0312平面直角坐标系培优训练
- 格式:doc
- 大小:135.00 KB
- 文档页数:6
平面直角坐标系第一节平面直角坐标系的基本概念一、基本概念有序数对:把有顺序的两个数a与b组成的数对叫做__________,通常记作__________。
在平面内画两条互相__________、__________重合的数轴,组成平面直角坐标系。
水平的数轴称为__________,竖直的数轴称为__________,两坐标轴的交点为__________,__________数对做点的坐标。
建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限。
确定坐标的方法:由点M向__________轴引垂线,垂足在__________轴上的坐标为__________,由点M向__________轴引垂线,垂足在__________轴上的坐标为__________。
基础训练1、写出图中点D,E,F,G的坐标。
在图中找出点比A(1,3),B(-2,-2)2、如图所示,人头左边的嘴角的坐标是()。
A、(1,-1)B、(-4,0)C、(-1,1)D、(-1,-3)二、点的特征1、第一象限上的点的特征:______________________________。
2、第二象限上的点的特征:______________________________。
3、第三象限上的点的特征:______________________________。
4、第四象限上的点的特征:______________________________。
5、原点O 的坐标:_________x 轴上的点的坐标:__________。
y 轴上的点的坐标:__________平行于x 轴直线上的点的________ _坐标相同。
平行于y 轴直线上的点的_________坐标相同。
请分别写出第一象限、第二象限、第三象限、第四象限、X 轴、Y 轴。
基本用法(1)确定点的位置。
平面直角坐标系一、平面直角坐标系中的点的特征 1、对于点p(x,y),(1)在第一象限时,0>x ,0>y ; (2)在第二象限时,0<x ,0>y ; (3)在第三象限时,0<x ,0<y ; (4)在第四象限时,0>x ,0<y ; 2、对于点p(x,y), (1)在x 轴上时,0=y ,x 可取任意数;(2)在y 轴上时,0=x ,y 可取任意数;3、对于点p(x,y),(1)若在第一、三象限的角平分线上时,y x =;(2)若在第二、四象限的角平分线上时,横、纵坐标互为相反数,即0=+y x . 5、平行于x 轴的直线上的点纵坐标相同,横坐标不同;平行于y 轴的直线上的点的横坐标相同,纵坐标不同.例1:(1)已知在平面直角坐标系中,点2(+m P ,)1+m 是x 轴上的一点,则点P 的坐标为 .(2)若点b a M +(,)ab 在第二象限,则点a N (,)b 在第 象限. (3)已知线段AB ∥x 轴,若点A 的坐标为(1,2),线段AB 的长为3,则点B 的坐标为 .分析:(1)x 轴上的点纵坐标为0;(2)第二象限上的点横坐标为负数,纵坐标为正数;(3)平行于x 轴上的点纵坐标相同.练:1、已知1(M ,)2-,a N (,)b .若MN ∥x 轴,则=a ,=b ;若MN ∥y 轴,则=a ,=b ;MN ⊥x 轴,且MN =2,则N .二、探索点的坐标规律解决点的规律探索型问题应从最简单的情形入手,进而找出规律、解决问题.例2:在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点,且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形.边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部的整点的个数为( ) A 、64 B 、49 C 、36 D 、25分析:求出边长1,2,3,4,5,6,7的正方形的整点的个数, 得到边长为1和2的正方形内部有1个整点,边长为3和4的 正方形内部有9个整点,边长为5和6的正方形内部有25个 整点,推出边长为7和8的正方形内部有49个整点, 即可得出答案.-1-111O y x1、在平面直角坐标系中,点1A (1,1),2A (2,4),3A (3,9),4A (4,16),…,用你发现的规律确定点9A 的坐标为 .2、如图,将长方形ABCD 放置在平面直角坐标系中,A B ∥x 轴,且AB =4,AD =2,且A (2,1). (1)求B ,C ,D 的坐标,并说明将长方形ABCD 进行怎样的平移使点C 移到点A 处; (2)y 轴上是否存在点P ,使△PAB 的面积等于长方形ABCD 面积的43,若存在,求出P 点坐标;若不存在,说明理由.DCBA yx4321654321O参考答案例1:(1)P(1,0) (2)第三象限 (3)B (4,2)或(-2,2) 练1:1≠a , 2-=b ;1=a ,2-≠b ; (1,0)或(1,-4) 例2:B练2:(1)4A (2,0);8A (4,0);12A (6,0);(2)n A 4(n 2,0); (3)向上. 例3:18.5 四、巩固练习1、(9,81). 提示:n A n (,2n )2、(1)B (6,1),C (6,3),D (2,3),将长方形ABCD 先向左平移4个单位,再向下平移2个单位,可使点C 移到点A.(2)存在,理由如下:设0(P ,a ),则121-⋅=∆a AB S ABP ∴43241421⨯⨯=-⨯⨯a∴31=-a ,∴4=a 或-2故P (0,4)或(0,-2)。
第7章平面直角坐标系培优训练一、单选题1.在平面直角坐标系中,对于坐标()34P ,,下列说法错误的是()A .点P 向左平移三个单位后落在y 轴上B .点P 的纵坐标是4C .点P 到x 轴的距离是4D .它与点()4,3表示同一个坐标2.平面直角坐标系内,下列的点不在任何象限的是()A .(51)-,B .(51)--,C .(5)1-,D .(01),3.下列说法正确的是()A .(32),和(2,3)表示同一个点B .点在x 轴的正半轴上C .点(2,4)-在第四象限D .点(31)-,到x 轴的距离为34.点()32,5P x x --在二、四象限的角平分线上,则x =()A .83B .2C .83-D .2-5.如图,在平面直角坐标系xOy 中有一点被墨迹遮挡了,这个点的坐标可能是()A .()2,3B .()2,3-C .()2,3--D .()2,3-6.在平面直角坐标系中,已知点()3,P a 到x 轴的距离为2,则a 的值为()A .2B .2-C .2±D .不能确定7.如图,将5个大小相同的正方形置于平面直角坐标系中,若顶点()3,9M ,()12,9N ,则顶点A 的坐标是()A .()15,5B .()15,3C .()14,6D .()13,78.点M 到x 轴距离为3,到y 轴距离为2,且在第四象限内,则点M 的坐标为()A .()2,3-B .()2,3-C .()3,2D .()3,2-9.在平面直角坐标系中,点()23M m -,在y 轴上,则m 的值为()A .2-B .1-C .1D .210.点(1)P m m -,不可能在()A .第一象限B .第二象限C .第三象限D .第四象限二、填空题11.