山东省冠县武训高级中学高考数学 1.1 集合的概念与运算复习题库
- 格式:doc
- 大小:114.50 KB
- 文档页数:4
第一章集合、常用逻辑用语与不等式第一节集合1.设集合A={x|x≥1},B={x|-1<x<2},则A∩B=()A.{x|x>-1}B.{x|x≥1}C.{x|-1<x<1}D.{x|1≤x<2}2.(2022·全国乙卷1题)设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈MB.3∈MC.4∉MD.5∉M3.已知集合P={x|x<3},Q={x∈Z||x|<2},则()A.P⫋QB.Q⫋PC.P∩Q=PD.P∪Q=Q4.(2023·新高考Ⅱ卷2题)设集合A={0,-a},B={1,a-2,2a-2},若A⊆B,则a=()A.2B.1C.23D.-15.(2024·长春吉大附中预测)集合A,B满足A∪B={2,4,6,8,10},A∩B={2,8},A={2,6,8},则集合B中的元素个数为()A.3B.4C.5D.66.(多选)已知全集U=Z,集合A={x|2x+1≥0,x∈Z},B={-1,0,1,2},则()A.A∩B={0,1,2}B.A∪B={x|x≥0}C.(∁U A)∩B={-1}D.A∩B的非空真子集个数是67.(多选)若集合M={x|-3<x<1},N={x|x≤3},则集合{x|x≤-3或x≥1}=()A.M∩NB.∁R MC.∁R(M∩N)D.∁R(M∪N)8.设集合A={x|x2-4x-5=0},若1-2∈A,则a=.9.已知集合A={x|(x-1)(x-3)<0},B={x|2<x<4},则A∩B=,A∪B=,(∁R A)∪B=.10.已知集合A={x|x<-1或x≥0},B={x|a≤x<a+2},若A∪B=R,则实数a的取值范围是.11.设全集U=R,集合A={x|-1<x<2},B={x|x>1},则图中阴影部分表示的集合为()A.{x|x≥1}B.{x|x≤1}C.{x|-1<x≤1}D.{x|-1≤x<2}12.(2024·重庆质量调研)已知全集U=R,集合A={x|x-2x2≥-15},B={x|x≤-3或x≥2},则A∩∁U B=()A.[-52,2)B.(-3,-52]C.(-3,3]D.(2,3]13.已知集合A=(1,3),集合B={x|2m<x<1-m}.若A∩B=⌀,则所有满足条件的实数m的取值范围是()A.-23≤m<13B.m≥0C.m≥13D.0≤m<1314.若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)是集合A的同一种分拆.若集合A有三个元素,则集合A的不同分拆种数是.15.某年级先后举办了数学、历史、音乐的讲座,其中有85人听了数学讲座,70人听了历史讲座,61人听了音乐讲座,其中16人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有5人听了全部讲座,则听讲座的人数为.参考答案与解析1.D因为集合A={x|x≥1},B={x|-1<x<2},所以A∩B={x|1≤x<2}.故选D.2.A由题意知M={2,4,5},故选A.3.B由题意,Q={x∈Z||x|<2}={-1,0,1},P={x|x<3},故Q⫋P,故A错误,B正确,又P∩Q={-1,0,1}=Q,P∪Q={x|x<3}=P,故C、D错误.故选B.4.B由题意,得0∈B.又B={1,a-2,2a-2},所以a-2=0或2a-2=0.当a-2=0时,a=2,此时A={0,-2},B={1,0,2},不满足A⊆B,舍去.当2a-2=0时,a=1,此时A={0,-1},B={1,-1,0},满足A⊆B.综上所述,a=1.故选B.5.B因为A∩B={2,8},故{2,8}⊆B,又A={2,6,8},故6∉B,又A∪B={2,4,6,8,10},故B={2,4,8,10},即集合B中的元素个数为4.故选B.6.ACD A={x|2x+1≥0,x∈Z}={x|x≥-12,x∈Z},B={-1,0,1,2},A∩B={0,1,2},故A正确;A∪B={x|x≥-1,x∈Z},故B错误;∁U A={x|x<-12,x∈Z},所以(∁U A)∩B={-1},故C正确;由A∩B={0,1,2},则A∩B的非空真子集个数是23-2=6,故D正确.故选A、C、D.7.BC因为集合M={x|-3<x<1},N={x|x≤3},所以M∩N={x|-3<x<1},M∪N={x|x≤3},∁R M={x|x≤-3或x≥1},所以∁R(M∩N)={x|x≤-3或x≥1},∁R(M∪N)={x|x >3}.故选B、C.8.1或115解析:由题得A={-1,5},则1-2=-1或1-2=5,解得a=1或115.9.(2,3)(1,4)(-∞,1]∪(2,+∞)解析:由已知得A={x|1<x<3},B={x|2<x<4},所以A∩B={x|2<x<3},A∪B={x|1<x<4},(∁R A)∪B={x|x≤1或x>2}.10.[-2,-1]解析:由题意知,若A∪B=R,画出数轴如图,则必有≤-1,+2≥0,解得-2≤a≤-1,即实数a的取值范围为[-2,-1].11.C∵全集U=R,集合A={x|-1<x<2},B={x|x>1},∴∁U B={x|x≤1},∴图中阴影部分表示的集合为A∩(∁U B)={x|-1<x<2}∩{x|x≤1}={x|-1<x≤1}.故选C.12.A因为U=R,B={x|x≤-3或x≥2},所以∁U B={x|-3<x<2},又A={x|x-2x2≥-15}={x |2x 2-x -15≤0}={x |-52≤x ≤3},所以A ∩∁U B ={x |-52≤x <2},故选A.13.B由A ∩B =⌀,得:①若2m ≥1-m ,即m ≥13时,B =⌀,符合题意;②若2m <1-m ,即m <13时,因为A ∩B =⌀,则<13,1-≤1或<13,2≥3,解得0≤m <13,综上所述m ≥0.故选B.14.27解析:不妨令A ={1,2,3},因为A 1∪A 2=A ,当A 1=⌀时,A 2={1,2,3},当A 1={1}时,A 2可为{2,3},{1,2,3}共2种,同理A 1={2},{3}时,A 2各有2种,当A 1={1,2}时,A 2可为{3},{1,3},{2,3},{1,2,3}共4种,同理A 1={1,3},{2,3}时,A 2各有4种,当A 1={1,2,3}时,A 2可为A 1的子集,共8种,故共有1+2×3+4×3+8=27(种)不同的分拆.15.184解析:设全年级同学是全集U ,听数学讲座的人组成集合A ,听历史讲座的人组成集合B ,听音乐讲座的人组成集合C ,根据题意,用Venn 图表示,如图所示.由Venn 图可知,听讲座的人数为62+7+5+11+4+50+45=184.。
§1.1集合考试要求 1.了解集合的含义,了解全集、空集的含义.2.理解元素与集合的属于关系,理解集合间的包含和相等关系.3.会求两个集合的并集、交集与补集.4.能用自然语言、图形语言、集合语言描述不同的具体问题,能使用Venn图表示集合间的基本关系和基本运算.知识梳理1.集合与元素(1)集合中元素的三个特性:____________、____________、____________.(2)元素与集合的关系是________或________,用符号______或________表示.(3)集合的表示法:__________、____________、____________.(4)常见数集的记法集合非负整数集(或自然数集)正整数集整数集有理数集实数集符号N*(或N+)2.集合的基本关系(1)子集:一般地,对于两个集合A,B,如果集合A中____________都是集合B中的元素,就称集合A为集合B的子集,记作________(或B⊇A).(2)真子集:如果集合A⊆B,但存在元素x∈B,且________,就称集合A是集合B的真子集,记作________(或B A).(3)相等:若A⊆B,且________,则A=B.(4)空集:不含任何元素的集合叫做空集,记为∅.空集是________________的子集,是________________________的真子集.3.集合的基本运算表示集合语言图形语言记法运算并集交集补集常用结论1.若集合A有n(n≥1)个元素,则集合A有2n个子集,2n-1个真子集.2.A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)集合{x∈N|x3=x},用列举法表示为{-1,0,1}.()(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(3)若1∈{x2,x},则x=-1或x=1.()(4)对任意集合A,B,都有(A∩B)⊆(A∪B).()教材改编题1.(2022·新高考全国Ⅱ)已知集合A={-1,1,2,4},B={x||x-1|≤1},则A∩B等于() A.{-1,2} B.{1,2} C.{1,4} D.{-1,4}2.下列集合与集合A={2 022,1}相等的是()A.(1,2 022)B.{(x,y)|x=2 022,y=1}C.{x|x2-2 023x+2 022=0}D.{(2 022,1)}3.设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2},则A∪B=________,∁U(A∩B)=________.