当前位置:文档之家› 纤维素纤维性能表

纤维素纤维性能表

纤维素纤维性能表
纤维素纤维性能表

纤维素纤维性能表

纤维来源纤维形态外观性能舒适性能耐用性与加工保养性能特点总结

棉纤维

(棉花的种子纤维,长绒棉/细绒棉/粗绒棉)呈细而长的扁平带状,

纵向有螺旋状的转曲;

截面为椭圆或腰圆形,

中间有中腔。

长10-40mm。

染色性较好,易于上染

各种颜色。

光泽较暗淡,风格自然

朴实。

弹性差,不挺括,穿着

时易起皱,起皱后不易

回复。

较柔软,手感温暖,吸

湿性好,穿着舒适,不

易产生静电。

延伸性较低,弹性差,

耐磨性不好。

耐碱不耐酸。

耐热性好。

易生霉。

遇水后的湿冷效应。

丝光、碱缩。

麻纤维

(由麻类植物茎杆上的韧皮加工制得,

亚麻/苎麻)纵向平直,有竖纹横节。

粗细不匀,截面不规则。

光泽较好,颜色为象牙

色、棕黄色、灰色等,

纤维之间存在色差。

不易漂白染色,较粗硬。

弹性差,易起皱且不易

消失。

吸湿性好,放湿快,

导热性好、挺爽、出汗

后不贴身。

不易产生静电。

强度高,延伸性差。

耐水洗、耐热性好。

耐碱不耐酸。

易生霉。

苎麻、亚麻区别:

