虚拟变量回归模型
- 格式:ppt
- 大小:612.00 KB
- 文档页数:39
第9章虚拟变量回归模型9.1 复习笔记考点一:ANOVA模型★★★1.虚拟变量含义虚拟变量是指仅有0和1两个取值的变量,是一种定性变量。
一般而言,虚拟变量等于0表示变量不具有某种性质,等于1表示具有某种性质。
虚拟变量也可以放到回归模型中。
这种模型被称为方差分析(ANOVA)模型。
2.虚拟变量模型(1)虚拟变量的表达式Y i=β1+β2D2i+β3D3i+u i应看到,除了不是定量回归元而是定性或虚拟回归元(若观测值属于某特定组则取值为1,若它不属于那一组则取值0)之外,方程与前面考虑的任何一个多元回归模型都是一样的。
所有的虚拟变量都用字母D表示。
(2)使用虚拟变量的注意事项①若定性变量有m个类别,则只需引入m-1个虚拟变量,否则就会陷入虚拟变量陷阱,即完全共线性或完全多重共线性(若变量之间存在不止一个精确的关系)情形。
对每个定性变量而言,所引入的虚拟变量的个数必须比该变量的类别数少一个。
②不指定其虚拟变量的那一组被称为基组、基准组、控制组、比较组、参照组或省略组。
所有其他的组都与基准组进行比较。
③截距值(β1)代表了基准组的均值。
④附属于方程中虚拟变量的系数被称为级差截距系数,它反映取值为1的地区的截距值与基准组的截距系数之间的差别。
⑤如果定性变量不止一类,那么,基准组的选择完全取决于研究者。
⑥对于虚拟变量陷阱,如果在这种模型中不使用截距项,那么引入与变量的类别相同数量的虚拟变量就能够回避虚拟变量陷阱的问题。
因此,如果从方程中去掉截距项,并考虑如下模型Y i=β1D1i+β2D2i+β3D3i+u i由于此时没有完全共线性,所以就不会陷入虚拟变量陷阱。
但要确定做这个回归时,一定要使用回归软件包中的无截距选项。
⑦在一个含有截距的方程中,能更容易地处理是否有某个组与基准组有所不同以及有多大的不同,所以在方程中包括截距更方便。
为了检查分组是否得当,也可通过将虚拟变量的系数相对0做t检验(或者更一般地,对适当的虚拟变量系数集做一个F检验),就可以检验分类是否适当。
虚拟变量回归结果解读虚拟变量回归是一种经济统计学中常用的回归分析方法。
它用于处理定性变量,将其转换成虚拟变量,进而分析它们对因变量的影响。
本文将对虚拟变量回归的结果进行解读,帮助读者更好地理解和应用这一方法。
1. 背景介绍虚拟变量回归是一种基于二进制编码的方法,将定性变量转化为数值变量,以便进行回归分析。
它常用于控制混杂因素、检验效应等统计分析中。
在解读虚拟变量回归结果之前,我们首先需要了解回归模型的设定和数据样本。
2. 回归模型设定虚拟变量回归分析的基本模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y为因变量,X1、X2、...、Xn为虚拟变量,β0、β1、β2、...、βn为回归系数,ε为误差项。
3. 解读回归系数在虚拟变量回归中,回归系数的解读依赖于虚拟变量的编码方式。
这里以一个二分类虚拟变量为例进行解释。
3.1 虚拟变量为二分类假设我们的虚拟变量为性别,编码方式为男性为1,女性为0。
回归结果显示该虚拟变量的回归系数为β1 = 0.2。
这一结果的解读如下:- 对于男性(虚拟变量为1),与女性相比,因变量的平均值(或均值的对数值)比女性多0.2个单位。
这说明男性相对于女性,对因变量有着0.2个单位的正向影响。
- 对于女性(虚拟变量为0),回归系数不产生作用。
因此,回归结果可以说是基于男性进行解读。
3.2 虚拟变量为多分类如果虚拟变量有多个分类,例如教育程度分为初中、高中和大学三类。
回归结果显示分别为β1 = 0.3,β2 = 0.5。
解读如下:- 对于初中教育程度(虚拟变量为1,其它分类为0),与高中相比,因变量的平均值比高中多0.3个单位。
- 对于高中教育程度(虚拟变量为1,其它分类为0),与大学相比,因变量的平均值比大学多0.5个单位。
- 对于大学教育程度(虚拟变量为1,其它分类为0),回归系数不产生作用。
4. 虚拟变量回归的显著性检验回归结果中还会提供每个虚拟变量的显著性检验结果,常见的检验方法包括t检验和F检验。
Econometrics第五章虚拟变量回归模型(教材第六章)第五章虚拟变量回归模型第一节虚拟变量的性质和引入的意义第二节虚拟变量的引入第三节交互作用效应第四节含虚拟变量的回归模型学习要点虚拟变量的性质,虚拟变量的设定5.1 虚拟变量的性质和引入的意义虚拟变量的性质f定性变量性别(男,女)婚姻状况(已婚,未婚)受教育程度(高等教育,其他)收入水平(高收入,中低收入)肤色(白人,有色人种)政治状况(和平时期,战争时期)f引入虚拟变量(Dummy Variables)1、分离异常因素的影响,例如分析我国GDP的时间序列,必须考虑“文革”因素对国民经济的破坏性影响,剔除不可比的“文革”因素。
2、检验不同属性类型对因变量的作用,例如工资模型中的文化程度、季节对销售额的影响。
3、提高模型的精度,相当与将不同属性的样本合并,扩大了样本量,从而提高了估计精度)。
5.1 虚拟变量的性质和引入的意义5.2 虚拟变量的引入虚变量引入的方式主要有两种f加法方式虚拟变量与其它解释变量在模型中是相加关系,称为虚拟变量的加法引入方式。
加法引入方式引起截距变动5.2 虚拟变量的引入f 虚拟变量的作用在于把定性变量“定量化”:通过赋值0和1,0表示变量不具备某种性质,1表示具备。
f 例,0代表男性,1代表女性;0代表未婚,1代表已婚;等等。
f 这类取值为0和1的变量称为虚拟变量(dummy variables ),通常用符号D 表示。
f 事实上,模型可以只包括虚拟变量(ANOVA 模型):其中,0,1,i i D D ==男性;女性。
12i i iY B B D u =++5.2 虚拟变量的引入虚拟变量的性质f 假定随机扰动项满足男性的期望:5.2 虚拟变量的引入虚拟变量的性质f 食品支出对性别虚拟变量(男=0,女=1)回归的结果:f 结果怎么解释?f 由于男性赋值为0,女性赋值为1,因此,截距项表示取值为0的一类(这里是男性)的均值。