如图,若在象棋盘上建立直角坐标系,使“帅”位于点()11-,,“马”位于点()41-,,则“兵”位于点(_____,_____).12.平面直角坐标系的第二象限内有一点P ,到x 轴的距离为1,到y 轴的距离为2,则点P 的坐标是______.13.点()231A a a --+,在y 轴上,则=a ______.14.在平面直角坐标系内,线段AB 平行于x 轴,且3AB =,若点B 的坐标为()2,4,则点A 的坐标是______________.15.已知AB x ∥轴,A 的坐标为()1,6,4AB =,则点B 的坐标是______.16.在平面直角坐标系中,将点()3,1P 向上平移______个单位后得到点()3,3Q 17.已知点()3,A b 在第四象限,那么点()3,B b --在第________象限.18.如图,在平面直角坐标系中()1A -,1,()12B --,,()32C -,,()31D ,,一只瓢虫从点A 出发以3个单位长度/秒的速度沿A B C D A →→→→循环爬行,问第2022秒瓢虫在点____________处(填写坐标).三、解答题19.如图,这是某校的平面示意图,如以正东为x 轴正方向,正北为y 轴正方向建立平面直角坐标系后,得到初中楼的坐标是()42-,,实验楼的坐标是()40-,.(1)坐标原点应为______的位置.(2)在图中画出此平面直角坐标系;(3)校门在第______象限;图书馆的坐标是______;分布在第一象限的是______.20.已知)2040()()(A B C x y -,,,,,.(1)若点C (),x y 在第二象限,且44x y ==,,求点C 的坐标,并求三角形ABC 的面积;(2)若点C 在第四象限,且三角形ABC 的面积为9,|x |=3,求点C 的坐标.21.在平面直角坐标系经xOy 中,给出如下定义:点A 到x 轴、y 轴距离的较小值称为点A 的“短距”,当点P 的“短距”等于点Q 的“短距”时,称P 、Q 两点为“等距点”.(1)点(5,2)A --的“短距”为;(2)点(2,21)B m --+的“短距”为1,求m 的值;(3)若(1,3)C k -+,(4,23)D k -两点为“等距点”,求k 的值.22.已知ABC 在平面直角坐标系中的位置如图所示,将△ABC 向右平移6个单位长度,再向下平移4个单位长度,得到111A BC △(图中每个小方格边长均为1个单位长度).(1)直接写出ABC 三个顶点的坐标;(2)在图中画出平移后的111A BC △;(3)直接写出111A BC △三个顶点的坐标;(4)求111A BC △的面积.参考答案:一、选择1.D2.D3.B4.A5.B 6.C7.B8.B9.D10.C二、填空11.1-212.()2,1-13.214.()5,4或()1,4-15.()3,6-或()5,616.217.二18.()02-,三、解答19.【详解】(1)解:由题意得,可以建立如下坐标系,∴坐标原点应为高中楼的位置,故答案为:高中楼;(2)解:如图所示,即为所求;(3)解:由坐标系可知,校门在第四象限,图书馆的坐标为()41,,分布在第一象限的是,图书馆和操场,故答案为:四,()41,,图书馆和操场.20.【详解】(1)因为点C 在第二象限,横坐标为负,纵坐标为正,因为44x y ==,,所以点C 的坐标为(44)-,.因为(20)(40)A B -,,,,所以6AB =,所以164122ABC S =⨯⨯= (2)由(1)可知6AB =,因为点C 在第四象限,3x =,所以3x =,因为1692ABC S y =⨯⨯= ,所以3y =,因为点C 在第四象限,所以=3y -,所以点C 的坐标为(33)-,.21.【详解】(1)解:点(5,2)A --到x 轴、y 轴距离分别为2,5,∴“短距”为2,故答案为:2;(2)点(2,21)B m --+的“短距”为1,21-≠ ,∴211m -+=,,解得:0m =或1m =;(3)点(1,3)C k -+到x 轴的距离为3k +,到y 轴距离为1,点(4,23)D k -到x 轴的距离为23k -,到y 轴距离为4,1<4- ∴当3>1k +时,即>2k -或<4k -时,231k -=,∴231k -=或231k -=-,解得2k =或1k =;当31k +≤时,即42k -≤≤-时,233k k -=+,∴233k k -=+或()233k k -=-+,解得6k =(舍去)或0k =(舍去),综上所诉,2k =或1k =.22.【详解】(1)(2,4),(5,2),(4,5)A B C ---;(2)如图所示;(3)由图可知,111(4,0),(1,2),(2,1)A B C -;(4)11111133131223222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯ 3791322=---=.。
平面直角坐标系一、选择题1、如图,若在象棋盘上成立直角坐标系,使“帅”位于点(-1, -2).“馬”位于点( 2,-2),则“兵”位于点()A 、( -1,1)B、(-2 ,-1)C、(-3,1)D、(1,-2)(第1题)(第3题)(第8题)2、在平面直角坐标系中,点P 的坐标为( -2,a2+1),则点 P 所在的象限是()A 、第一象限B、第二象限C、第三象限D、第四象限3、如图,在平面直角坐标系中,以O(0,0),A ( 1, 1),B( 3,0)为极点,结构平行四边形,以下各点中不可以作为平行四边形极点坐标的是()A 、( -3,1)B、(4,1)C、( -2,1)D、( 2, -1)4、若点 A (2, n)在 x 轴上,则点 B(n-2,n+1)在()A 、第一象限B、第二象限C、第三象限D、第四象限5、已知点 P(x,|x|),则点 P 必定()A 、在第一象限 B、在第一或第四象限 C、在 x 轴上方 D、不在 x 轴下方6、在直角坐标系中,点( x, y)知足 x+y<0,xy> 0,则点( x,y)在()A 、第一象限B、第二象限C、第三象限D、第四象限7、点 M 在 y 轴的左边,到 x 轴, y 轴的距离分别是 3 和 5,则点 M 的坐标是()A 、( -5,3) B、(-5, -3)C、(5,3)或( -5,3)D、(-5, 3)或( -5, -3)8、如图,一个质点在第一象限及x 轴、 y 轴上运动,一秒钟后,它从原点运动到(0,1),而后接着按图中箭头所示方向运动[ 即( 0, 0)→( 0,1)→( 1,1)→( 1, 0)→ ] ,且每秒运动一个单位长度,那么第2011 秒后质点所在地点的坐标是()A 、( 13,44)B、( 44,13)C、( 45,14)D、(13,45)二、填空题9、察看以下有序数对:(3,-1)(-5,3)(7,-5)(-9,7)依据你发现的规律,第2012 个有序数对是 ____________10、假如点 P( m+3,m+1)在直角坐标系的 x 轴上, P 点坐标为 ____________。