题型一集合的含义与表示例1 (1)(2022·衡水模拟)设集合A={(x,y)|y=x},B={(x,y)|y=x2},则集合A∩B的元素个数为()A.0 B.1 C.2 D.3(2)已知集合A={1,a-2,a2-a-1},若-1∈A,则实数a的值为()A.1 B.1或0C.0 D.-1或0听课记录:______________________________________________________________________________________________________________________________________思维升华解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条件)构造关系式解决相应问题.跟踪训练1 (1)(多选)若集合M={x|x-2<0,x∈N},则下列四个命题中,错误的命题是() A.0∉M B.{0}∈MC.{1}⊆M D.1⊆M(2)(2023·聊城模拟)已知集合A={0,1,2},B={ab|a∈A,b∈A},则集合B中元素的个数为() A.2 B.3 C.4 D.5题型二集合间的基本关系例2 (1)(2022·宜春质检)已知集合A={x|y=ln(x-2)},B={x|x≥-3},则下列结论正确的是()A.A=B B.A∩B=∅C.A B D.B⊆A(2)设集合A={x|-1≤x+1≤2},B={x|m-1≤x≤2m+1},当x∈Z时,集合A的真子集有________个;当B⊆A时,实数m的取值范围是________.听课记录:______________________________________________________________________________________________________________________________________思维升华(1)空集是任何集合的子集,在涉及集合关系问题时,必须考虑空集的情况,否则易造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn图等来直观解决这类问题.跟踪训练2 (1)(多选)已知非空集合M满足:①M⊆{-2,-1,1,2,3,4},②若x∈M,则x2∈M.则集合M可能是()A.{-1,1} B.{-1,1,2,4}C.{1} D.{1,-2,2}(2)函数f(x)=x2-2x-3的定义域为A,集合B={x|-a≤x≤4-a},若B⊆A,则实数a的取值范围是________________.题型三集合的基本运算命题点1集合的运算例3 (1)(2021·全国乙卷)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T 等于()A.∅B.S C.T D.Z(2)设全集U=R,A={x|-2≤x<4},B={x|y=x+2},则图中阴影部分表示的集合为()A.{x|x≤-2} B.{x|x>-2}C.{x|x≥4} D.{x|x≤4}听课记录:______________________________________________________________________________________________________________________________________命题点2利用集合的运算求参数的值(范围)例4 (2023·衡水模拟)已知集合A={x|y=ln(1-x2)},B={x|x≤a},若(∁R A)∪B=R,则实数a 的取值范围为()A.(1,+∞) B.[1,+∞)C.(-∞,1) D.(-∞,1]听课记录:______________________________________________________________________________________________________________________________________思维升华对于集合的交、并、补运算,如果集合中的元素是离散的,可用Venn图表示;如果集合中的元素是连续的,可用数轴表示,此时要注意端点的情况.跟踪训练3 (1)(2022·全国甲卷)设全集U={-2,-1,0,1,2,3},集合A={-1,2},B={x|x2-4x+3=0},则∁U(A∪B)等于()A.{1,3} B.{0,3}C.{-2,1} D.{-2,0}(2)(2023·驻马店模拟)已知集合A={x|(x-1)·(x-4)<0},B={x|x>a},若A∪B={x|x>1},则a 的取值范围是()A .[1,4)B .(1,4)C .[4,+∞)D .(4,+∞)题型四 集合的新定义问题例5 (1)(多选)当一个非空数集F 满足条件“若a ,b ∈F ,则a +b ,a -b ,ab ∈F ,且当b ≠0时,ab ∈F ”时,称F 为一个数域,以下说法正确的是( )A .0是任何数域的元素B .若数域F 有非零元素,则2 023∈FC .集合P ={x |x =3k ,k ∈Z }为数域D .有理数集为数域(2)已知集合M ={1,2,3,4},A ⊆M ,集合A 中所有元素的乘积称为集合A 的“累积值”,且规定:当集合A 只有一个元素时,其累积值即为该元素的数值,空集的累积值为0.设集合A 的累积值为n .①若n =3,则这样的集合A 共有________个; ②若n 为偶数,则这样的集合A 共有________个.听课记录:______________________________________________________________ ________________________________________________________________________ 思维升华 解决集合新定义问题的关键解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目所给定义和要求进行恰当转化,切忌同已有概念或定义相混淆.跟踪训练4 设集合U ={2,3,4},对其子集引进“势”的概念:①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,依此类推.若将全部的子集按“势”从小到大的顺序排列,则排在第6位的子集是________.。
专题01集合及其运算最新考纲1.了解集合的含义,体会元素与集合的属于关系.2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的详细问题.3.理解集合之间包含与相等的含义,能识别给定集合的子集.4.在详细情境中,了解全集与空集的含义.5.理解两个集合的并集与交集的含义,会求两个简洁集合的并集与交集.6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.7.能运用韦恩(Venn)图表达集合的基本关系及集合的基本运算.基础学问融会贯穿1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+) Z Q R2.集合间的基本关系3.集合的基本运算【学问拓展】1.若有限集合A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n-1.2.A⊆B⇔A∩B=A⇔A∪B=B.3.A∩(∁U A)=∅;A∪(∁U A)=U;∁U(∁U A)=A.重点难点突破【题型一】集合的含义【典型例题】下列命题正确的有()(1)很小的实数可以构成集合;(2)集合{y|y=x2﹣1}与集合{(x,y)|y=x2﹣1}是同一个集合;(3)这些数组成的集合有5个元素;(4)集合{(x,y)|xy≤0,x,y∈R}是指其次和第四象限内的点集.A.0个B.1个C.2个D.3个【解答】解:(1)中很小的实数没有确定的标准,不满意集合元素的确定性;(2)中集合{y|y=x2﹣1}的元素为实数,而集合{(x,y)|y=x2﹣1}的元素是点;(3)有集合元素的互异性这些数组成的集合有3个元素;(4)集合{(x,y)|xy≤0,x,y∈R}中还包括实数轴上的点.故选:A.【再练一题】下面三个集合:A={x|y=x2+1},B={y|y=x2+1},C={(x,y)|y=x2+1},请说说它们各自代表的含义.【解答】解:A是数集,是以函数的定义域构成集合,且A=R;B是数集,是由函数的值域构成,且B={y|y≥1};C为点集,是由抛物线y=x2+1上的点构成.思维升华 (1)用描述法表示集合,首先要搞清晰集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合.(2)集合中元素的互异性经常简洁忽视,求解问题时要特殊留意.分类探讨的思想方法常用于解决集合问题.【题型二】集合的基本关系【典型例题】已知集合A={x|x2﹣5x+4<0,x∈Z},B={m,2},若A⊆B,则m=()A.1 B.2 C.3 D.5【解答】解:A={x|1<x<4,x∈Z}={2,3};又A⊆B;∴m=3.故选:C.【再练一题】已知集合A={x|3x﹣a≥0},B={x|log2(x﹣2)≤1},若B⊆A,则实数a的取值范围是()A.(﹣∞,6)B.(﹣∞,6] C.(﹣∞,12)D.(12,+∞)【解答】解:∵3x﹣a≥0,∴x,∴A=[,+∞),∵log2(x﹣2)≤1=log22,∴0<x﹣2≤2,∴2<x≤4,∴B=(2,4],∵B⊆A,∴2,∴a≤6,∴实数a的取值范围是(﹣∞,6].故选:B.思维升华 (1)空集是任何集合的子集,在涉及集合关系时,必需优先考虑空集的状况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满意的关系,常用数轴、Venn图等来直观解决这类问题.