关于x的方程f(x)=1有解,即关于x的方程sin x=1-k有解.--------------------------(3分)∵sin x[-1,1],∴当1-k[-1,1]时,方程有解.--------------------------(4分)则实数k的取值范围为[0,2].--------------------------(5分)(Ⅱ)因为,所以,即.--------------------------(6分)当,时,,.---------------------(8分)当,时,,.-------------------------(10分)【解析】(Ⅰ)利用向量的数量积化简函数的解析式,利用三角函数的有界性,方程f(x)=1有解,即可求实数k 的取值范围;(Ⅱ)利用方程求出正弦函数的值,利用同角三角函数基本关系式求解即可.本题考查向量的数量积的应用,三角函数的化简求值,考查转化思想以及计算能力.16.【答案】[-2,2]【解析】解:(Ⅰ)二次函数f(x)=x2+bx+c满足f(1)=f(3)=-3,∴解的b=-4;c=0.(Ⅱ)由(Ⅰ)可得f(x)=x2-4x,∵函数g(x)是奇函数,∴g(-x)=-g(x),假设x<0,则-x>0,则g(-x)=f(-x)=x2+4x,∴g(x)=-x2-4x,∴g(x)=,(i)g(x)的单调减区间为[-2,2].故答案为:[-2,2].(ⅱ)若g(a)>a,则或解得a>5或-5<a<0.综上,a的取值范围为a>5或-5<a<0.(Ⅰ)代值计算即可,(Ⅱ)先根据函数的奇偶性求出g(x)的解析式,(i)根据函数的解析式和二次函数的性质即可求出函数的单调减区间,(ii)根据函数单调性性质可得或解得即可本题考查了二次函数的性质和函数的奇偶性的性质,属于中档题17.【答案】f(x)=2sin(2x+)【解析】根据表格可得=-,∴ω=2.再根据五点法作图可得2×+φ=,∴φ=,故函数的解析式为:.(Ⅱ)令2kπ-≤2x+≤2kπ+,求得kπ-≤x≤kπ+,可得函数f(x)的单调递增区间为,k Z.(Ⅲ)因为,所以,故有.所以,当即时,f(x)在区间上的最小值为-2.当即x=0时,f(x)在区间上的最大值为1.(Ⅰ)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(Ⅱ)利用正弦函数的单调性,求得函数f(x)的单调递增区间.(Ⅲ)利用正弦函数的定义域、值域,求得函数f(x)在区间上的最大值和最小值.本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,正弦函数的单调性以及定义域、值域,属于基础题.18.【答案】③【解析】解:(Ⅰ)对于①f(x+T)=2x+T=2x2T=f(x)2T,故不是线周期函数对于②f(x+T)=log2(x+T)≠f(x)+T,故不是线周期函数对于③f(x+T)=[x+T]=[x]+T=f(x)+T,故是线周期函数故答案为:③(Ⅱ)证明:∵g(x)为线周期函数,其线周期为T,∴存在非零常数T,对任意x R,g(x+T)=g(x)+T恒成立.∵G(x)=g(x)-x,∴G(x+T)=g(x+T)-(x+T)=g(x)+T-(x+T)=g(x)-x=G(x).∴G(x)=g(x)-x为周期函数.(Ⅲ)∵φ(x)=sinx+kx为线周期函数,∴存在非零常数T,对任意x R,sin(x+T)+k(x+T)=sinx+kx+T.∴sin(x+T)+kT=sinx+T.令x=0,得sinT+kT=T;令x=π,得-sinT+kT=T;①②两式相加,得2kT=2T.∵T≠0,∴k=1检验:当k=1时,φ(x)=sinx+x.存在非零常数2π,对任意x R,φ(x+2π)=sin(x+2π)+x+2π=sinx+x+2π=φ(x)+2π,∴φ(x)=sinx+x为线周期函数.综上,k=1.(Ⅰ)根据新定义判断即可,(Ⅱ)根据新定义证明即可,(Ⅲ)φ(x)=sinx+kx为线周期函数,可得存在非零常数T,对任意x R,sin(x+T)+k(x+T)=sinx+kx+T.即可得到2kT=2T,解得验证即可.本题考查了学生对新定义的接受与应用能力,同时考查了恒成立问题,属于中档题.。