七年级平面直角坐标系练习知识讲解①坐标平面内的点与有序实数对一一对应;②点P (a ,b )到x 轴的距离为│b │,•到y 轴距离为│a │,到原点距离为22a b +;③各象限内点的坐标的符号特征:P (a ,b ),P•在第一象限⇔a>0且b>0,P 在第二象限⇔a<0,b>0,P 在第三象限⇔a<0,b<0,P 在第四象限⇔a>0,b<0;④点P (a ,b ):若点P 在x 轴上⇔a 为任意实数,b=0;P 在y 轴上⇔a=0,b 为任意实数;P 在一,三象限坐标轴夹角平分线上⇔a=b ;P 在二,四象限坐标轴夹角平分线上⇔a=-b ;⑤A (x 1,y 1),B (x 1,y 2):A ,B 关于x 轴对称⇔x 1=x 2,y 1=-y 2;A 、B 关于的y 轴对称⇔ x 1=-x 2,y 1=y 2;A 、B 关于原点对称⇔x 1=-x 2,y 1=-y 2;AB ∥x 轴⇔y 1=y 2且x 1≠x 2;AB ∥y 轴⇔x 1=x 2且y 1≠y 2(A ,B 表示两个不同的点).练习题:一、 选择题1、在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC =30°时,∠BOD 的度数是( ).A .60°B .120°C .60°或 90°D .60°或120°2、如图3,已知∠3=∠4,∠2=80O ,则∠1=( )A.80OB. 70OC. 60OD. 50O 3、12的负的平方根介于( )。
A 、之间与45--B 、之间与34--C 、之间与23--D 、之间与12--4、若2)(11y x x x +=---,则y x -的值为( )。
A 、1- B 、1 C 、2D 、3 5、如果0<yx ,),(y x Q 那么在( )象限。
平面直角坐标系培优训练一、热身练习01. 在平面直角坐标系内,已知点(2m,m-4)在第四象限内,且m为偶数,那么m的值为。
02。
已知点P1(a-1,5)在第一、三象限角平分线上;点P2(2,b-8)在二、四象限角平分线上,则(-a+b)2004= .03.矩形ABCD中,AB=5,BC=2,以矩形的对角线交点为坐标原点,平行于边的直线为坐标轴,建立直角坐标系,则四个顶点的坐标为 .04.在正方形ABCD中,A、B、C三点坐标分别为(1,2)、(-2,1)、(-1,-2),则顶点D 的坐标为。
05.无论x为何实数值,点p(x+2,x-2)都不在第_______象限.06.如果点A(ba,1)在第一象限,则点B(-a2,ab)在第( )象限.A.一B.二C.三D.四07.已知x、y实数,且P(x,y)的坐标满足x2+y2=0,则点p必在( ) A.原点上B.x轴正半轴上C.y轴正半轴D.x轴负半轴上08.如图所示,在平面直角坐标系中,我们把横、纵坐标都为整数的点叫做整点。
设坐标轴的单位长度为1厘米,整点P从原点O出发,速度为1厘米/秒,且整点P作向上或向右运动,运动的时间(秒)与整点(个)的关系如下表整点P从原点O出发的时间(秒)可以得到整点P的坐标可以得到整点P的个数1 (0,1)(1,0) 22 (0,2)(1,1)(2,0) 33 (0,3)(1,2)(2,1)(3,0)4………⑴当整点P从点O出发4秒时,可以得到的整点P的个数为个;⑵当整点P从点O出发8秒时,在直角坐标系中描出可以得到的所有整点,并顺次连接这些整点;⑶当整点P从点O出发秒时,可以到达整点(16,4)的位置.(1)根据表中所示的规律,点的个数比时间数多1,可计算出整点P从O点出发4秒时整点P的个数为5;(2)由表中所示规律可知,横纵坐标的和等于时间,则点的个数为(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0).如图:(3)由表中规律可知,横纵坐标的和等于时间,可得,16+4=20秒;二、培优升级例1:已知:)54,21(-+a a A ,且点A 到两坐标轴的距离相等,求A 点坐标.例2:已知:)3,4(A ,)1,1(B ,)0,3(C ,求三角形ABC 的面积。
人教版七年级数学下册第七章平面直角坐标系培优专题测试训练一、选择题1. 点(-2,1)在平面直角坐标系中所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2. 已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A'的坐标是 ( )A.(6,1)B.(-2,1)C.(2,5)D.(2,-3)3.图是某动物园的平面示意图,若以猴山为原点,向右的水平方向为x轴正方向,向上的竖直方向为y轴正方向建立平面直角坐标系,则熊猫馆所在的象限是 ( )A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,将点P(x,y)先向左平移4个单位长度,再向上平移3个单位长度后得到点P'(1,2),则点P的坐标为( )A.(2,6)B.(-3,5)C.(-3,1)D.(5,-1)5.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1 mm,则图中转折点P的坐标表示正确的是( )A.(5,30)B.(8,10)C.(9,10)D.(10,10)6. 平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( )A. (-2,-3)B. (2,-3)C. (-3,2)D. (3,-2)7.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第21秒时,点P的坐标为( )A.(21,-1)B.(21,0)C.(21,1)D.(22,0)8.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点O运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P的坐标是( )A.(2021,1)B.(2021,0)C.(2021,2)D.(2022,0)二、填空题9. 点P(-6,-7)到x轴的距离为 ,到y轴的距离为 .10. 已知点P(3-m,m)在第二象限,则m的取值范围是________.11.如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一点P(a,b),则点P在A'B'上的对应点P'的坐标为 .12.五子棋是一种两人对弈的棋类游戏,起源于中国古代的传统黑白棋种,规则是在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个同学的对弈图.若白子A的坐标为(0,-2),白子B的坐标为(-2,0),为了不让白方马上获胜,此时黑方应该下在坐标为 的位置.(写出一处即可)13.如图,在三角形ABC中,已知点A(0,4),C(3,0),且三角形ABC的面积为10,则点B的坐标为 .14. 将自然数按以下规律排列:第一列第二列第三列第四列第五列…第一行1451617第二行23615…第三行98714…第四行10111213…第五行………………表中数2在第二行、第一列,与有序数对(2,1)对应,数5与有序数对(1,3)对应,数14与有序数对(3,4)对应.根据这一规律,数2021对应的有序数对为 .15.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则点P60的坐标是 .16.在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移两个单位称为一次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续九次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是__________.