【题型三】集合的基本运算命题点1 集合的运算【典型例题】设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=()A.{6,9} B.{6,7,9} C.{7,9} D.{7,9,10}【解答】解:U={n∈N|1≤n≤10}={1,2,3,4,5,6,7,8,9,10},则∁U A={4,6,7,9,10},则(∁U A)∩B={7,9},故选:C.【再练一题】已知集合A={x|x2﹣3x﹣4>0},B={x|﹣1≤x≤3},则(∁R A)∩B=()A.(﹣1,3)B.[﹣1,3] C.[﹣1,4] D.(﹣1,4)【解答】解:A={x|x2﹣3x﹣4>0}={x|x>4或x<﹣1},B={x|﹣1≤x≤3},∁R A={x|﹣1≤x≤4},则(∁R A)∩B={x|﹣1≤x≤3}=[﹣1,3],故选:B.命题点2 利用集合的运算求参数【典型例题】已知集合A={x|x<3},B={x|x>a},若A∩B≠∅,则实数a的取值范围为()A.[3,+∞)B.(3,+∞)C.(﹣∞,3)D.(﹣∞,3]【解答】解:结合数轴可知,当a≥3时,A∩B=∅,故A∩B≠∅,则实数a的取值范围a<3,故选:C.【再练一题】已知集合M={x|3x2﹣5x﹣2≤0},N=[m,m+1],若M∪N=M,则m的取值范围是()A.B.C.D.【解答】解:M={x|x≤2},由M∪N=M可得N⊆M,则,解得m≤1,故选:B.思维升华 (1)一般来讲,集合中的元素若是离散的,则用Venn图表示;集合中的元素若是连续的,则用数轴表示,此时要留意端点的状况.(2)运算过程中要留意集合间的特殊关系的运用,敏捷运用这些关系,会使运算简化.【题型四】集合的新定义问题【典型例题】设集合X是实数集R的子集,假如点x0∈R满意:对随意a>0,都存在x∈X,使得0<|x﹣x0|<a,称x0为集合X的聚点.用Z表示整数集,则在下列集合中:①;②{x|x∈R,x≠0};③;④整数集Z以0为聚点的集合有()A.②③B.①④C.①③D.①②④【解答】解:①中,集合中的元素是极限为1的数列,除了第一项0之外,其余的都至少比0大,∴在a的时候,不存在满意得0<|x|<a的x,∴0不是集合的聚点②集合{x|x∈R,x≠0},对随意的a,都存在x(事实上随意比a小得数都可以),使得0<|x|a∴0是集合{x|x∈R,x≠0}的聚点③集合中的元素是极限为0的数列,对于随意的a>0,存在n,使0<|x|a∴0是集合的聚点④对于某个a<1,比如a=0.5,此时对随意的x∈Z,都有|x﹣0|=0或者|x﹣0|≥1,也就是说不行能0<|x﹣0|<0.5,从而0不是整数集Z的聚点故选:A.【再练一题】已知集合M={(x,y)|y=f(x)},若对于∀(x1,y1)∈M,∃(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“互垂点集”.给出下列四个集合:;M2={(x,y)|y=lnx};;M4={(x,y)|y=sin x+1}.其中是“互垂点集”集合的为()A.M1B.M2C.M3D.M4【解答】解:设A(x1,y1),B(x1,y1)∵x1x2+y1y2=0,∴即OA⊥OB.由题可知,在一个点集中,若对于∀A(x1,y1)∈M,∃B(x2,y2)∈M,使得OA⊥OB成立,则这个集合就是“互垂点集”.对于集合M1,取A(0,1),要使OA⊥OB,则点B必需在x轴上,而集合M1中没有点会在x轴上,所以M1不是“互垂点集”,同理可判定M2,M3也不是“互垂点集”,即解除A,B,C.故选:D.思维升华解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清晰,应用到详细的解题过程之中.(2)用好集合的性质.解题时要擅长从试题中发觉可以运用集合性质的一些因素.基础学问训练1.已知集合,则以下正确的结论是()A. B. C. D.【答案】B【解析】由题意得.所以.故选B.2.已知集合A. B.(-1,2) C. D.【答案】C【解析】集合解不等式得集合,,所以即所以选C3.已知集合,则()A. B. C. D.【答案】C【解析】因为,解得x>0,所以,又因为所以故选C4.已知,则A. B. C. D.【答案】B【解析】,.故选:B.5.已知全集,则A. B.C. D.【答案】C【解析】解:全集,则故选:C.6.若,则()A. B. C. D.【答案】B【解析】由,得到,由,则,故选B.7.已知集合,集合A与B关系的韦恩图如图所示,则阴影部分所表示的集合为( )A. B.C. D.【答案】D【解析】解: 由图像可知阴影部分对应的集合为,,,故选D.8.集合,则的元素个数()A.3 B.4 C.5 D.6【答案】B【解析】为小于的整数,所以.故选B.9.已知全集,集合1,2,3,4,5,,则图中阴影部分表示的集合为A. B.1, C.2, D.1,2,【答案】C【解析】集合1,2,3,4,5,图中阴影部分表示的集合为2,.故选C.10.若集合A={x|x2<2,B={x|},则A∩B=( )A.(0,2) B.(,0) C.(0,) D.(-2,0)【答案】B【解析】集合A={x|x2<2, B={x|A∩B=(,0)。
高中数学学习材料马鸣风萧萧*整理制作一、选择题1.集合},{b a 的子集有 ( )A .2个B .3个C .4个D .5个2. 设集合{}|43A x x =-<<,{}|2B x x =≤,则A B = ( )A .(4,3)-B .(4,2]-C .(,2]-∞D .(,3)-∞3.已知()5412-+=-x x x f ,则()x f 的表达式是( )A .x x 62+B .782++x xC .322-+x xD .1062-+x x4.下列对应关系:( )①{1,4,9},{3,2,1,1,2,3},A B ==---f :x x →的平方根②,,A R B R ==f :x x →的倒数③,,A R B R ==f :22x x →-④{}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方其中是A 到B 的映射的是A .①③B .②④C .③④D .②③5.下列四个函数:①3y x =-;②211y x =+;③2210y x x =+-;④(0)1(0)xx y x x ⎧-≤⎪=⎨->⎪⎩.其中值域为R 的函数有 ( )A .1个B .2个C .3个D .4个6. 已知函数212x y x ⎧+=⎨-⎩ (0)(0)x x ≤>,使函数值为5的x 的值是( )A .-2B .2或52- C . 2或-2 D .2或-2或52-7.下列函数中,定义域为[0,∞)的函数是 ( )A .x y =B .22x y -=C .13+=x yD .2)1(-=x y8.若R y x ∈,,且)()()(y f x f y x f +=+,则函数)(x f ( )A . 0)0(=f 且)(x f 为奇函数B .0)0(=f 且)(x f 为偶函数C .)(x f 为增函数且为奇函数D .)(x f 为增函数且为偶函数9.下列图象中表示函数图象的是 ( )(A ) (B) (C ) (D)10.若*,x R n N ∈∈,规定:(1)(2)(1)n x x x x x n H =++⋅⋅⋅⋅⋅+-,例如:( ) 44(4)(3)(2)(1)24H -=-⋅-⋅-⋅-=,则52()x f x x H -=⋅的奇偶性为A .是奇函数不是偶函数B .是偶函数不是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数二、填空题11.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B = .12.已知集合M={(x ,y )|x +y =2},N={(x ,y )|x -y =4},那么集合M ∩N = .13.函数()1,3,x f x x +⎧=⎨-+⎩ 1,1,x x ≤>则()()4f f = .14.某班50名学生参加跳远、铅球两项测试,成绩及格人数分别为40人和31人,两项测试均不及格的人数是4人,两项测试都及格的有 人.15.已知函数f(x)满足f(xy)=f(x)+f(y),且f(2)=p,f(3)=q ,那么f(36)= .三、解答题16.已知集合A={}71<≤x x ,B={x|2<x<10},C={x|x<a },全集为实数集R .(Ⅰ)求A ∪B ,(C R A)∩B ;(Ⅱ)如果A ∩C ≠φ,求a 的取值范围.17.集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}.(Ⅰ)若A =B,求a 的值;x y 0 x y 0 x y 0 x y 0(Ⅱ)若∅A ∩B ,A ∩C =∅,求a 的值.18.已知方程02=++q px x 的两个不相等实根为βα,.集合},{βα=A , =B {2,4,5,6},=C {1,2,3,4},A ∩C =A ,A ∩B =φ,求q p ,的值?19.已知函数2()21f x x =-.(Ⅰ)用定义证明()f x 是偶函数;(Ⅱ)用定义证明()f x 在(,0]-∞上是减函数;(Ⅲ)作出函数()f x 的图像,并写出函数()f x 当[1,2]x ∈-时的最大值与最小值. yo 20.