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(1,2)M -,(3,0)N 两点之间的距离为()(A )(B )4(C )(D )52. 直线0x y --=的倾斜角为()(A )45o(B )60(C )120(D )135o3. 直线22y x =-与直线l 关于y 轴对称,则直线l 的方程为()(A )22y x =-+(B )22y x =--(C )22y x =+(D )112y x =- 4.已知圆22:1M x y +=与圆22:(2)9N x y -+=,则两圆的位置关系是()(A )相交(B )相离(C )内切(D )外切5.设,m n 为两条不重合的直线,,αβ为两个不重合的平面,,m n 既不在α内,也不在β内. 则下列结论正确的是()(A )若//m α,//n α,则//m n(B )若//m n ,//n α,则//m α(C )若m α⊥,n α⊥,则m n ⊥(D )若m α⊥,m β⊥,则αβ⊥6. 若方程224250x y x y k +-++=表示圆,则实数k 的取值范围是()(A )(,1)-∞(B )(,1]-∞(C )[1,)+∞(D )R7. 圆柱的侧面展开图是一个边长为2的正方形,那么这个圆柱的体积是() (A )2π(B )1π(C )22π(D )21π8.方程x =(A )两个半圆(B )两个圆(C )圆(D )半圆9.如图,四棱锥P ABCD -的底面ABCD 是梯形,//AB CD ,若平面PAD I 平面PBC l =,则()(A )//l CD (B )//l BC(C )l 与直线AB 相交(D )l 与直线AD 相交10.已知,a b 是异面直线. 给出下列结论:① 一定存在平面α,使直线b ⊥平面α,直线//a 平面α;② 一定存在平面α,使直线//b 平面α,直线//a 平面α;③ 一定存在无数个平面α,使直线b 与平面α交于一个定点,且直线//a 平面α. 则所有正确结论的序号为()(A )①②(B )②(C )②③(D )③二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上. 11.已知点(,2)A m -,(3,0)B ,若直线AB 的斜率为12,则m =_____.12.若直线1:280l ax y +-=与直线2:0l x y -=平行,则a =______.13.已知某三棱柱的三视图如图所示,那么该三棱柱最大侧面的面积为______.14.已知直线y kx k =+过定点,则定点的坐标为______.15.在直三棱柱111A B C A B C -中,D 为1AA 中点,点P 在侧面11BCC B 上运动,当点P 满足条件_______________时,1//A P 平面BCD .(答案不唯一,填一个满足题意的条件即可)16. 如图,矩形ABCD 中AB 边与x 轴重合,(2,2)C ,(1,2)D -. 从原点O 射出的光线OP 经BC 反射到CD 上,再经CD 反射到AD 上点Q 处.①若OP 的斜率为12,则点Q 的纵坐标为______;②若点Q 恰为线段AD 中点,则OP 的斜率为______.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,PA ⊥平面ABCD ,且2PA AD ==,点E 为线段PD 的中点.(Ⅰ)求证://PB 平面AEC ;(Ⅱ)求证:AE ⊥平面PCD ;(Ⅲ)求三棱锥A PCE -的体积.18.(本小题满分12分)已知直线:8l y x =-+与x 轴相交于点A ,点B 坐标为(0,4)-,过点B 作直线l 的垂线,交直线l 于点C .记过A 、B 、C 三点的圆为圆M .(Ⅰ)求圆M 的方程;(Ⅱ)求过点C 与圆M 相交所得弦长为8的直线方程.19.(本小题满分12分)如图,已知正方体1111ABCD A B C D -的棱长为1,点E 是棱AB 上的动点,F 是棱1CC 上一点,1:1:2CF FC =.(Ⅰ)求证:111B D A F ⊥; (Ⅱ)若直线1A F ⊥平面11B D E ,试确定点E 的位置,并证明你的结论; (Ⅲ)设点P 在正方体的上底面1111A BCD 上运动,求总能使BP 与1A F 垂直的点P 所形成的轨迹的长度.(直接写出答案)答案一、选择题:本大题共10小题,每小题4分,共40分.1.C2.A3. B4.C5.B6. A7. A8.D9.D 10.C.