三、解答题17. 在如图所示的平面直角坐标系中,描出下列各点:(0,4),(-1,1),(-4,1),(-2,-1),(-3,-4),(0,-2),(3,-4),(2,-1),(4,1),(1,1),(0,4).依次连接各点,观察得到的图形,你觉得它像什么?18.常用的确定物体位置的方法有两种.如图,在4×4的边长为1的小正方形组成的网格中,标有A ,B两点(点A,B之间的距离为m).请你用两种不同的方法表述点B相对于点A的位置.19. 如图所示,已知单位长度为1的方格中有一个三角形ABC.(1)请画出三角形ABC先向上平移3格,再向右平移2格所得的三角形A'B'C'(点A,B,C的对应点分别为点A',B',C');(2)请以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系(在图中画出),然后写出点B,B'的坐标.20. 如图,在平面直角坐标系中,A(3,4),B(4,1),求三角形AOB的面积.21.如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(4,0),点C的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O-A-B-C-O的路线移动(即沿着长方形的边移动一周).(1)点B的坐标为 ;(2)当点P移动了4秒时,求出点P的坐标,并在图中描出此时点P的位置;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.22.如图,在平面直角坐标系中,已知A(2,3),B(0,2),C(3,0).将三角形ABC的一个顶点平移到坐标原点O处,写出平移方法和另两个对应顶点的坐标.23. 如图,若三角形A 1B 1C 1是由三角形ABC 平移后得到的,且三角形ABC 中任意一点P (x ,y )经过平移后的对应点为P 1(x-5,y+2).(1)求点A 1,B 1,C 1的坐标;(2)求三角形A 1B 1C 1的面积.24. 【阅读】在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭.【运用】(1)如图,矩形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),求点M 的坐标;(2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A ,B ,C 构成平行四边形的顶点,求点D 的坐标.答案一、选择题1.B 2.D 3.B 4.D5.C [解析] 如图,过点C作CD⊥y轴于点D,∴CD=50÷2-16=9,OA=OD-AD=40-30=10,∴P(9,10).故选C.6.A 【解析】本题考查了直角坐标平面内的点关于x轴的对称点,点如果关于x轴对称,则它的横坐标不变,纵坐标互为相反数,于是点(-2,3)关于x轴对称的点的坐标为(-2,-3),故选A .7.C [解析] 半径为1的半圆的弧长是×2π×1=π,由此可列下表:故选C.8.A [解析]点P坐标的变化规律可以看作每运动四次一个循环,且横坐标与运动次数相同,纵坐标规律是:第1次纵坐标为1,第3次纵坐标为2,第2次和第4次纵坐标都是0.∵2021=505×4+1,∴经过第2021次运动后,动点P 的坐标是(2021,1).故选A .二、填空题9.7 6 10.m >3 【解析】∵点P 在第二象限,∴其横坐标是负数,纵坐标是正数,则根据题意得出不等式组,解得m >3. {3-m <0m >0)11.(a-2,b+3) [解析]由图可知线段AB 向左平移了2个单位长度,向上平移了3个单位长度,所以P'(a-2,b+3).12.(2,0)或(-2,4)13.(-2,0) [解析] S 三角形ABC =BC ·4=10,解得BC=5,∴OB=5-3=2,∴点B 的坐标为(-2,0).14.(45,5) [解析] 观察表格发现:偶数列的第一行数是“列数”的平方数,奇数行的第一列数是“行数”的平方数.下面从奇数行着手:(1,1)表示1,即12;(3,1)表示9,即32;(5,1)表示25,即52;依此类推可知(45,1)表示452,即2025,于是(45,2)表示2024,(45,3)表示2023,…,(45,5)表示2021.故填(45,5).15.(20,0) [解析] 因为P 3(1,0),P 6(2,0),P 9(3,0),…,所以P 3n (n ,0).当n=20时,P 60(20,0).16.(16,1+) 3解析:可以求得点A (-2,-1-),则第一次变换后点A 的坐标为A 1(0,1+),第二次变换33后点A 的坐标为A 2(2,-1-),可以看出每经过两次变换后点A 的y 坐标就还原,每经过一次3变换x 坐标增加2.因而第九次变换后得到点A 9的坐标为(16,1+).3三、解答题17.解:描点连线如图所示,它像五角星.18.解:方法一:用有序数对(a ,b )表示.比如:以点A为原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系,则点B相对于点A的位置是(3,3).方法二:用方向和距离表示.比如:点B位于点A的东北方向(或北偏东45°方向),距离点A m处.19.解:(1)如图.(2)如图,以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系,则B(1,2),B'(3,5).20.[解析]三角形AOB的三边均不与坐标轴平行,不能直接利用三角形的面积公式求面积,需通过作辅助线,用“添补”法间接计算.解:如图,过点A作AE⊥y轴于点E,过点B作BF⊥x轴于点F,延长EA,FB交于点C,则四边形OECF为长方形.由点A,B的坐标可知AE=3,OE=4,OF=4,BF=1,CE=4,CF=4,所以AC=1,BC=3,所以S三角形AOB=S长方形OECF-S三角形OAE-S三角形ABC-S三角形BOF=4×4-×4×3-×3×1-×4×1=6.5.21.解:(1)(4,6)(2)因为点P的移动速度为每秒2个单位长度,所以当点P移动了4秒时,它移动了8个单位长度,此时点P的坐标为(4,4),图略.(3)当点P到x轴的距离为5个单位长度时,有两种情况:①若点P在AB上,则点P移动了4+5=9(个)单位长度,此时点P移动了9÷2=4.5(秒);②若点P在OC上,则点P移动了4+6+4+1=15(个)单位长度,此时点P移动了15÷2=7.5(秒).综上所述,当点P到x轴的距离为5个单位长度时,点P移动了4.5秒或7.5秒.22.解:(1)若将点A平移到原点O处,则平移方法(不唯一)是向左平移2个单位长度,再向下平移3个单位长度.另两个顶点B,C的对应点的坐标分别是(-2,-1),(1,-3).(2)若将点B平移到原点O处,则平移方法是向下平移2个单位长度.另两个顶点A,C的对应点的坐标分别是(2,1),(3,-2).(3)若将点C平移到原点O处,则平移方法是向左平移3个单位长度.另两个顶点A,B的对应点的坐标分别是(-1,3),(-3,2).23.解:(1)∵三角形ABC中任意一点P(x,y)经过平移后的对应点为P1(x-5,y+2),∴三角形ABC 向左平移5个单位长度,再向上平移2个单位长度(平移方法不唯一)得到三角形A 1B 1C 1.∵A (4,3),B (3,1),C (1,2),∴点A 1的坐标为(-1,5),点B 1的坐标为(-2,3),点C 1的坐标为(-4,4).(2)三角形A 1B 1C 1的面积=三角形ABC 的面积=3×2-×1×3-×1×2-×1×2=.24.解:(1)∵四边形ONEF 是矩形,∴点M 是OE 的中点.∵O (0,0),E (4,3),∴点M 的坐标为.(2,32)(2)设点D 的坐标为(x ,y ).若以AB 为对角线,AC ,BC 为邻边构成平行四边形,则AB ,CD 的中点重合∴Error!,解得,Error!.若以BC 为对角线,AB ,AC 为邻边构成平行四边形,则AD ,BC 的中点重合∴Error!,解得,Error!.若以AC 为对角线,AB ,BC 为邻边构成平行四边形,则BD ,AC 的中点重合∴Error!,解得,Error!.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5).。