设函数1)(2++=bx ax x f (0≠a 、R b ∈),若0)1(=-f ,且对任意实数x (R x ∈)不等式)(x f ≥0恒成立. (Ⅰ)求实数a 、b 的值;(Ⅱ)当∈x [-2,2]时,kx x f x g -=)()(是单调函数,求实数k 的取值范围.17.解: 由已知,得B ={2,3},C ={2,-4}(Ⅰ)∵A =B 于是2,3是一元二次方程x 2-ax +a 2-19=0的两个根, 由韦达定理知:⎩⎨⎧-=⨯=+1932322a a 解之得a =5. (Ⅱ)由A ∩B ∅A ⇒∩≠B Φ,又A ∩C =∅,得3∈A ,2∉A ,-4∉A ,由3∈A ,得32-3a +a 2-19=0,解得a =5或a =-2当a =5时,A ={x |x 2-5x +6=0}={2,3},与2∉A 矛盾; 当a =-2时,A ={x |x 2+2x -15=0}={3,-5},符合题意.∴a =-2.18.解:由A ∩C=A 知A ⊆C又},{βα=A ,则C ∈α,C ∈β. 而A ∩B =φ,故B ∉α,B ∉β 显然即属于C 又不属于B 的元素只有1和3.不仿设α=1,β=3. 对于方程02=++q px x的两根βα, 应用韦达定理可得3,4=-=q p .19.(Ⅰ)证明:函数()f x 的定义域为R ,对于任意的x R ∈,都有 22()2()121()f x x x f x -=--=-=,∴()f x 是偶函数. (Ⅱ)证明:在区间(,0]-∞上任取12,x x ,且12x x <,则有 ,∵12,(,0]x x ∈-∞,12x x <,∴即1212()()0x x x x -⋅+>∴12()()0f x f x ->,即()f x 在(,0]-∞上是减函数. (Ⅲ)解:最大值为(2)7f =,最小值为(0)1f =-.20.解:(Ⅰ)∵0)1(=-f ∴01=+-b a∵任意实数x 均有)(x f ≥0成立∴⎩⎨⎧≤-=∆>0402a b a 解得:1=a ,2=b(Ⅱ)由(1)知12)(2++=x x x f∴1)2()()(2+-+=-=x k x kx x f x g 的对称轴为22-=k x ∵当∈x [-2,2]时,)(x g 是单调函数 ∴222-≤-k 或222≥-k ∴实数k 的取值范围是),6[]2,(+∞--∞ .。
2021年高考数学一轮复习专题1.1 集合的概念及其基本运算(讲)文(含解析)【课前小测摸底细】1.【课本典型习题,P12第3题】设集合,,求,.【答案】当时,,;当时,,;当时,则,;当,,时,,.2. 【xx高考天津,文1】已知全集,集合,集合,则集合()(A) (B) (C) (D)【答案】B【解析】,,则,故选B.3. 【湖北省武汉市xx届高三9月调研测试1】设集合,,,则中元素的个数为()A.3 B.4 C.5 D.6【答案】B.4.【基础经典试题】集合,集合,则等于( )A. B. C. D.5.【改编自xx年江西卷理科】若集合,则集合中的元素的非空子集个数为( )A.7 B.6 C.5 D.4【答案】A【解析】由已知得,集合=,所以其非空子集个数为,故选A.【考点深度剖析】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算.【经典例题精析】考点1 集合的概念【1-1】若,集合,求的值________.【答案】2【解析】由可知,则只能,则有以下对应关系:①或0,,1,a bb aba⎧⎪+=⎪=⎨⎪⎪=⎩②由①得符合题意;②无解.∴.【1-2】已知集合A={x|x2+mx+4=0}为空集,则实数m的取值范围是( )A.(-4,4) B.[-4,4] C.(-2,2) D.[-2,2]【答案】A【解析】依题意知一元二次方程无解,所以,解得.故选A.【1-3】已知A={a+2,(a+1)2,a2+3a+3},若1∈A,则实数a构成的集合B的元素个数是( ) A.0 B.1 C.2 D.3【课本回眸】1、集合的含义:某些指定的对象集在一起就成为一个总体,这个总体就叫集合,其中每一个对象叫元素。
山东省冠县武训高级中学2014高考数学 1.1 集合的概念与运算复习训练 一、选择题 1.已知集合A={(x,y)|x,y是实数,且x2+y2=1},B={(x,y)|x,y是实数,且y=x},则A∩B的元素个数为( ).A.0 B.1 C.2 D.3 解析 集合A表示圆x2+y2=1上的点构成的集合,集合B表示直线y=x上的点构成的集合,可判定直线和圆相交,故A∩B的元素个数为2. 答案 C .集合M={a,b},N={a+1,3},a,b为实数,若M∩N={2},则MN=( ) A.{0,1,2} B.{0,1,3} C.{0,2,3} D.{1,2,3} 解析:M∩N=2,2∈M,2∈N. ∴a+1=2,即a=1. 又M={a,b},b=2. A∪B={1,2,3}. 答案:D 3.设集合M={1,2},N={a2},则“a=1”是“NM”的( ). A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 解析 若NM,则需满足a2=1或a2=2,解得a=±1或a=±.故“a=1”是“NM”的充分不必要条件. 答案 A 4.图中的阴影表示的集合是( ) A.(UA)∩B B.(UB)∩A C.U(A∩B) D.U(A∪B) 解析:阴影部分在集合B中而不在集合A中,故阴影部分可表示为(UA)∩B. 答案:A 5.设集合M={(x,y)|x2+y2=1,xR,yR},N={(x,y)|x2-y=0,xR},yR,则集合M∩N中元素的个数为( ). A.1 B.2 C.3 D.4 解析 (数形结合法)x2+y2=1表示单位圆,y=x2表示开口方向向上的抛物线,画出二者的图形,可以看出有2个交点,故选B.答案 B 解析:由题意得,当a=1时,方程x2-ax+1=0无解,集合B=,满足题意;当a=2时,方程x2-ax+1=0有两个相等的实根1,集合B={1},满足题意;当a=3时,方程x2-ax+1=0有两个不相等的实根,,集合B={,},不满足题意.所以满足A∩B=B的a的值为1或2. 答案:D .已知集合A={x|x=a+(a2-1)i}(aR,i是虚数单位),若AR,则a=( ).A.1 B.-1 C.±1 D.0 解析 A?R,A中的元素为实数,所以a2-1=0,即a=±1. 答案 C 二、填空题.已知集合A={-1,1,2,4},B={-1,0,2},则A∩B=________. 解析 A∩B={-1,1,2,4}∩{-1,0,2}={-1,2}. 答案 {-1,2} .已知集合A={(0,1),(1,1),(-1,2)},B={(x,y)|x+y-1=0,x,yZ},则A∩B=________. 解析 A、B都表示点集,A∩B即是由A中在直线x+y-1=0上的所有点组成的集合,代入验证即可. 答案 {(0,1),(-1,2)} .已知集合M={x|<0},N={y|y=3x2+1,xR},则M∩N等于________. 解析:M={x|0<x<2},N={y|y≥1},M∩N=[1,2). 答案:[1,2) .若全集U=R,集合A={x|x≥1},则UA=________. 解析 UA={x|x<1}. 答案 {x|x<1} .设A,B是非空集合,定义A*B={x|xA∪B且xA∩B},已知A={x|0≤x≤3},B={y|y≥1},则A*B=____________________. 解析 由题意知,AB=[0,+∞),A∩B=[1,3], A*B=[0,1)(3,+∞). 答案 [0,1)(3,+∞) 三、解答题 1.已知集合A={x|(x-2)(x-3a-1)0得4<x<5, 故集合B={x|4<x<5}; (2)由题意可知,B={x|2a<x时,A={x|2<x3a+1,即a<时,A={x|3a+1<x<2}. 又因为A=B,所以,解得a=-1. 综上所述,a=-1 14.设集合A={x2,2x-1,-4},B={x-5,1-x,9},若A∩B={9},求AB. 解 由9A,可得x2=9或2x-1=9, 解得x=±3或x=5. 当x=3时,A={9,5,-4},B={-2,-2,9},B中元素重复,故舍去; 当x=-3时,A={9,-7,-4},B={-8,4,9},A∩B={9}满足题意,故AB={-7,-4,-8,4,9}; 当x=5时,A={25,9,-4},B={0,-4,9}, 此时A∩B={-4,9}与A∩B={9}矛盾,故舍去. 综上所述,AB={-8,-4,4,-7,9}. 5.A={x|-2<x<-1或x>1},B={x|a≤x<b},AB={x|x>-2},A∩B={x|1<x<3},求实数a,b的值. 解 A∩B={x|1<x<3},b=3, 又AB={x|x>-2}, -2<a≤-1, 又A∩B={x|1<x<3}, -1≤a<1, a=-1. 6.设集合A={x|x2+4x=0,xR},B={x|x2+2(a+1)x+a2-1=0,aR,xR},若BA,求实数a的取值范围. 思路分析 . 解 A={0,-4},B?A分以下三种情况: (1)当B=A时,B={0,-4},由此知0和-4是方程x2+2(a+1)x+a2-1=0的两个根,由根与系数之间的关系,得解得a=1. (2)当≠BA时,B={0}或B={-4},并且Δ=4(a+1)2-4(a2-1)=0,解得a=-1,此时B={0}满足题意. (3)当B=时,Δ=4(a+1)2-4(a2-1)<0,解得a<-1. 综上所述,所求实数a的取值范围是(-∞,-1]{1}. 【点评】 分类讨论思想是一种重要的数学思想方法,是历年来高考考查的重点,其基本思路是将一个复杂的数学问题分解或分割成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.。