二、填空题:本大题共6小题,每小题4分,共24分.11.1-12.2-14. (1,0)-15.P 是1CC 中点,等16.33,25注:第16题每空两分.三、解答题:本大题共3小题,共36分.17.(本小题满分12分)(Ⅰ)证明:连结BD ,交AC 于点O ,连结OE .因为O 是正方形ABCD 对角线交点,所以O 为BD 中点,由已知E 为线段PD 的中点,所以//PB OE .…………………2分又OE ⊂平面ACE ,PB ⊄平面ACE ,所以//PB 平面ACE .…………………5分 (Ⅱ)证明:因为PA AD =,E 为线段PD 的中点, 所以AE PD ⊥,…………………6分因为PA ⊥平面ABCD ,所以PA CD ⊥,…………………7分在正方形ABCD 中,CD AD ⊥,又PA AD A =I ,所以CD ⊥平面PAD ,…………………8分又AE ⊂平面PAD ,所以CD AE ⊥,…………………9分又PD CD D =I ,所以AE ⊥平面PCD ,…………………10分 (Ⅲ)因为AE ⊥平面PCD ,所以三棱锥A PCE -的体积.13PCE V S AE =⋅V 11112232323PE CD AE =⨯⋅⋅=⨯=. …………………12分18.(本小题满分12分)解:(Ⅰ)由已知(8,0)A ,依题意,圆M 的圆周角90ACB ∠=,所以过A 、B 、C 三点的圆M 即为以AB 为直径的圆.…………………3分 所以,圆M 的圆心为AB 的中点(4,2)-.因为AB =M的半径为5分 所以圆M 的方程为22(4)(2)20x y -++=. …………………6分 (Ⅱ)因为所求直线与圆M 相交所得弦长为8,由垂径定理,圆M2.…………………7分 易知,直线6x =满足题意.…………………8分 由已知,直线:4AC y x =-,解4,8y x y x =-⎧⎨=-+⎩得点C 的坐标为(6,2)C . …………………9分 设斜率存在且满足题意的直线方程为2(6)y k x -=-,即620kx y k --+=. 则圆心(4,2)-到直线620kx y k --+==10分2=,解得34k =. …………………11分 所以,所求直线方程为6x =和34100x y --=. …………………12分19.(本小题满分12分)(Ⅰ)证明:连结11A C .1111A B C D 是正方形,所以1111B D AC ⊥. …………………1分 在正方体1111ABCD A B C D -中,1CC ⊥平面1111A B C D , 所以111CC B D ⊥, …………………2分 又1111CC A C C =I ,所以11B D ⊥平面11A C C , …………………3分因为1A F ⊂平面11A C C ,所以11B D ⊥1A F . …………………4分 (Ⅱ)当:1:2AE EB =时,直线1A F ⊥平面11D B E .…5分证明如下:过点F 在平面11BCC B 作//FG BC 交1BB 于点G , 连结1A G ,交1B E 于点H , 因为1:1:2CF FC =,所以1:1:2BG GB =, 在11Rt A B G △与1Rt B BE △中,1B G BE =,111A B B B =, 所以111A B G B BE ≅△△,111B A G BB E ∠=∠. 又111190B A G A GB ∠+∠=,所以11190BB E A GB ∠+∠=. 所以190B HG ∠=o ,11A G B E ⊥.…………………7分 在正方体1111ABCD A B C D -中,CB ⊥面11ABB A , 所以FG ⊥面11ABB A , 所以1FG B E ⊥, 又1A G FG G =I ,所以1B E ⊥面1A FG ,…………………8分 所以1B E ⊥1A F .又11B D ⊥1A F ,1111B D B E B =I , 所以直线1A F ⊥平面11B D E .…………………9分. …………………12分。