性能相近,苎麻纤维更

粗长,强度更大、更脆

硬;染色性比亚麻好。

粘胶纤维

(以木材、棉短绒、干蔗渣、芦苇等为原料,经物理化学反应制成纺丝溶液,然后经喷丝孔喷射出来,凝固成纤维)纵向为平直的柱状体,

表面有细沟槽,截面为

锯齿形,有皮芯结构。

染色性好,色谱全,染

色鲜艳,色牢度好。

悬垂性好。

吸湿性好。

导热性好。

不易起静电和起毛其

球。

强度低、耐磨、耐疲劳

性较差。

弹性差,易起皱、不易

回复、保形性差。

耐碱不耐酸。

易生霉。

人造棉(短纤维)、

人造丝(长丝)。

预缩。

醋酯纤维

(用含纤维素的天然材料,经过一定的化学加工制得,主要成分为纤维素醋酸酯)纵向有1-2根沟槽,截

面为不规则的带状。

三醋纤具有较好的弹性

和回复性,弹性大于二

醋纤和纤维素纤维。

质量较轻,手感平滑柔

软。

吸湿性、舒适性较纤维

素纤维差,三醋纤易产

生静电。

耐用性、耐热性较差。

耐碱不耐酸。

二醋酯纤维

三醋酯纤维

表2蛋白质纤维性能表

纤维名称纤维形态外观性能舒适性能耐用性与加工保养性能特点总结

羊毛纤维

(绵羊毛,国际羊毛局)比棉纤维粗长,沿长度

方向有立体卷曲,表面

有鳞片,截面为圆形或

接近圆形,有些有毛髓。

弹性好,吸湿后下降。

保型性好、有身骨、不

易起皱。

染色性好。

手感柔糯,触感舒适。

吸湿性好,吸收相当的

水分不显潮湿。

保暖性好,适宜做秋冬

服装。

耐酸不耐碱,对氧化剂

较敏感。选用酸性或中

性洗涤剂洗涤。

易生霉、生虫。

缩绒性

毡合作用。

蚕丝

(蚕的腺分泌物凝固形成的线状长丝,桑蚕丝/

柞蚕丝)纵向平直光滑,横断面

近似三角形。

闪光

富有光泽

触感柔软舒适。

吸湿性好。

不耐盐水侵蚀,耐酸不

耐碱。

耐光性差

垫布熨烫,防止烫黄和

水渍。

易被虫蛀、发霉。

丝鸣效应。

表3合成纤维性能表

纤维名称纤维形态外观性能舒适性能耐用性与加工保养性能特点总结

涤纶

(聚对苯二甲酸乙二酯纤维,1946英国,达克纶/特丽纶)普通涤纶纤维的纵向平

滑光洁,均匀无条痕,

横截面一般为圆形,也

可根据服装要求加工成

其他形状,如三角形、

扁圆形和中空形等。

染色性能较差。

面料挺括,不起皱,保

形性好。

吸湿性能很差,干、湿

状态下的纤维变化不

大。

强度高、弹性回复性能

好、耐磨性好。

对一般化学试剂性能较

稳定,耐酸,但不耐强

碱。

高温下的耐热性与稳定

性好。

洗涤后快干免烫,洗可

穿性能良好。

缺点:吸湿低、染色性

能差、容易积聚静电、

可纺性能差、织物易起

毛起球。

涤纶的改性。

锦纶

(聚酰胺纤维,1939美国,尼龙/卡普纶/阿米纶/锦纶6/锦纶66)纵向平直光滑,横截面

可以是圆形或其他形

状。

弹性好,回复性好,

保形性不如涤纶,外观

不够挺括。

吸湿性较差,

染色性能较好。

比重较小,穿着轻便。

耐碱不耐酸,可溶于浓

硫酸和盐酸中。

耐磨性好、强度高。

耐光性差。

耐磨性最好。

腈纶

(聚丙烯腈纤维,1950,奥纶/阿可利纶/开司米

纶)纵向呈平滑柱状,有少

许沟槽,横截面呈哑铃

形、圆形和其他形状。

与羊毛相比质轻、价廉、

染色鲜艳、耐晒、不霉

不蛀、洗可穿性好。

易起毛起球。

保暖性好。

吸湿性差,低于锦纶,

易产生静电、吸灰。

耐用性较差。

耐矿物酸和弱碱。

耐日光性、耐气候性好。

柔软、蓬松、保暖,很

多性能与羊毛相似,有

“人造羊毛”之称。

耐日光性最好。

丙纶

(聚丙烯纤维,1960意

大利)纵向光滑平直,横截面

为圆形和其他形状。

有蜡状手感和光泽,染

色困难。

弹性好、回复性好,

密度小0.91g/m3。

不吸湿,干湿状态下无

明显变化。

易起静电和毛球。

强度高、弹性好,耐磨

性好。/耐热性、耐光性

和耐气候性差。

化学稳定性好,耐酸碱。

轻,比重小。

芯吸效应(超细)

维纶

(聚乙烯醇缩甲醛纤维,1950日本)纵向平直,截面大多为

腰子形/花生果形,有明

显的皮芯结构。

弹性不如涤纶、锦纶等

合纤,织物易起皱。

染色性较差。

吸湿性较好。

热导率低,质量较轻、

保暖性好。

染色性能较差。

耐碱不耐酸。

强度和耐磨性较好。

耐干热性好、耐湿热性

差。

耐日光性、腐蚀性好,

不蛀不霉。

性能与棉相似,织物手

感和外观像棉布,有“合

成棉花”之称,常与棉

混纺。

常用于产业用纺织品。

氨纶

(聚氨酯弹性纤维,1945美国杜邦,莱卡)高弹性、高回复性和尺寸稳定性。

吸湿性小、染色性能较好。

耐热性差。

耐化学品性好。

保形性好,穿着舒适。

弹性好

氯纶

(聚氯乙烯纤维,滇纶)

吸湿性差、染色困难。

弹性较好、有一定的延伸性,不易起皱。

耐热性差,70℃以上会收缩。

耐化学品性好。

在工业上用途广泛。

纤维的认识与鉴别

纤维鉴别,就是利用纤维的各种外观形态或内在内在性质的差异,采用各种方法将其区分开来。鉴别的步骤,一般是先确定大类,再分出品种,然后作最后的验证。

1手感目测法

主要通过眼看、手摸来观察、感知纤维的长度、细度及其分布、卷曲、色泽及其含杂类型、刚柔性、弹性、冷暖感等来认识各种纤维。常用纤维的手感目测比较如表1、2所示。

表1 天然纤维与化学纤维手感目测比较

观察内容/纤维类

天然纤维化学纤维长度、细度差异很大相同品种比较均匀含杂附有各种杂志几乎没有

色泽柔和但欠均一近似雪白,均匀,有的有金属

般光泽

表2 各种天然纤维手感目测比较

观察内

容/纤维

品种

棉苎麻羊毛蚕丝

手感柔软粗硬弹性好,有暖感柔软、光滑,有冷感

长度(毫米)

15-40

离散大

60-250

离散大

20-200

离散大

很长

细度

(微米)

10-25 20-80 10-40 10-30

含杂类型

碎叶、硬

籽、僵片、

软籽等

麻屑、枝叶

草屑、粪尿、汗渍、

油脂等

清洁、发亮

通过手感目测可知,在外观方面,天然纤维与化学纤维差异很大,而天然纤维中的不同品种差异也很大。因此,手感目测法是鉴别天然纤维与化学纤维以及天然纤维中棉、麻、丝、毛等不同品种的简便方法之一。