山东省冠县武训高级中学高一数学必修1《第一章 集合与函数概念》单元测试一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分)。
1.函数1y x x =-+的定义域为( )A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤ 2.若集合、、,满足,,则与之间的关系为 ( )A .B .C .D .3.设}20092008|{≤≤=x x A ,,若,则实数的取值范围是( )A .2008>aB .2009>aC .2008≥aD .2009≥a4.定义集合运算:{},,A B z z xy x A y B *==∈∈.设{}1,2A =,{}0,2B =,则集合A B * 的所有元素之和为 ( )A .0B .2C .3D .65.如图所示,,,是的三个子集,则阴影部分所表示的集合是( )A .B .C .D .6.设f (x )=|x -1|-|x |,则f [f ()]= ( ) A . - B .0C .D .17.若f (x )为R 上的奇函数,给出下列四个说法: ①f(x )+f (-x )=0 ; ②f(x )-f (-x )=2f (x );③f(x )·f(-x )<0;④1)()(-=-x f x f 。
其中一定正确的有( )A .0个B .1个C .2个D .3个8.函数f (x )=ax 2+2(a -1)x +2在区间(-∞,4)上为减函数,则a 的取值范围为( ) A . 0<a ≤51B .0≤a ≤51C .0<a ≤51D .a >51 9.如果函数)(x f y =的图像关于y 轴对称,且)0(1)2008()(2≥+-=x x x f ,则)0(<x 的表达式为( )A.1)2008()(2-+=x x fB .1)2008()(2--=x x f C .1)2008()(2++=x x fD .1)2008()(2+-=x x f8.若R y x ∈,,且)()()(y f x f y x f +=+,则函数)(x f ( ) A . 0)0(=f 且)(x f 为奇函数 B .0)0(=f 且)(x f 为偶函数 C .)(x f 为增函数且为奇函数 D .)(x f 为增函数且为偶函数9.下列图象中表示函数图象的是 ( )(A ) (B) (C ) (D) 10.若*,x R n N ∈∈,规定:(1)(2)(1)n x x x x n H=++⋅⋅⋅⋅⋅+-,例如:( )44(4)(3)(2)(1)24H -=-⋅-⋅-⋅-=,则52()x f x x H -=⋅的奇偶性为A .是奇函数不是偶函数B .是偶函数不是奇函数x y 0 x y 0xyx yC .既是奇函数又是偶函数D .既不是奇函数又不是偶函数第Ⅱ卷二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题5分,共20分)。
2021年高考数学一轮复习 专题1.1 集合的概念及其基本运算(测)理(含解析)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【河北省“五个一名校联盟” xx 届高三教学质量监测(一)1】设集合,,则 ( )A. B. C. D.【答案】B2. 【xx 届太原五中模拟】已知集合,,若,则( )A .B .C .或D .或 【答案】C .3. 已知集合,若,则实数的取值范围为 ( ) A .B .C .D .【答案】A4. 在实数集上定义运算:.若关于的不等式的解集是集合 的子集,则实数的取值范围是( ). A. B. C. D. 【答案】D5. 若集合{}{}2|,|2,M x y x N y y x x R ====-∈,则 ( )A. B. C. D. 【答案】A6.【xx 届北京市西城区二模】已知集合,,若,则实数的 取值范围是( )A .B .C .D . 【答案】D7.设和是两个集合,定义集合或且.若, ,那么等于( )A.[-1,4]B.(-∞,-1]∪[4,+∞)C.(-3,5)D.(-∞,-3)∪[-1,4]∪(5,+∞) 【答案】D8.【xx 届湖南省长沙市二模】 已知集合}{22(,)1,(,)()94x y M x y N x y y k x b ⎧⎫=+===-⎨⎬⎩⎭,若,使得成立,则实数b 的取值范围是( ) A . B . C . D . 【答案】B9.设集合,,则满足且的集合S 的个数是( ) A .57 B .56 C .49 D .8【答案】B10.【xx届江西师大附中高三三模】设集合,,集合中所有元素之和为8,则实数的取值集合为()A.B. C. D.【答案】C11.【xx届内蒙古北方重工业集团三中模拟】如图所示的韦恩图中,、是非空集合,定义*表示阴影部分集合.若,,,则*B=().A. B. C. D.【答案】C12.【xx届北京东城区示范校模拟】设集合,集合,若,则实数的取值范围是()A. B. C. D.【答案】C二、填空题(本大题共4小题,每小题5分,共20分。
§1.1高考数学第一轮复习讲义集合1.集合与元素(1)集合元素的三个特征:____________、______________、____________.(2)元素与集合的关系是________或__________关系,用符号______或______表示.(3)集合的表示法:____________、__________、__________、__________.(4)常用数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R.(5)集合的分类:按集合中元素个数划分,集合可以分为__________、__________、________.2.集合间的基本关系(1)子集、真子集及其性质对任意的x∈A,都有x∈B,则A⊆B(或B⊇A).若A⊆B,且在B中至少有一个元素x∈B,但x∉A,则________(或________).∅____A;A____A;A⊆B,B⊆C⇒A____C.若A含有n个元素,则A的子集有______个,A的非空子集有______个,A的非空真子集有______个.(2)集合相等若A⊆B且B⊆A,则A=B.3.集合的运算及其性质(1)集合的交、并、补运算交集:A∩B=________________;并集:A∪B={x|x∈A,或x∈B};补集:∁U A=________________.U为全集,∁U A表示A相对于全集U的补集.(2)集合的运算性质并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A.[难点正本疑点清源]1.正确理解集合的概念正确理解集合的有关概念,特别是集合中元素的三个特征,尤其是“确定性和互异性”在解题中要注意运用.在解决含参数问题时,要注意检验,否则很可能会因为不满足“互异性”而导致结论错误. 2.注意空集的特殊性空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A ⊆B ,则需考虑A =∅和A ≠∅两种可能的情况.3.正确区分∅,{0},{∅}∅是不含任何元素的集合,即空集.{0}是含有一个元素0的集合,它不是空集,因为它有一个元素,这个元素是0.{∅}是含有一个元素∅的集合.∅⊆{0},∅⊆{∅},∅∈{∅},{0}∩{∅}=∅.1.(课本改编题)已知全集U ={1,2,3,4,5,6,7},A ={2,4,5},B ={1,3,5,7},则A ∩(∁U B )=________.2.若全集U =R ,集合A ={x |x ≥1}∪{x |x ≤0},则∁U A =________.3.(课本改编题)已知集合A ={-1,2},B ={x |mx +1=0},若A ∪B =A ,则m 的可能取值组成的集合为________.4.已知A 、B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A 等于( ) A .{1,3} B .{3,7,9} C .{3,5,9}D .{3,9}5.已知R 是实数集,M ={x |2x <1},N ={y |y =x -1},则N ∩(∁R M )等于( )A .(1,2)B .[0,2]C .∅D .[1,2]题型一 集合的基本概念例1 (1)已知A ={a +2,(a +1)2,a 2+3a +3},且1∈A ,求实数2 013a 的值;(2)x ,x 2-x ,x 3-3x 能表示一个有三个元素的集合吗?如果能表示一个集合,说明理由;如果不能表示,则需要添加什么条件才能使它表示一个有三个元素的集合.探究提高 (1)加强对集合中元素的特征的理解,互异性常常容易忽略,求解问题时要特别注意.(2)分类讨论的思想方法常用于解决集合问题.若集合A ={x |ax 2-3x +2=0}的子集只有两个,则实数a =________.题型二 集合间的基本关系例2 已知集合A ={x |0<ax +1≤5},集合B =⎩⎨⎧⎭⎬⎫x |-12<x ≤2.(1)若A ⊆B ,求实数a 的取值范围;(2)若B⊆A,求实数a的取值范围;(3)A、B能否相等?若能,求出a的值;若不能,试说明理由.探究提高在解决两个数集关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行分类讨论.