平面直角坐标系培优训练知识点一:利用象限来确定1.若y=√x−2+√2−x−3,则P(x,y)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.若点P(a,b)在第三象限,则点M(b−1,−a+1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.已知点P(a,b)是平面直角坐标系中第四象限的点,则化简√b2+|b−a|的结果是()A. a−2bB. aC. −a+2bD. −a4.已知点M(1−2m,m−1)在第四象限,则m的取值范围是()A.m<12B. m>1 C. 1>m>12D. −1<m<−125.已知点P(a,b)在第四象限,且|a|=2,|b|=3,则点P的坐标是______.6.已知点P、Q的坐标分别为(2m−5,m−1)、(n+2,2n−1),若点P在第二、四象限的角平分线上,点Q在第一、三象限的角平分线上,则m n的值为________.知识点二:利用距离来确定点的坐标7.点P在第四象限,且点P到x轴的距离为3,点P到y轴的距离为2,则点P的坐标为()A. (−3,−2)B. (3,−2)C. (2,3)D. (2,−3)8.已知在平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为()A.−3B. −5C. 1或−3D. 1或−59.已知点P的坐标为(3a+6,2−a),且点P到两坐标轴的距离相等,则点P的坐标是______.10.已知点A(1,2),AC//x轴,AC=5,则点C的坐标是______.11.点P(m−1,m+3)在直角坐标系的y轴上,则P点坐标为()A. (−4,0)B. (0,−4)C. (4,0)D. (0,4)12.点A(m−3,m+1)在第二、四象限的平分线上,则A的坐标为()A. (−1,1)B. (−2,−2)C. (−2,2)D. (2,2)13.已知点M(3a−9,1−a),将M点向左平移3个单位长度后落在y轴上,则a=______.14.在平面直角坐标系中,点A的坐标是(3a−5,a+1).(1)若点A在y轴上,求a的值及点A的坐标.(2)若点A到x轴的距离与到y轴的距离相等;求a的值及点A的坐标.15.已知:点P(2m+4,m−1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3;(4)点P在过A(2,−3)点,且与x轴平行的直线上.16.已知点A(a−1,−2),B(−3,b+1),根据以下要求确定a、b的值.(1)直线AB//y轴;(2)直线AB//x轴;(3)点A到y轴的距离等于点B到y轴的距离,同时点A到x轴的距离等于点B到x轴的距离.17.在平面直角坐标系中,有点A(−2,a+3),B(b,b−3).(1)当点A在第二象限的角平分线上时,求a的值;(2)当点B到x轴的距离是它到y轴的距离2倍时,求点B坐标及所在的象限位置.18.在平面直角坐标系中,有点A(1,2a+1),B(−a,a−3).(1)当点A在第一象限的角平分线上时,a的值为__________.(2)若线段AB//x轴.①求点A、B的坐标.②若将线段AB平移,点A、B分别平移至A′(x1,3x1+1),B′(x2,2x2−3),求A′,B′坐标。
平面直角坐标系培优训练题一、坐标在平面直角坐标系中的性质1.若a 为整数,且点(39,210)M a a --在第四象限内,则21a +的值为( ) . 2、在平面坐标系中,若点(1,3)M 与点(,3)N x 之间的距离是5,则x 的值是___ . 3.平面直角坐标系中的点1(2,)2P m m -关于x 轴的对称点在第四象限内,则m 的取值范围为 ______ .4、已知点M(-2,b)在第三象限,那么点N(b, 2 )在5、若点P (a ,b )在第四象限,则点M (b-a ,a-b )在 。
6、已知点P (a,b ),且ab >0,a +b <0,则点P 在7、若点P (x ,y )的坐标满足xy=0(x ≠y),则点P 在 ( )A .原点上B .x 轴上C .y 轴上D .x 轴上或y 轴上8、点P (m +3, m +1)在x 轴上,则m = ,点P 坐标为 。
9、已知点P(m ,2m -1)在y 轴上,则P 点的坐标是 。
10、点P 的横坐标是-3,且到x 轴的距离为5,则P 点的坐标是( ) 11、已知点P (x ,y )在第四象限,且│x│=3,│y│=5,则点P 的坐标是( )12、点P (x,y )位于x 轴下方,y 轴左侧,且x =2 ,y =4,点P 的坐标是( )二、平面直角坐标系中坐标的对称性13.(1)若(,8)P a 和(7,)Q b 关于y 轴对称,则2010()a b + =______.14.已知(2+3,2)A a b -和(8,32)B a b +关于x 轴对称,那么a b +=______ . 15、点A (1-a ,5),B (3,b )关于原点对称,则a+b=_______.三、坐标的平移16.如图,围棋盘放置在某个平面直角坐标系内,白棋②的坐标为(7,4)--,白棋④的坐标为(6,8)--,那么,黑棋的坐标应该分别是______ .17.如图,在直角坐标系中,已知点(3,0)A -,(0,4)B 且5AB =,对OAB ∆连续作旋转变换,依次得到三角形①,②,③,④,…,则三角形⑩的直角顶点的坐标为______ .18.以平行四边形的顶点A 为原点、直线AD 为x 轴建立直角坐标系,已知B 、D 两点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是( ).A.(3,3)B.(5,3)C.(3,5)D.(5,5)19、将点A (-4,2)向上平移3个单位长度得到的点B 的坐标是( ) 20、线段CD 是由线段AB 平移得到的,点A (–1,4)的对应点为C (4,7),则点B (-4,–1)的对应点D 的坐标为( ) 四、利用坐标求面积 21.如图,在平面直角坐标系中,四边形各顶点的坐标分别为:(00),(70),(95),(27)A BCD ,,,,.(1)求此四边形的面积(2)在坐标轴上,你能否找到一点P ,使50PBC S ∆=?若能,求出点P 的坐标;若不能,请说明理由._ 17 _ 16图②图①22.