北京市清华附中2017-2018学年第一学期高一期末数学试题一、选择题(本大题共8小题,共40.0分)1.下列各角中,与50°的角终边相同的角是()A. B. C. D.【答案】D【解析】【分析】写出与50°的角终边相同的角的集合,取k=﹣1得答案.【详解】与50°的角终边相同的角的集合为{α|α=50°+k•360°,k∈Z}.取k=﹣1,可得α=﹣310°.∴与50°的角终边相同的角是﹣310°.故选:D.【点睛】本题考查终边相同角的概念,是基础题.2.设向量,则的夹角等于()A. B. C. D.【答案】A【解析】试题分析:∵,∴,∴的夹角等于,故选A考点:本题考查了数量积的坐标运算点评:熟练运用数量积的概念及坐标运算求解夹角问题是解决此类问题的关键,属基础题3.已知角α的终边经过点P(4,-3),则的值为()A. B. C. D.【答案】C【解析】【分析】利用任意角函数的定义求出cosα,利用三角函数的诱导公式化简求出值.【详解】∵角α的终边经过点P(4,﹣3),∴p到原点的距离为5∴sinα,cosα∴故选:C.【点睛】本题考查三角函数的定义,考查诱导公式,属于基础题.4.为了得到函数y=cos(2x-)的图象,只需将函数y=cos2x的图象()A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度【答案】B【解析】【分析】由条件利用函数y=A sin(ωx+φ)的图象变换规律可得结论.【详解】函数cos2(x),故把函数y=cos2x的图象向右平移个单位长度,可得函数的图象,故选:B.【点睛】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,属于中档题.5.已知非零向量与满足=且,则△ABC为()A. 三边均不相等的三角形B. 直角三角形C. 等腰非等边三角形D. 等边三角形【答案】D【解析】【分析】根据得出B=C,得出A,由此判断△ABC是等边三角形.【详解】△ABC中,,∴,∴cos,cos,,∴B=C,△ABC是等腰三角形;又,∴1×1×cos A,∴cos A,A,∴△ABC是等边三角形.故选:D.【点睛】本题考查了平面向量的数量积运算问题,也考查了三角形形状的判断问题,是基础题.6.同时具有性质“①最小正周期为π;②图象关于直线x=对称;③在[,]上是增函数”的一个函数是()A. B.C. D.【答案】C【解析】【分析】根据三角函数的图象与性质,判断满足条件的函数即可.【详解】“①最小正周期是π,可得ω=2,排除选项A;②图象关于直线x对称,可得:2,cos,排除选项B,2,cos,排除选项D;对于C,函数y=sin(2x),最小正周期为π,且2,sin1,函数图象关于x对称;x∈[,]时,2x∈[,],∴y=sin(2x)是单调增函数,C满足条件.故选:C.【点睛】函数的性质(1) .(2)周期(3)由求对称轴(4)由求增区间;由求减区间.7.定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[1,2]上是减函数,若α,β是锐角三角形的两个内角,则()A. fB. fC. fD. f【答案】A【解析】【分析】根据题意,分析可得f(﹣x)=f(x+2),即函数f(x)的图象关于直线x=1对称,据此分析可得f(x)在区间[0,1]上是增函数,由α,β是锐角三角形的两个内角便可得出sinα>cosβ,从而根据f(x)在(0,1)上是增函数即可得出f(sinα)>f(cosβ),即可得答案.【详解】根据题意,定义在R上的偶函数f(x)满足f(x+2)=f(x),则有f(﹣x)=f(x+2),即函数f(x)的图象关于直线x=1对称,又由函数f(x)在[1,2]上是减函数,则其在[0,1]上是增函数,若α,β是锐角三角形的两个内角,则α+β,则有αβ,则有sinα>sin(β)=cosβ,又由函数f(x)在[0,1]上是增函数,则f(sinα)>f(cosβ);故选:A.【点睛】本题考查函数的奇偶性、周期性与周期性的综合应用,注意分析函数在(0,1)上的单调性.8.若定义[-2018,2018]上的函数f(x)满足:对任意x1,x2∈[-2018,2018]有f(x1+x2)=f(x1)+f(x2)-2017,且当x>0时,有f(x)>2017,设f(x)的最大值、最小值分别为M,m,则M+m的值为()A. 0B. 2018C. 4034D. 4036【答案】C【解析】【分析】计算f(0)=2017,构造函数g(x)=f(x)﹣2017,判断g(x)的奇偶性得出结论.【详解】令x1=x2=0得f(0)=2f(0)﹣2017,∴f(0)=2017,令x1=﹣x2得f(0)=f(﹣x2)+f(x2)﹣2017=2017,∴f(﹣x2)+f(x2)=4034,令g(x)=f(x)﹣2017,则g max(x)=M﹣2017,g min(x)=m﹣2017,∵g(﹣x)+g(x)=f(﹣x)+f(x)﹣4034=0,∴g(x)是奇函数,∴g max(x)+g min(x)=0,即M﹣2017+m﹣2017=0,∴M+m=4034.