分类时要遵循“不重不漏”的分类原则,然后对每一类情况都要给出问题的解答.分类讨论的一般步骤:①确定标准;②恰当分类;③逐类讨论;④归纳结论.已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.题型三集合的基本运算例3设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(∁U A)∩B=∅,则m的值是________.探究提高本题的主要难点有两个:一是集合A,B之间关系的确定;二是对集合B中方程的分类求解.集合的交并补运算和集合的包含关系存在着一些必然的联系,这些联系通过Venn图进行直观的分析不难找出来,如A∪B=A⇔B⊆A,(∁U A)∩B=∅⇔B⊆A 等,在解题中碰到这种情况时要善于转化,这是破解这类难点的一种极为有效的方法.设全集是实数集R,A={x|2x2-7x+3≤0},B={x|x2+a<0}.(1)当a=-4时,求A∩B和A∪B;(2)若(∁R A)∩B=B,求实数a的取值范围.题型四集合中的新定义问题例4在集合{a,b,c,d}上定义两种运算和如下:那么d(a c)等于()A.a B.b C.c D.d探究提高本题新定义了两种运算,看似复杂,但事实上运算结果可以通过题目中的表格得出.借助于集合定义新运算是高考中命制创新试题的一个良好素材.已知集合S={0,1,2,3,4,5},A是S的一个子集,当x∈A时,若有x-1∉A,且x+1∉A,则称x为A的一个“孤立元素”,那么S中无“孤立元素”的4个元素的子集共有________个,其中的一个是____________.1.忽略空集致误试题:(1)(5分)若集合P={x|x2+x-6=0},S={x|ax+1=0},且S⊆P,则由a的可取值组成的集合为__________.(2)(5分)若集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B⊆A,则由m的可取值组成的集合为_____________________________________________________________.学生答案展示审题视角 (1)从集合的关系看,S ⊆P ,则S =∅或S ≠∅.(2)从集合元素看,第(1)小题S ≠∅时,S 中元素为-1a =-3或-1a =2,即a =13或a =-12.第(2)小题B ≠∅,必有⎩⎪⎨⎪⎧m +1≤2m -1m +1≥-22m -1≤5.正确答案 (1)⎩⎨⎧⎭⎬⎫0,13,-12 (2){m |m ≤3}解析 (1)P ={-3,2}.当a =0时,S =∅,满足S ⊆P ;当a ≠0时,方程ax +1=0的解集为x =-1a,为满足S ⊆P 可使-1a =-3或-1a=2,即a =13或a =-12.故所求集合为⎩⎨⎧⎭⎬⎫0,13,-12.(2)当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ; 若B ≠∅,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.故m <2或2≤m ≤3,即所求集合为{m |m ≤3}.批阅笔记 本题考查的重点是集合间的关系及集合元素的特征.在解答本题时,存在两个突 出错误.一是忽略对∅的讨论.例如在(1)(2)需讨论S =∅和B =∅的情况;二是忽视对元素 的讨论,如(1)中,-1a =-3或-1a=2两种情况.方法与技巧1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.这是数形结合思想的又一体现. 失误与防范1.空集在解题时有特殊地位,它是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.2.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.3.解答集合题目,认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.4.Venn图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.5.要注意A⊆B、A∩B=A、A∪B=B、∁U A⊇∁U B、A∩(∁U B)=∅这五个关系式的等价性.课时规范训练(时间:60分钟) A 组 专项基础训练题组一、选择题1.已知集合A ={(x ,y )|x ,y 为实数,且x 2+y 2=1},B ={(x ,y )|x ,y 为实数,且y =x },则A ∩B 的元素个数为( )A .0B .1C .2D .3 2.已知集合M ={x |xx -1≥0,x ∈R },N ={y |y =3x 2+1,x ∈R },则M ∩N 等于 ( )A .∅B .{x |x ≥1}C .{x |x >1}D .{x |x ≥1或x <0}3.如果全集U =R ,A ={x |2<x ≤4},B ={3,4},则A ∩(∁U B )等于( )A .(2,3)∪(3,4)B .(2,4)C .(2,3)∪(3,4]D .(2,4]二、填空题4.已知集合A ={1,3,a },B ={1,a 2-a +1},且B ⊆A ,则a =__________.5.已知集合A ={(0,1),(1,1),(-1,2)},B ={(x ,y )|x +y -1=0,x ,y ∈Z },则A ∩B =__________.6.定义集合运算:A ⊙B ={z |z =xy (x +y ),x ∈A ,y ∈B },设集合A ={0,1},B ={2,3},则集合A ⊙B 的所有元素之和为________. 三、解答题7.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }. (1)若A ∩B =[0,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围.8.对任意两个集合M 、N ,定义:M -N ={x |x ∈M 且x ∉N },M *N =(M -N )∪(N -M ),设M ={y |y =x 2,x ∈R },N ={y |y =3sin x ,x ∈R },求M *N .B 组 专项能力提升题组一、选择题1.设集合A ={1,2,3,5,7},B ={x ∈Z |1<x ≤6},全集U =A ∪B ,则A ∩(∁U B )等于 ( )A .{1,4,6,7}B .{2,3,7}C .{1,7}D .{1} 2.设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S ⊆A 且S ∩B ≠∅的集合S 的个数是( ) A .57B .56C .49D .8 3.已知U ={y |y =log 2x ,x >1},P ={y |y =1x,x >2},则∁U P 等于( )A.⎣⎡⎭⎫12,+∞B.⎝⎛⎭⎫0,12C .(0,+∞)D .(-∞,0]∪⎣⎡⎭⎫12,+∞ 4.已知集合A ={x |log 2x +1>0},B ={y |y =3-2x -x 2},则(∁R A )∩B 等于( )A.⎣⎡⎦⎤0,12B.⎝⎛⎦⎤0,12 C .(-3,2] D.⎣⎡⎦⎤-3,12 二、填空题5.已知集合A =(-∞,0],B ={1,3,a },若A ∩B ≠∅,则实数a 的取值范围是________. 6.设U ={0,1,2,3},A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m =________. 7.设A ={x ||x |≤3},B ={y |y =-x 2+t },若A ∩B =∅,则实数t 的取值范围是__________. 三、解答题8.已知集合A ={x |x -5x +1≤0},B ={x |x 2-2x -m <0},(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值. 答案 要点梳理1.(1)确定性 互异性 无序性 2)属于 不属于 ∈ ∉ (3)列举法 描述法 图示法 区间法 (5)有限集 无限集 空集2.(1)A B B A ⊆ ⊆ ⊆ 2n 2n -1 2n -2 3.(1){x |x ∈A ,且x ∈B } {x |x ∈U ,且x ∉A } 基础自测1.{2,4} 2.{x |0<x <1}3.⎩⎨⎧⎭⎬⎫0,1,-12 4.D 5.B 题型分类·深度剖析例1 解 (1)当a +2=1,即a =-1时, (a +1)2=0,a 2+3a +3=1与a +2相同, ∴不符合题意.当(a +1)2=1,即a =0或a =-2时, ①a =0符合要求.②a =-2时,a 2+3a +3=1与(a +1)2相同,不符合题意. 当a 2+3a +3=1,即a =-2或a =-1.①当a =-2时,a 2+3a +3=(a +1)2=1,不符合题意. ②当a =-1时,a 2+3a +3=a +2=1,不符合题意. 综上所述,a =0. ∴2 013a =1.(2)因为当x =0时,x =x 2-x =x 3-3x =0. 所以它不一定能表示一个有三个元素的集合. 要使它表示一个有三个元素的集合,则应有⎩⎪⎨⎪⎧x ≠x 2-x ,x 2-x ≠x 3-3x ,x ≠x 3-3x .∴x ≠0且x ≠2且x ≠-1且x ≠-2时,{x ,x 2-x ,x 3-3x }能表示一个有三个元素的集合.