如果四边形ABCD 顶点的坐标依次为 (12)(25)(73)(51)A B C D ,、,、,、,, 那么四边形ABCD 的面积为______ .23、如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)、求点C ,D 的坐标及平行四边形ABDC 的面积ABDC S 四边形(2)、在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=2ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.五、动点问题24.(1)如图①,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2008次,点P 依次落在点1232008,,,...,P P P P 的位置, 求点2008P 的横坐标.(2)如图②,在平面直角坐标系中,一颗棋子从P 点处开始依次关于点A 、B 、C 作循环对称跳动,即第一次跳到点P 关于点A 的对称点M 处,接着跳到点M 关于点B 的对称点N 处,第三次再跳到点N 关于点C 的对称点处,…,如此下去.① 在图中画出点M 、N ,并写出点M 、N 的坐标.② 求经过第2008次跳动之后,棋子落点与点P 的距离.25.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示. (1)填写下列各点的坐标:1(_,_)A ;3(_,_)A ;12(_,_)A . (2)写出点4n A 的坐标(n 是正整数).(3)指出蚂蚁从点100A 到点101A 的移动方向.26.如图,已知(20)(22)A B --,、,,线段AB 交y 轴于点C . (1)求点C 的坐标.(2)若(60)D ,,动点P 从点D 开始在x 轴上以每秒3个单位向左运动,同时,动点Q 从点C 开始在y 轴上以每秒1个单位向下运动.问经过多少秒,APC AOQ S S ∆∆= ?_ 12 _ 11 _ 8_7 _4_3_。
y x1234–1–2–3–4–5–1–2–3–412345A F B C DE O 平面直角坐标系一、基本知识过关测试1.有顺序的两个数a 与b 组成的_________叫_________,记为________.6排7号可表示为______________;则(8,9)表示的意义是______________.2.在平面内画两条互相________,________重合的数轴就组成了_____________,此时坐标平面被两条坐标轴分为第_____象限、第_____象限、第______象限、第______象限;_______上的点不属于任何象限.①如图,分别写出下列各点坐标,A ______、B ______、C _______、D _______、E _______、F _______、O ________. ②在平面直角坐标系中描出下列个点,G (3,-4),H (-3,4),M (4,0),N (0,-1). 3.(1)设P (x ,y )在第一象限,且|x |=1,|y |=2,则P 点的坐标为_________. (2)点B (-1,m 2+1)在第______象限.(3)已知点C (m ,n ),且mn >0,m +n <0,则C 在第______象限. (4)点D (2m ,m -4)在第四象限,则偶数m =_______.(5)平面直角坐标系内,点A (n ,1-n )一定不在第________象限.4.点A (m +4,m -1)在x 轴上,则m =________;点B (m +1,3m +4)在y 轴上,则B 点坐标__________.5.①已知A 点坐标(-4,2),则A 点横坐标为________,纵坐标为_______,点A 到x 轴的距离为______,到y 轴的距离为________.②点P (x ,y )到x 轴,y 轴的距离分别为5和4,那么点P 的坐标是___________. ③N (a ,b )到x 轴的距离为___________,到y 轴的距离为___________.④已知点P (2-a ,3a +6)到两坐标轴的距离相等,则P 点坐标为___________. 6.已知点A (a ,3)和点B (-2,b ).①若A 、B 关于x 轴对称,则a =______,b =_______; ②若A 、B 关于y 轴对称,则a =______,b =_______; ③若A 、B 关于原点对称,则a =______,b =_______.7.△A 1B 1C 1是由△ABC 平移后得到的,已知△ABC 的边上任一点P (x 0,y 0)经平移后对应点为P 1(x 0+5,y 0-2),已知A (-1,2),B (-4,5),C (-3,0),则A 1、B 1、C 1的坐标分别为________,_________,__________,△A 1B 1C 1是由△ABC 先向_____移______个单位长度,再向______移______个单位长度而得到的.8.①已知点M (x ,y ),N (-2,3),且MN ∥x 轴,则x =_______,y =______;已知点A (x ,2),B (-3,y ),若AB ∥y 轴,则x =______,y =_______.②若|x |=|y |,则P (x ,y )在_________上;若P (x -3,2x )在第二象限的夹角平分线上,则P 点坐标为____________.9.已知点A (-1,-1),B (-1,4),C (4,4),若ABCD 是正方形,则顶点D 的坐标是______. 10.如图,有一只蜗牛从直角坐标系的原点O 向y 轴正方向出发,它前进1cm ,右转90°,再前进1cm 后,左转90°,再前进1cm 后,右转90°,…当它走到点P (n ,n )时,左边碰到障碍物,就直行1cm ,再右转90°,前进1cm ,再左转90°,前进1cm ,…,最后回到了x 轴上,则蜗牛所走过的路程S 为________厘米.E C B DAA (1,2)C (1,1)B (-1,-1)11.如图,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3);B (2,0),B 1(4,0),B 2(8,0),B 3(16,0),观察每次变换后的三角形有何变化,找出规律,再将△OA 3B 3变换成△OA 4B 4,则A 4,B 4的坐标分别是_______________.12.已知点A (-5,0),B (3,0),在y 轴上有一点C ,满足S △ABC =16,则点C 的坐标是___________,在坐标平面上满足S △ABC =16的点C 有_________个. 二、综合、提高、创新【例1】如图是某市的部分景点图,每个方格边长为一个单位长度,取北为y 轴的正方向,若以A :科技大学为坐标原点,则各景点的坐标为,B :大成殿(2,3),C :中心广场(5,4),D :钟楼(______),E :碑林(______).若记C :中心广场的坐标为(0,0),则各景点的坐标为A :科技大学(-5,-4),B :大成殿(-3,-1),D :钟楼(_______),E :碑林(______).【例2】如图,是传说中的藏宝岛图,藏宝人生前用直角坐标系的方法画出了这幅图.现今的寻宝人没有原来的地图,但知道在该图上有三块大石头A (1,2),B (-1,-1),C (1,1),而藏宝地的坐标是(4,-1),试设法在地图上找到藏宝地点.