故选:C.【点睛】本题考查了奇偶性的判断与性质,考查函数的最值求法,注意运用赋值法,属于中档题.二、填空题(本大题共6小题,共30.0分)9.若θ为第四象限的角,且,则cosθ=______;sin2θ=______.【答案】(1). (2). -【解析】【分析】由已知利用同角三角函数基本关系式可求cosθ,进而利用二倍角的正弦函数公式可求sin2θ的值.【详解】∵θ为第四象限的角,且,∴cosθ,sin2θ=2sinθcosθ=2×().故答案为:,.【点睛】本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.10.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若,则△ABC的面积为______.【答案】【解析】【分析】利用三角形的内角和解出B,使用余弦定理解出c,代入三角形的面积公式计算.【详解】∵A+C=2B,A+B+C=π,∴B,由余弦定理得cos B,解得c=2或c=﹣1(舍).∴S△ABC sin B.故答案为:.【点睛】本题考查了余弦定理在解三角形中的应用,三角形的面积公式,属于中档题.11.已知tanx=2,则cos2x+sin(π+x)cos(+x)=______【答案】【解析】【分析】利用诱导公式,同角三角函数的基本关系,求得cos2x+sin(π+x)cos(x)的值.【详解】∵tan x=2,则cos2x+sin(π+x)cos(x)=cos2x﹣sin x•(﹣sin x),故答案为:.【点睛】本题主要考查诱导公式,同角三角函数的基本关系,属于基础题.12.已知α∈(0,π)且sin(α+)=,则cos(α+)=______;sinα=______【答案】(1). (2).【解析】【分析】直接利用同角三角函数基本关系式求cos(α);再由sinα=sin[()],展开两角差的正弦求解.【详解】∵α∈(0,π),∴α∈(),又sin(α),∴cos(α);则sinα=sin[()]=sin()cos cos()sin.故答案为:;.【点睛】本题考查两角和与差的三角函数,考查同角三角函数基本关系式的应用,是基础题.13.如图,在直角梯形中,,若分别是线段和上的动点,则的取值范围是__________.【答案】【解析】以AB为x轴,BC为y轴建立直角坐标系,则A(-3,0),C(0,2),设F(0,m),E(n,2)故=2m-3n-4,由图可知:,所以2m-3n-4点睛:对于向量问题,最容易解答的办法就是将问题的点转化为坐标求解写表达式,然后再根据题意范围求解结果14.已知函数f(x)=2sin2x-2sin2x-a.①若f(x)=0在x∈R上有解,则a的取值范围是______;②若x1,x2是函数y=f(x)在[0,]内的两个零点,则sin(x1+x2)=______【答案】(1). [,](2).【解析】【分析】①利用三角函数的公式化简,f(x)=0在x∈R上有解,转化为两个函数图象有交点问题即可求解;②x1,x2是函数y=f(x)在[0,]内的两个零点,即么x1,x2是关于在[0,]内的对称轴是对称的.即可求解【详解】f(x)=2sin2x﹣2sin2x﹣a=2sin2x﹣(1﹣cos2x)﹣a=2sin2x+cos2x﹣1﹣a1﹣a.其中tanθ①f(x)=0在x∈R上有解,则sin(2x+θ)=a+1有解,∵∴a+1.则a的取值范围是[,],故答案为:[,]②∵x1,x2是函数y=f(x)在[0,]内的两个零点,那么x1,x2是关于在[0,]内的对称轴是对称的.由f(x)1﹣a.其中tanθ其对称轴2x+θkπ,k∈Z.x1,x2是关于在[0,]内的对称轴是对称的.又[0,],且tanθ∴对称轴x∴x1+x2.则sin(x1+x2)=sin()=cosθ.∵tanθ,即,∴cosθ,则sin(x1+x2).故答案为:.【点睛】本题主要考查了三角函数的图象及性质的应用,同角三角函数间的基本关系式,属于中档题.三、解答题(本大题共6小题,共80.0分)15.已知函数f(x)=4sinxcos(x+)+1.(1)求f()的值;(2)求f(x)的最小正周期;(3)求f(x)在区间[0,]上的最大值和最小值.