2燃烧法

各种纤维的化学组成不同,其燃烧特征也不同。通过观察纤维观察接近火焰、在火焰中和离开火焰后的燃烧特征,散发的气味及燃烧后的残留物,可将常用纤维分为三类,即纤维素纤维、蛋白质纤维及合成纤维三大类。这三大纤维的燃烧特征有明显差异,如表4所示。表3 三大纤维的燃烧特征

纤维类别接近火焰在火

焰中

离开火焰后残留物形态气味

纤维素纤维不熔不缩迅速燃烧继续燃烧细腻、灰白色烧纸味蛋白质纤维收缩渐渐燃烧不易延燃松脆、黑灰烧毛发臭味

合成纤维收缩、熔融熔融燃烧继续燃烧硬快各种特殊气

燃烧法能有效地识别上述3大类纤维,在特定条件下,也可用于鉴别纤维,但难以鉴别相同

种类中的不同品种。

3显微镜观察法

借助显微镜观察纤维纵向外形和截面形状,或配合染色等方法,可以比较正确地区分天然纤维和化学纤维。参见图/表1。

4溶解法

利用各种纤维在不同的化学溶剂中的溶解性能来鉴别纤维的方法。它适用于各种纺织纤维,特别是合成纤维,包括染色纤维或混合成分的纤维、纱线与织物。

5药品着色法

该法根据不同纤维对某种着色剂呈色反应的不同来鉴别纤维。它适用于未染色纤维、纯纺纱线和纯纺织物。

6红外吸收光谱鉴别法

7系统鉴别法

在实际鉴别中,有些材料使用单一方法较难鉴别,需将几种方法综合运用、综合分析才能得到正确结论。

鉴别程序:

(1)将未知纤维稍加整理,如果不属于弹性纤维,可采用燃烧试验法将纤维初步分为纤维素纤维、蛋白质纤维和合成纤维三大类;

(2)纤维素纤维和蛋白质纤维有各自不同的形态特征,用显微镜就可鉴别;

(3)合成纤维一般采用溶解试验法,即根据不同化学试剂在不同温度下的溶解特性来鉴别。

机织物结构的分析试验

试验步骤:

测量织物厚度——测量织物密度——测量织物单位面积质量(以及经、纬纱质量)——分析织物组织(保留拆下的纱线)——用拆下的纱线分别测定纱线线密度、捻度、织缩率,分析纱线结构,鉴别纤维品种。

1织物厚度测定

测试仪器:织物厚度仪

测试原理:

将试样放置在基准板上,用压脚对试样施加

压力,测量接触试样的压脚面积与基准板之

间的距离,即为厚度值。

测试步骤:

清洁基准板和压脚表面,放下压脚,调节指示表读数为0。

升起压脚,将试样平整、无张力地放在基准板上。

轻轻放下压脚,在压脚接触到试样开始,经过30S立即读数。

结果计算:

计算各次测得厚度值的平均值,用mm表示,精确至小数点后两位。

2织物密度测定

测试原理:

织物分解法

分解规定尺寸的织物试样,记录纱线根数,折算

至10cm长度内的纱线根数。

织物分析镜法

适用于所有机织物,特别是复杂组织织物,测定

在织物分析镜窗口内所看到的纱线根数,折算至

10cm长度内的纱线根数。

移动式织物密度镜法

使用移动式织物密度镜,测量织物经向或纬向一定长度内(5cm)的纱线根数,折算至

10cm长度内的纱线根数,适用于所有机织物。

最小测量距离:精度要求

测试方法:移动式织物密度镜法

测量时,先确定织物的经、纬向。

测量经密时,密度镜的刻度尺垂直于经向,反之亦反。

将放大镜中的标志线与刻度尺上的0位对齐,并将其位于两根纱线中间作为测量的起点。一边转动螺杆,一边计数,直至数完规定测量距离内的纱线根数。

若其始点位于两根纱线中间,终点位于最后一根纱线上,不足0.25根的不计,0.25—0.75根作0.5根计,0.75根以上计作1根。

结果计算和表示:

将测得的结果计算出10cm长度内所含纱线的根数。

分别计算经、纬密的平均数,精确至0.1根/10 cm。

当织物是由纱线间隔疏密不同的大面积图案组成时,则应测定并记述各个区域中的密度值。

3织物单位面积经纬纱质量的测定

测试原理:

裁剪已知面积的试样,分离出经纱和纬纱,分别称重计算试样单位面积经纱、纬纱和织物的质量。该法不仅可测得织物的平方米重量,而且可同时给出织物中经纱和纬纱的质量比例。

试样准备:

在经过调湿处理的织物样品上,用大样板标出一个正方形,其对角线分别沿经纱和纬纱方向,在该正方形中间用小样板画一个面积不小于150cm2的正方形,其各边分别与经纱和纬纱平行,从样品中裁取试样。标出织物的经纬向。