【例3】(1)如图1,△A 1B 1C 1是由△ABC 平移后得到的,已知A (0,0),B (3,-1),C (-1,-4)且B 1(-2,1),试写出△ABC 变换为△A 1B 1C 1的一种平移方案,写出点A 1,C 1的坐标.(2)如图2,△A 1B 1C 1是由△ABC 经过变换后得到的图形,试写出其变换的过程及在这些变换过程中点B ,C 对应的坐标.图1B 1C 1A 1BCA Oxy1234–1–2–3–4–5–1–2–3–4–512345图2A 1C 1B 1ABCyxO123451234–1–2–3–4–5–1–2–3–4–5【例4】(1)如图,在一单位为1cm的方格纸上,依图所示的规律,设定点A1,A2,A3,A4,……A n,连接点A1、A2、A3组成三角形,记为△1,连结点A2、A3、A4组成三角形,记为△2…,连结点A n、A n+1、A n+2组成三角形,记为△n(n为正整数)请你推断,当△n的面积为100cm2时,n=_______.(2)将正整数按如图所示的规律在平面直角坐标系中进行排列,每个正整数对应一个整点坐标(x,y),且x,y均为整数,如数5对应的坐标为(-1,-1),试探求数2012对应的坐标.【例5】(1)如下图,求面积①A(2,0),B(0,1),C(0,4).②A(0,2),B(-2,0),C(2,-1),D(34,0).yxO ABCDBOE CxyAS△ABC=_____________ S△ABC=_____________③A(1,4),B(3,-1),C(-4,-2).④A(-14,0),B(-11,6),C(-1,8),O(0,0).OxyBCAOACBxyS△ABC=_____________ S OABC=_____________(2)在平面直角坐标系中,A点坐标为(3-2,0),C点坐标为(-3-2,0),B 点在y轴上,且S△ABC=3,则B点的坐标是____________,在坐标平面上能满足S△ABC=3的点C有___________个.BO A Cl xyx y C ED B O A O B (1,3)A (2,-1)C (-4,-2)xy y xBADOC 【例6】已知:如图A (-4,0)、C (3,27),直线AC 交y 轴于点B .(1)求△AOC 的面积; (2)求点B 的坐标;(3)在平面直角坐标系内是否存在一点P (m ,1),使△ABP =S △AOC ,若存在试求出m 的值,若不存在试说明理由.三、反馈练习 (一)填空1.若点C (x ,y )满足x +y <0,xy >0,则点C 在第_____象限.2.若点A (a ,b )在第三象限,则点Q (-a +1,3b -5)在第______象限. 3.已知点P (a ,-2),Q (3,b )且PQ ∥y 轴,则a =______,b ≠_______. 4.已知A (x +1,2),B (-3,2y -1)关于y 轴对称,则x =_________. 5.(1)点M (3,0)到点N (-2,0)的距离是___________.(2)点C 在y 轴上,到坐标原点的距离为5个单位长度,则C 点坐标为_________. (3)点D 在y 轴左侧,它到x 轴距离为2个单位长度,到y 轴距离为1个单位长度,则D 点坐标为__________.6.在长方形ABCD 中,A (-4,1),B (0,1),C (0,3),则D 点的坐标是_________,S 长方形ABCD 为_______个单位面积.7.如图,一个机器人从O 点出发,向正东方走3m 到达A 1点,再向正北方向走6m 到达A 2点,再向正西方向走9m 到达A 3点,再向正南方向走12m 到达A 4点,再向正东方向走15m 到达A 5点.按如此规律走下去,相对于点O ,机器人走到A 6点的坐标为_______.8.如图一个粒子在第二象限移动,在第一分钟内它从原点运动到(-1,0),而后它接着按着图所示在与x 轴、y 轴平行的方向来回运动且每分钟移动1个单位长度,那么在2012分钟时,则这个粒子所处的位置的坐标为_____________. (二)解答9.如图,△ABC 是一个三角形,A (-4,0),B (2,0),把△ABC 沿AC 边平移,使A 点平移到C 点,△ABC 变换为△DCE ,已知C (0,3.5),请写出D 、E 的坐标,并用坐标说出平移的过程.10.如图所示,已知△ABC 的三个顶点的坐标分别为A (2,-1)、B (1,3)、C (-4,-2),求出△ABC 的面积.11.如图,A (1,0),B (3,0),C (0,3),D (2,-1).(1)试在y 轴上找一点P ,使三角形ADP 的面积与三角形ABC 的面积相等;(2)如果第二象限内有一点Q (a ,1),使S △QAC =S △ABC ,求Q 点坐标.※12.在平面直角坐标系中,已知O使原点,四边形ABCD是长方形,A,B,C的坐标分别使A(-2,-2),B(-2,-3),C(4,3).(1)求D点坐标;(2)将长方形ABCD以每秒1个单位长度水平向右平移,2秒钟后所得的四边形A1B1C1D1四个顶点的坐标各多少?请将(1)(2)中的答案直接填入下表中:点D A1B1C1D1坐标(3)以(2)中方式平移长方形ABCD,几秒钟后三角形OBD的面积等于长方形ABCD的面积.。
平面直角坐标系培优训练一、热身练习01. 在平面直角坐标系内,已知点(2m,m-4)在第四象限内,且m为偶数,那么m的值为 .02. 已知点P1(a-1,5)在第一、三象限角平分线上;点P2(2,b-8)在二、四象限角平分线上,则(-a+b)2004= .03.矩形ABCD中,AB=5,BC=2,以矩形的对角线交点为坐标原点,平行于边的直线为坐标轴,建立直角坐标系,则四个顶点的坐标为 .04.在正方形ABCD中,A、B、C三点坐标分别为(1,2)、(-2,1)、(-1,-2),则顶点D 的坐标为 .05.无论x为何实数值,点p(x+2,x-2)都不在第_______象限.06.如果点A(ba,1)在第一象限,则点B(-a2,ab)在第()象限.A.一B.二C.三D.四07.已知x、y实数,且P(x,y)的坐标满足x2+y2=0,则点p必在()A.原点上B.x轴正半轴上C.y轴正半轴D.x轴负半轴上08.如图所示,在平面直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.设坐标轴的单位长度为1厘米,整点P从原点O出发,速度为1厘米/秒,且整点P作向上或向右运动,运动的时间(秒)与整点(个)的关系如下表根据上表中的规律,回答下列问题:⑴当整点P从点O出发4秒时,可以得到的整点P的个数为个;⑵当整点P从点O出发8秒时,在直角坐标系中描出可以得到的所有整点,并顺次连接这些整点;⑶当整点P从点O出发秒时,可以到达整点(16,4)的位置.(1)根据表中所示的规律,点的个数比时间数多1,可计算出整点P从O点出发4秒时整点P的个数为5;(2)由表中所示规律可知,横纵坐标的和等于时间,则点的个数为(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0).如图:(3)由表中规律可知,横纵坐标的和等于时间,可得,16+4=20秒;二、培优升级例1:已知:)54,21(-+a a A ,且点A 到两坐标轴的距离相等,求A 点坐标.例2:已知:)3,4(A ,)1,1(B ,)0,3(C ,求三角形ABC 的面积.1、如图,正方形ABCD 的顶点分别为A(1,1) B(1,-1) C(-1,-1) D(-1,1),y 轴上有一点P(0,2)。