【答案】(1);(2);(3)最小值为-1,最大值为2.【解析】【分析】(1)根据两角和的余弦公式、二倍角公式及辅助角公式将f(x)化简为f(x)=2sin(2x),即可计算;(2)根据周期公式求解即可;(3)由x在[0,]上,求解内层函数的范围,结合三角函数的性质可得最值.【详解】函数f(x)=4sinx(cosxcos-sinxsin)+1,=2sinxcosx-2sin2x+1,=sin2x+cos2x,=2sin(2x+),(1)f()=2sin(+)=2sin=(2)周期T=;(3)由x在[0,]上,∴2x+∈[,],当2x+=,即x=,f(x)取得最小值为-1;当2x+=,即x=,f(x)取得最大值为2.【点睛】本题考查三角函数的恒等变换,三角函数的性质,属于中档题16.已知不共线向量,满足.(1)求;(2)是否存在实数λ,使与共线?(3)若,求实数k的值.【答案】(1);(2);(3)k=.【解析】【分析】(1)直接利用向量的数量积的应用求出结果;(2)利用向量的共线求出λ的值;(3)利用向量垂直的充要条件求出结果.【详解】(1)不共线向量,满足||=3,||=5,( -3)•(2+)=20.所以:,解得:,所以:•(-)=.(2)存在实数使λ+与(-2)共线由于:λ+与(-2)共线故:,所以:.(3)若(k2)⊥(k-2),则:,整理得:,∴k=.【点睛】本题考查的知识要点:向量的数量积的应用,向量垂直和共线的充要条件的应用.17.设锐角三角形的内角A,B,C的对边分别为a、b、c,且sinA-cosC=cos(A-B).(1)求B的大小;(2)求cosA+sinC的取值范围.【答案】(1);(2)(,).【解析】【分析】(1)利用诱导公式,两角和差的三角公式,化简所给的式子,求得sin B的值,可得B的值.(2)化简要求的式子sin(A),根据A∈(,),利用正弦函数的定义域和值域,求得cos A+sin C的取值范围.【详解】(1)设锐角三角形中,sinA-cosC=cos(A-B),即sinA+cos(A+B)=cos(A-B),即sinA+cosAcosB-sinAsinB=cosAcosB+sinAsinB,即sinA=2sinAsinB,,∴sinB=,锐角三角形中B=.(2)cosA+sinC=cosA+sin(π-A-B)=cosA+sin(-A)=cosA+sin(+A)=cosA+cosA+sinA=sin(A+).∵B=,∴A∈(,),A+∈(,),∴sin(A+)∈(,),∴sin(A+)∈(,),即cosA+sinC的取值范围为(,).【点睛】本题主要考查诱导公式,两角和差的三角公式,正弦函数的定义域和值域,属于中档题.18.已知向量=(cosθ,sinθ),=(cosβ,sinβ).(1)若,求的值;(2)若记f(θ)=,θ∈[0,].当1≤λ≤2时,求f(θ)的最小值.【答案】(1)1 ;(2)--1.【解析】【分析】(1)根据向量的坐标运算和向量的模以及两角和差即可求出答案;(2)根据向量的数量积和二倍角公式化简得到f(θ)=2cos2(θ)﹣2λcos(θ)﹣1,令t=cos(θ),根据二次函数的性质即可求出.【详解】(1)∵向量=(cosθ,sinθ),=(cosβ,sinβ),∴-=(cosθ-cosβ,sinθ-sinβ),∴|-|2=(cosθ-cosβ)2+(sinθ-sinβ)2=2-2cos(θ-β)=2-2cos=2-1=1,∴|-|=1;(2)•=cosθcosβ+sinθsinβ=cos(θ-β)=cos(2θ-),∴|+|==2|cos(θ-)|=2cos(θ-),∴f(θ)=cos(2θ-)-2λcos(θ-)=2cos2(θ-)-2λcos(θ-)-1令t=cos(θ-),则t∈[,1],∴f(t)=2t2-2λt-1=2(t-)2--1,又1≤λ≤2,≤≤1,∴t=时,f(t)有最小值--1,∴f(θ)的最小值为--1.【点睛】本题考查了向量的坐标运算和向量的数量积以及三角函数的化简,以及二次函数的性质,属于中档题.19.借助计算机(器)作某些分段函数图象时,分段函数的表示有时可以利用函数,例如要表示分段函数g(x)=总可以将g(x)表示为g(x)=xh (x-2)+(-x)h(2-x).