变式训练1 0或98例2 解 A 中不等式的解集应分三种情况讨论: ①若a =0,则A =R ;②若a <0,则A =⎩⎨⎧⎭⎬⎫x |4a ≤x <-1a ;③若a >0,则A =⎩⎨⎧⎭⎬⎫x |-1a <x ≤4a .(1)当a =0时,若A ⊆B ,此种情况不存在. 当a <0时,若A ⊆B ,如图,则⎩⎨⎧4a >-12-1a ≤2,∴⎩⎪⎨⎪⎧a >0或a <-8a >0或a ≤-12,又a <0,∴a <-8.当a >0时,若A ⊆B ,如图,则⎩⎨⎧-1a ≥-124a ≤2,∴⎩⎪⎨⎪⎧a ≥2或a <0a ≥2或a <0.又∵a >0,∴a ≥2.综上知,当A ⊆B 时,a <-8或a ≥2. (2)当a =0时,显然B ⊆A ; 当a <0时,若B ⊆A ,如图,则⎩⎨⎧4a ≤-12-1a >2,∴⎩⎪⎨⎪⎧-8≤a <0-12<a <0.又∵a <0,∴-12<a <0.当a >0时,若B ⊆A ,如图,则⎩⎨⎧-1a ≤-124a ≥2,∴⎩⎪⎨⎪⎧0<a ≤20<a ≤2.又∵a >0,∴0<a ≤2.综上知,当B ⊆A 时,-12<a ≤2.(3)当且仅当A 、B 两个集合互相包含时,A =B . 由(1)、(2)知,a =2. 变式训练2 4 例3 1或2变式训练3 解 (1)∵A ={x |12≤x ≤3},当a =-4时,B ={x |-2<x <2},∴A ∩B ={x |12≤x <2},A ∪B ={x |-2<x ≤3}.(2)∁R A ={x |x <12或x >3},当(∁R A )∩B =B 时,B ⊆∁R A , 即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时,B ={x |--a <x <-a },要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0.综上可得,实数a 的取值范围是a ≥-14.例4 A变式训练4 6 {0,1,2,3} 课时规范训练 A 组1.C 2.C 3.A4.-1或2 5.{(0,1),(-1,2)} 6.187.解 由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3.∴m =2.(2)∁R B ={x |x <m -2或x >m +2}, ∵A ⊆∁R B ,∴m -2>3或m +2<-1, 即m >5或m <-3.8.解 ∵M ={y |y =x 2,x ∈R }={y |y ≥0},N ={y |y =3sin x ,x ∈R }={y |-3≤y ≤3}, ∴M -N ={y |y >3}, N -M ={y |-3≤y <0}, ∴M *N =(M -N )∪(N -M ) ={y |y >3}∪{y |-3≤y <0} ={y |y >3或-3≤y <0}. B 组1.C 2.B 3.A 4.A 5.a ≤0 6.-37.(-∞,-3)8.解 由x -5x +1≤0,所以-1<x ≤5,所以A ={x |-1<x ≤5}. (1)当m =3时,B ={x |-1<x <3}, 则∁R B ={x |x ≤-1或x ≥3}, 所以A ∩(∁R B )={x |3≤x ≤5}. (2)因为A ={x |-1<x ≤5}, A ∩B ={x |-1<x <4},所以有42-2×4-m =0,解得m =8. 此时B ={x |-2<x <4},符合题意, 故实数m 的值为8.。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.(2011~2012泉州高一期中测试)已知集合A ={0,1,2,3,4,5},B ={1,3,6,9},C ={3,7,8},则(A ∩B )∪C 等于( )A .{0,1,2,6,8}B .{3,7,8}C .{1,3,7,8}D .{1,3,6,7,8} 2.如图,可作为函数y =f (x )的图象是( )3.已知f (x ),g (x )对应值如表.x 0 1 -1 f (x )1-1则f (g (1))的值为( )A .-1B .0C .1D .不存在4.(2012·普通高等学校招生全国统一考试)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A };则B 中所含元素的个数为( )A .3B .6C .8D .105.已知f (x )=⎩⎪⎨⎪⎧2x -1 x ≥2-x 2+3x x <2,则f (-1)+f (4)的值为( )A .-7B .3C .-8D .46.f (x )=-x 2+mx 在(-∞,1]上是增函数,则m 的取值范围是( )A .{2}B .(-∞,2]C .[2,+∞)D .(-∞,1] 7.定义集合A 、B 的运算A *B ={x |x ∈A ,或x ∈B ,且x ∉A ∩B },则(A *B )*Ax 0 1 -1 g (x )-11等于( )A .A ∩B B .A ∪BC .AD .B8.已知函数f (x )=ax 2+bx +3a +b 的定义域为[a -1,2a ]的偶函数,则a +b 的值是A .0 B.13C .1D .-19.(瓮安二中2011~2012学年度第一学期高一年级期末考试)若f (x )是偶函数且在(0,+∞)上减函数,又f (-3)=1,则不等式f (x )<1的解集为( )A .{x |x >3或-3<x <0}B .{x |x <-3或0<x <3}C .{x |x <-3或x >3}D .{x |-3<x <0或0<x <3}10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)11.设函数f (x )(x ∈R )为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则f (5)=( )A .0B .1 C.52D .512.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧gx ,若f x ≥g x ,f x ,若f x <g x .则F (x )的最值是( )A .最大值为3,最小值-1B .最大值为7-27,无最小值C .最大值为3,无最小值D .既无最大值,又无最小值第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.(2011·江苏,1)设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________. 14.已知函数f (x )=3x 2+mx +2在区间[1,+∞)上是增函数,则f (2)的取值范围是________. 15.(2012·浙江嘉兴模拟)如下图所示,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (1f 3)的值等于________. 16.某工厂生产某种产品的固定成本为2 000万元,每生产一单位产品,成本增加10万元,又知总收入k 是产品数θ的函数,k (θ)=40θ-120θ2,则总利润L (θ)的最大值是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)已知全集U ={x |x ≤4},集合A ={x |-2<x <3},集合B ={x |-3≤x ≤2}.求A ∩B ,(∁U A )∪B ,A ∩(∁U B ),(∁U A )∪(∁U B ).18.(本题满分12分)二次函数f (x )的最小值为1,且f (0)=f (2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[2a,a+1]上不单调,求a的取值范围.19.(本题满分12分)图中给出了奇函数f(x)的局部图象,已知f(x)的定义域为[-5,5],试补全其图象,并比较f(1)与f(3)的大小.20.(本题满分12分)为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算电费.每月用电不超过100度时,按每度0.57元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分按每度0.5元计算.(1)设月用电x度时,应交电费y元.写出y关于x的函数关系式;(2)小明家第一季度交纳电费情况如下:月份一月二月三月合计交费金额76元63元45.6元184.6元则小明家第一季度共用电多少度?21.(本题满分12分)设函数f(x)在定义域R上总有f(x)=-f(x+2),且当-1<x≤1时,f(x)=x2+2.(1)当3<x≤5时,求函数f(x)的解析式;(2)判断函数f(x)在(3,5]上的单调性,并予以证明.22.(2011~2012深圳高级中学期末测试题)(本题满分12分)定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意的x,y∈R,有f(x+y)=f(x)·f(y),f(1)=2.(1)求f(0)的值;(2)求证:对任意x∈R,都有f(x)>0;(3)解不等式f(3-x2)>4.第一章集合与函数的概念单元测试1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
山东省冠县武训高级中学高考数学复习题库:1.1 集合的概念与运算
一、选择题
1.已知集合A={(x,y)|x,y是实数,且x2+y2=1},B={(x,y)|x,y是实数,且y=x},则A∩B的元素个数为( ).