作点P 关于点A 的对称点p1,作p1关于点B 的对称点p2,作点p2关于点C 的对称点p3,作p3关于点D 的对称点p4,作点p4关于点A 的对称点p5,作p5关于点B 的对称点p6┅,按如此操作下去,则点p2011的坐标是多少?解法1:对称点P1、P2、P3、P4每4个点,图形为一个循环周期。
设每个周期均由点P1,P2,P3,P4组成。
第1周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)第2周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)第3周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)第n 周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)2011÷4=502…3,所以点P2011的坐标与P3坐标相同,为(-2,0)解法2:根据题意,P1(2,0) P2(0,-2) P3(-2,0) P4(0,2)。
根据p1-pn 每四个一循环的规律,可以得出:P4n (0,2),P4n+1(2,0),P4n+2(0,-2),P4n+3(-2,0)。
2011÷4=502…3,所以点P2011的坐标与P3坐标相同,为(-2,0)总结:此题是循环问题,关键是找出每几个一循环,及循环的起始点。
此题是每四个点一循环,起始点是p 点。
2、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:A4( , ),A8( , ),A10( , ),A12( );(2)写出点A4n 的坐标(n 是正整数);O 1 A 1 A 2 A 3 A4 A5 A6 A7 A8 A9 A 10 A 11 A 12 x y(3)按此移动规律,若点Am在x轴上,请用含n的代数式表示m(n是正整数)(4)指出蚂蚁从点A2011到点A2012的移动方向.(5)指出蚂蚁从点A100到点A101的移动方向.(6)指出A106,A201的的坐标及方向。
解法:(1)由图可知,A4,A12,A8都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,OA8=4,OA12=6,∴A4(2,0),A8(4,0),A12(6,0);同理可得出:A10(5,1)(2)根据(1)OA4n=4n÷2=2n,∴点A4n的坐标(2n,0);(3)∵只有下标为4的倍数或比4n小1的数在x轴上,∴点Am在x轴上,用含n的代数式表示为:m=4n或m=4n-1;(4)∵2011÷4=502…3,∴从点A2011到点A2012的移动方向与从点A3到A4的方向一致,为向右.(5)点A100中的n正好是4的倍数,所以点A100和A101的坐标分别是A100(50,0)和A101(50,1),所以蚂蚁从点A100到A101的移动方向是从下向上。
(6)方法1:点A1、A2、A3、A4每4个点,图形为一个循环周期。
设每个周期均由点A1,A2,A3,A4组成。
第1周期点的坐标为:A1(0,1),A2(1,1),A3(1,0),A4(2,0)第2周期点的坐标为:A1(2,1),A2(3,1),A3(3,0),A4(4,0)第3周期点的坐标为:A1(4,1),A2(5,1),A3(5,0),A4(6,0)第n周期点的坐标为:A1(2n-2,1),A2(2n-1,1),A3(2n-1,0),A4(2n,0)106÷4=26…2,所以点A106坐标与第27周期点A2坐标相同,(2×27-1,1),即(53,1)方向朝下。
201÷4=50…1,所以点A201坐标与第51周期点A1坐标相同,(2×51-2,1),即(100,1)方向朝右。
方法2:由图示可知,在x轴上的点A的下标为奇数时,箭头朝下,下标为偶数时,箭头朝上。
106=104+2,即点A104再移动两个单位后到达点A106,A104的坐标为(52,0)且移动的方向朝上,所以A106的坐标为(53,1),方向朝下。
同理:201=200+1,即点A200再移动一个单位后到达点A201,A200的坐标为(100,0)且移动的方向朝上,所以A201的坐标为(100,1),方向朝右。
3、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是多少?第42、49、2011秒所在点的坐标及方向?解法1:到达(1,1)点需要2秒到达(2,2)点需要2+4秒到达(3,3)点需要2+4+6秒到达(n,n)点需要2+4+6+...+2n秒=n(n+1)秒当横坐标为奇数时,箭头朝下,再指向右,当横坐标为偶数时,箭头朝上,再指向左。
35=5×6+5,所以第5*6=30秒在(5,5)处,此后要指向下方,再过5秒正好到(5,0)即第35秒在(5,0)处,方向向右。
42=6×7,所以第6×7=42秒在(6,6)处,方向向左49=6×7+7,所以第6×7=42秒在(6,6)处,再向左移动6秒,向上移动一秒到(0,7)即第49秒在(0,7)处,方向向右解法2:根据图形可以找到如下规律,当n为奇数是n2秒处在(0,n)处,且方向指向右;当n为偶数时n2秒处在(n,0)处,且方向指向上。
35=62-1,即点(6,0)倒退一秒到达所得点的坐标为(5,0),即第35秒处的坐标为(5,0)方向向右。
用同样的方法可以得到第42、49、2011处的坐标及方向。
4、如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,顶点A55的坐标是()解法1:观察图象,每四个点一圈进行循环,根据点的脚标与坐标寻找规律。
观察图象,点A1、A2、A3、A4每4个点,图形为一个循环周期。
设每个周期均由点A1,A2,A3,A4组成。
第1周期点的坐标为:A1(-1,-1),A2(-1,1),A3(1,1),A4(1,-1)第2周期点的坐标为:A1(-2,-2),A2(-2,2),A3(2,2),A4(2,-2)第3周期点的坐标为:A1(-3,-3),A2(-3,3),A3(3,3),A4(3,-3)第n周期点的坐标为:A1(-n,-n),A2(-n,n),A3(n,n),A4(n,-n)∵55÷4=13…3,∴A55坐标与第14周期点A3坐标相同,(14,14),在同一象限解法2:∵55=4×13+3,∴A55与A3在同一象限,即都在第一象限,根据题中图形中的规律可得:3=4×1-1,A3的坐标为(1,1),7=4×2-1,A7的坐标为(2,2),11=4×3-1,A11的坐标为(3,3);55=4×14-1,A55(14,14)5、如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为()45.解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2012个点是(45,13),6、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第88个点的坐标为().解:由图形可知:点的横坐标是偶数时,箭头朝上,点的横坐标是奇数时,箭头朝下。
坐标系中的点有规律的按列排列,第1列有1个点,第2列有2个点,第3列有3个点…第n列有n个点。
∵1+2+3+4+…+12=78,∴第78个点在第12列上,箭头常上。