(1)设f(x)=(x2-2x+3)h(x-1)+(1-x2)h(1-x),请把函数f(x)写成分段函数的形式;(2)已知G(x)=[(3a-1)x+4a]h(1-x)+log a x⋅h(x-1)是R上的减函数,求a的取值范围;(3)设F(x)=(x2+x-a+1)h(x-a)+(x2-x+a+1)h(a-x),求函数F(x)的最小值.【答案】(1)f(x)=;(2)≤a<;(3)当a≤-时,最小值为-a+;当a≥时,最小值为为a+;当-<a<时,最小值为F(a)=a2+1.【解析】【分析】(1)分当x>1、当x=1和当x<1时3种情况加以讨论,分别根据函数的对应法则代入,可得f(x)相应范围内的表达式,最后综合可得函数f(x)写成分段函数的形式;(2)运用分段函数形式表示G(x),再由一次函数、对数函数的单调性,可得a的范围;(3)由题意,讨论x>a,x=a,x<a,求得F(x)的解析式,再结合二次函数的图象与性质,分a、a和a的4种情况进行讨论,最后综合可得F(x)的最小值.【详解】(1)当x>1时,x-1>0,1-x<0,可得f(x)=(x2-2x+3)+0•(1-x2)=x2-2x+3;当x=1时,f(x)=2;当x<1时,x-1<0,1-x>0,可得f(x)=1-x2.即有f(x)=;(2)G(x)=[(3a-1)x+4a]h(1-x)+log a x⋅h(x-1)=,由y=G(x)是R上的减函数,可得,解得≤a<;(3)F(x)=(x2+x-a+1)h(x-a)+(x2-x+a+1)h(a-x),当x>a时,x-a>0,可得F(x)=x2+x-a+1;若a≥-,可得F(x)在x>a递增,可得F(x)>F(a)=a2+1;若a<-,可得F(x)的最小值为F(-)=-a;当x=a时,可得F(x)=2(a2+1);当x<a时,x-a<0,a-x>0,则F(x)=x2-x+a+1.若a≥,可得F(x)在x<a的最小值为F()=a+;若a<,可得F(x)在x<a递减,即有F(x)>F(a)=a2+1.①当a≥时,F(x)在区间(-∞,-)上单调递减,在区间(-,a)上单调递增,在区间(a,+∞)上单调递增,可得F(-)为最小值,且为-+a+1=a+;②当-<a<时,F(x)在区间(-∞,a)上单调递减,在区间(a,+∞)上单调递增.F(x)的最小值为F(a)=a2+1;③当a≤-时,在区间(-∞,a)上单调递减,在区间(a,-)上单调递减,在区间(-,+∞)上单调递增.所以F(x)的最小值为F(-)=-a+;综上所述,得当a≤-时,F(x)的最小值为-a+;当a≥时,F(x)的最小值为为a+;当-<a<时,F(x)的最小值为F(a)=a2+1.【点睛】本题以分段函数和含有字母参数的二次函数为载体,讨论函数的单调性与最小值,着重考查了基本初等函数的图象与性质、函数解析式的求解及常用方法和单调性的综合等知识,属于难题.20.一个函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”.(1)判断f1(x)=x,f2(x)=log2(6+2sinx-cos2x)中,哪些是“保三角形函数”,哪些不是,并说明理由;(2)若函数g(x)=lnx(x∈[M,+∞))是“保三角形函数”,求M的最小值;(3)若函数h(x)=sinx(x∈(0,A))是“保三角形函数”,求A的最大值.【答案】(1)见解析;(2)2 ;(3).【解析】【分析】(1)不妨设a≤c,b≤c,由函数的值域,即可得到结论;(2)要利用“保三角形函数”的概念,求M的最小值,首先证明当M≥2时,函数h(x)=lnx (x∈[M,+∞))是保三角形函数,然后证明当0<M<2时,h(x)=lnx(x∈[M,+∞))不是保三角形函数,从而求出所求;(3)A的最大值是,讨论①当A时;②当A时;结合新定义和三角函数的恒等变换,即可得到最大值.【详解】(1)不妨设a≤c,b≤c,由a+b>c,可得f1(a)+f1(b)>f1(c),即有f1(x)=x为“保三角形函数”;由6+2sinx-cos2x=sin2x+2sinx+5=(sinx+1)2+4∈[4,8],可得f2(x)∈[2,3],即有2+2>3,可得f2(x)为“保三角形函数”;(2)M的最小值为2(i)首先证明当M≥2时,函数h(x)=lnx(x∈[M,+∞))是保三角形函数.对任意一个三角形三边长a,b,c∈[M,+∞),且a+b>c,b+c>a,c+a>b,则h(a)=lna,h(b)=lnb,h(c)=lnc.