A.0 B.1 C.2 D.3
解析集合A表示圆x2+y2=1上的点构成的集合,集合B表示直线y=x上的点构成的集合,可判定直线和圆相交,故A∩B的元素个数为2.
答案 C
2.集合M={a,b},N={a+1,3},a,b为实数,若M∩N={2},则M∪N=( ) A.{0,1,2} B.{0,1,3}
C.{0,2,3} D.{1,2,3}
解析:∵M∩N=2,∴2∈M,2∈N.
∴a+1=2,即a=1.
又∵M={a,b},∴b=2.
∴A∪B={1,2,3}.
答案:D
3.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的( ).
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分又不必要条件
解析若N⊆M,则需满足a2=1或a2=2,解得a=±1或a=± 2.故“a=1”是“N⊆M”的充分不必要条件.
答案 A
4.图中的阴影表示的集合是( )
A.(∁U A)∩B B.(∁U B)∩A
C.∁U(A∩B) D.∁U(A∪B)
解析:阴影部分在集合B中而不在集合A中,故阴影部分可表示为(∁U A)∩B.
答案:A
5.设集合M={(x,y)|x2+y2=1,x∈R,y∈R},N={(x,y)|x2-y=0,x∈R},y∈R,则集合M∩N中元素的个数为( ).
A.1 B.2 C.3 D.4
解析(数形结合法)x2+y2=1表示单位圆,y=x2表示开口方向向上的抛物线,画出二者的图形,可以看出有2个交点,故选B.
答案 B
【点评】本题画出方程的曲线,立即得到正确的答案,避免了计算求解,提高了解题速度. 6.已知A={1,2,3},B={x∈R|x2-ax+1=0,a∈A},则A∩B=B时a的值是( ) A.2 B.2或3
C.1或3 D.1或2
解析:由题意得,当a=1时,方程x2-ax+1=0无解,集合B=∅,满足题意;当a=2时,方程x2-ax+1=0有两个相等的实根1,集合B={1},满足题意;当a=3时,方程x2-ax
+1=0有两个不相等的实根3+5
2
,
3-5
2
,集合B={
3+5
2
,
3-5
2
},不满足题意.所
以满足A∩B=B的a的值为1或2.
答案:D
7.已知集合A={x|x=a+(a2-1)i}(a∈R,i是虚数单位),若A⊆R,则a=( ).A.1 B.-1 C.±1 D.0
解析∵A⊆R,∴A中的元素为实数,所以a2-1=0,即a=±1.
答案 C
二、填空题
8.已知集合A={-1,1,2,4},B={-1,0,2},则A∩B=________.
解析A∩B={-1,1,2,4}∩{-1,0,2}={-1,2}.
答案{-1,2}
9.已知集合A={(0,1),(1,1),(-1,2)},B={(x,y)|x+y-1=0,x,y∈Z},则A∩B =________.
解析A、B都表示点集,A∩B即是由A中在直线x+y-1=0上的所有点组成的集合,代入验证即可.
答案{(0,1),(-1,2)}
10.已知集合M={x|x
x-2
<0},N={y|y=3x2+1,x∈R},则M∩N等于________.解析:M={x|0<x<2},N={y|y≥1},∴M∩N=[1,2).
答案:[1,2)
11.若全集U =R ,集合A ={x |x ≥1},则∁U A =________.
解析 ∁U A ={x |x <1}.
答案 {x |x <1}
12.设A ,B 是非空集合,定义A *B ={x |x ∈A ∪B 且x ∉A ∩B },已知A ={x |0≤x ≤3},B ={y |y ≥1},则A *B =____________________.
解析 由题意知,A ∪B =[0,+∞),A ∩B =[1,3],
∴A *B =[0,1)∪(3,+∞).
答案 [0,1)∪(3,+∞)
三、解答题
13.已知集合A ={x |(x -2)(x -3a -1)<0},函数y =lg
2a -x x -a 2+1的定义域为集合B . (1)若a =2,求集合B ;(2)若A =B ,求实数a 的值.
解:(1)当a =2时,由4-x x -5
>0得4<x <5, 故集合B ={x |4<x <5}; (2)由题意可知,B ={x |2a <x <a 2+1},
①若2<3a +1,即a >13
时,A ={x |2<x <3a +1}. 又因为A =B ,所以⎩⎪⎨⎪⎧ 2a =2a 2+1=3a +1,无解;
②若2=3a +1时,显然不合题意;
③若2>3a +1,即a <13
时,A ={x |3a +1<x <2}. 又因为A =B ,所以⎩⎪⎨⎪⎧ 2a =3a +1a 2+1=2,解得a =-1.
综上所述,a =-1
14.设集合A ={x 2,2x -1,-4},B ={x -5,1-x,9},若A ∩B ={9},求A ∪B .
解 由9∈A ,可得x 2
=9或2x -1=9,
解得x =±3或x =5.
当x =3时,A ={9,5,-4},B ={-2,-2,9},B 中元素重复,故舍去;
当x =-3时,A ={9,-7,-4},B ={-8,4,9},A ∩B ={9}满足题意,故A ∪B ={-7,-4,-8,4,9};
当x =5时,A ={25,9,-4},B ={0,-4,9},
此时A ∩B ={-4,9}与A ∩B ={9}矛盾,故舍去.
综上所述,A ∪B ={-8,-4,4,-7,9}.
15.A ={x |-2<x <-1或x >1},B ={x |a ≤x <b },A ∪B ={x |x >-2},A ∩B ={x |1<x <3},求实数a ,b 的值.
解 ∵A ∩B ={x |1<x <3},∴b =3,
又A ∪B ={x |x >-2},
∴-2<a ≤-1,
又A ∩B ={x |1<x <3},
∴-1≤a <1,
∴a =-1.
16.设集合A ={x |x 2+4x =0,x ∈R},B ={x |x 2+2(a +1)x +a 2
-1=0,a ∈R ,x ∈R},若B ⊆A ,求实数a 的取值范围.
思路分析 本题体现了分类讨论思想,应对集合B 中所含元素个数分类讨论.
解 ∵A ={0,-4},∴B ⊆A 分以下三种情况:
(1)当B =A 时,B ={0,-4},由此知0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根,
由根与系数之间的关系,得⎩⎪⎨⎪⎧ Δ=4a +12-4a 2-1>0,-2a +1=-4,
a 2-1=0,
解得a =1. (2)当∅≠B A 时,B ={0}或B ={-4},并且Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此
时B ={0}满足题意.
(3)当B =∅时,Δ=4(a +1)2-4(a 2
-1)<0,解得a <-1.
综上所述,所求实数a 的取值范围是(-∞,-1]∪{1}.
【点评】 分类讨论思想是一种重要的数学思想方法,是历年来高考考查的重点,其基本思路是将一个复杂的数学问题分解或分割成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.。