因为a≥2,b≥2,a+b>c,所以(a﹣1)(b﹣1)≥1,所以ab≥a+b>c,所以lnab>lnc,即lna+lnb>lnc.同理可证明lnb+lnc>lna,lnc+lna>lnb.所以lna,lnb,lnc是一个三角形的三边长.故函数h(x)=lnx(x∈[M,+∞),M≥2),是保三角形函数…13分(ii)其次证明当0<M<2时,h(x)=lnx(x∈[M,+∞))不是保三角形函数,h(x)=lnx (x∈[M,+∞))不是保三角形函数因为0<M<2,所以M+M=2M>M2,所以M,M,M2是某个三角形的三条边长,而lnM+lnM=2lnM=lnM2,所以lnM,lnM,lnM2不能为某个三角形的三边长,所以h(x)=lnx不是保三角形函数.所以,当M<2时,h(x)=lnx(x∈[M,+∞))不是保三角形函数.综上所述:M的最小值为2(3)A的最大值是.①当A>时,取a==b,c=,显然这3个数属于区间(0,A),且可以作为某个三角形的三边长,但这3个数的正弦值、、1显然不能作为任何一个三角形的三边,故此时,h(x)=sinx,x∈(0,A)不是保三角形函数.②当A=时,对于任意的三角形的三边长a、b、c∈(0,),若a+b+c≥2π,则a≥2π-b-c>2π--=,即a>,同理可得b>,c>,∴a、b、c∈(,),∴sina、sinb、sinc∈(,1].由此可得sina+sinb>+=1≥sinc,即sina +sinb>sinc,同理可得sina+sinc>sinb,sinb+sinc>sina,故sina、sinb、sinc 可以作为一个三角形的三边长.若a+b+c<2π,则+<π,当≤时,由于a+b>c,∴0<<≤,∴0<sin<sin≤1.当>时,由于a+b>c,∴0<<<,∴0<sin<sin<1.综上可得,0<sin<sin≤1.再由|a-b|<c<,以及y=cosx在( 0,π)上是减函数,可得cos=cos>cos>cos>0,∴sina+sinb=2sin cos>2sin cos=sinc,同理可得sina+sinc>sinb,sinb+sinc>sina,故sina、sinb、sinc 可以作为一个三角形的三边长.故当A=时,h(x)=sinx,x∈(0,A)是保三角形函数,故A的最大值为.【点睛】要想判断f(x)为“保三角形函数”,要经过严密的论证说明f(x)满足“保三角形函数”的概念,但要判断f(x)不为“保三角形函数”,仅须要举出一个反例即可,属于创新题.。
XXX2017-2018学年第一学期高一期末数学试卷XXX2017-2018学年第一学期高一期末数学试卷一、填空题(每题3分,共36分)1、已知全集$U=\mathbb{R}$,集合$A=\{x|y=\pi x\}$,则$C_UA=$ $\{x|x\notin A\}$2、函数$f(x)=x^{-1}$在$(-\infty,0)$内的零点为$x=-1$3、关于$x$的方程$2^x=3$的解集为$\{\log_2 3\}$4、函数$f(x)=\dfrac{1}{x+a}$为奇函数,则实数$a$的值为$0$5、集合$A=\{x|x<a\},B=\{x|x<1\}$,若$A\subseteq B$,则实数$a$的取值范围为$a\leq 1$6、比较两数大小: $2^{e^{5031}}$ $>$ $e^{2^{5031}}$7、函数$y=f(x)$的定义域为$(0,1)$,则函数$y=f(2x)$的定义域为$(0,\dfrac{1}{2})$8、幂函数$y=x^{-2}$的单调递减区间为$(0,+\infty)$9、函数$y=f(x)$过定点$(0,2)$,则函数$y=f(x-2)$过定点$(2,2)$10、不等式$|x|-a\geq 0$ 对任意$x\in[-1,2]$恒成立,则实数$a$的最大值为$a=2$11、若函数$f(x)=\dfrac{x^2-3x+2}{x-2}$,则$f(x)-f(2-x)=\dfrac{4x-10}{x-2}$12、方程$f(x+2018)+f(\dfrac{e-|2-x|}{x-2x-1})-a=0$在$(-\infty,5)$内有两个零点,则实数$a$的取值范围为$a\in(-\infty,4)$二、选择题(每题3分,共12分)13.四个说法中,与“不经冬寒,不知春暖”意义相同的是() C.若知春暖,必经冬寒14、已知实数$x>y$,下列不等式中一定成立的是() B。