试验步骤:

将已知面积的试样称重(电子天平)。

从试样上分离出经纱和纬纱(不能丢弃纤维屑),分别称重。

当经纱和纬纱质量之和与分解之前的试样质量差异大于1%时,应重复试验,以获得所需的精度。

如果样品中有非纤维性物质,则需在去除后再重复上述试验。

结果计算和表示:

根据已知面积的试样质量和将其分解后所得的经纬纱质量,分别计算出单位面积的经纱、纬纱和织物的质量,以g/m2表示,精确到小数点后1位。

显卡性能对照表

排名 型号 核心频率(MHz)显存频率(MHz)显存位宽(Bit)支持 DirectX 版本 制造工艺 (纳米) 1NVIDIA GeForce GTX 485M SLI 575150025611402AMD Radeon HD 6970M Crossfire 68090025611403NVIDIA GeForce GTX 470M SLI 535125019211404NVIDIA GeForce GTX 480M SLI 425120025611405NVIDIA GeForce GTX 460M SLI 675125019211406ATI Mobility Radeon HD 5870 Crossfire 700100012811407NVIDIA GeForce GTX 485M 575150025611408NVIDIA GeForce GTX 285M SLI 576102025610559AMD Radeon HD 6970M 680900256114010AMD FirePro M8900 680900256114011NVIDIA GeForce GTX 280M SLI 585950256105512AMD Radeon HD 6950M 580900256114013ATI Mobility Radeon HD 4870 X255088825610.15514NVIDIA Quadro 5010M 256114015NVIDIA Quadro 4000M 4751200256114016NVIDIA GeForce GTX 470M 5351250192114017NVIDIA GeForce GTX 480M 4251200256114018NVIDIA GeForce GTX 260M SLI 550950256105519ATI Mobility Radeon HD 58707001000128114020NVIDIA GeForce GTX 560M 7751250192114021NVIDIA Quadro 5000M 4051200256114022ATI FirePro M78207001000128114023AMD Radeon HD 6870M 6751000128114024NVIDIA GeForce 9800M GTX SLI 500800256106525NVIDIA Quadro 3000M 256114026NVIDIA GeForce GTX 460M 6751250192114027NVIDIA Quadro FX 3800M 6751000256105528NVIDIA GeForce GTX 285M 5761020256105529ATI Mobility Radeon HD 487055088825610.15530NVIDIA GeForce GTX 280M 585950256105531NVIDIA GeForce 9800M GT SLI 500800256106532NVIDIA GeForce 9800M GTS SLI 6008002561055/6533 ATI Mobility Radeon HD 3870 X2 660 850 256 10.1 55 主流显卡性能对照表

第三章 纤维的力学性质

第三章纤维的力学性质 第一节纤维的拉伸与疲劳性能 一、拉伸曲线的基本特征 表示纤维在拉伸过程中强力和伸长的关系曲线称为拉伸曲线(强力-伸长曲线、应力-应变曲线)。 纤维在拉伸过程中的行为表现和它的结构在拉伸过程中所发生的变化和破坏是有联系的,这样的本构关系可以通过对拉伸曲线的分析加以表述。拉伸从O′点开始: (1)自O′至O——如果拉伸前纤维未完全伸直,纤维将通过O′O逐渐伸直。 (2)自O至M——曲线基本上是直线段,表示纤维发生的是导致强力与伸长间呈直线相关的虎克变形,纤维中主要是发生了分子内或分子间键角键长的变形。 (3)自M至Q——强力与伸长间关系进入非直线相关阶段,表明纤维中非晶区内大分子链开始发生构象的变化,链与链之间的关系改变。 (4)自Q至S——Q点可称为屈服点,但大多数纤维都没有明晰的屈服点,因为屈服点是结晶物质的特征点,而纤维只有部份结晶态(区)、甚至没有结晶态只有有序区。自Q点开始,原存在于分子内或分子间的氢键等次价力联系开始破坏,首先是非晶区中大分子的错位滑移,所以,这一阶段,伸长增长快于强力。 (5)自S至A——随拉伸的进行,错位滑移的分子基本伸直平行,并可能在伸直的分子链间创造形成新次价力的机会,同时,纤维的结晶区也开始被破坏。拉断结晶区与非晶区中分子间联系,需要较大的外力,所以这一阶段强力上升很快,到A点,纤维断裂。 纤维的应力-应变曲线和强力-伸长曲线的特征相似。 表3-1 常见纤维的拉伸性质指标

二、表征纤维拉伸断裂特征的指标 1.强力 强力是指纤维能够承受的最大拉伸力,又名绝对强力、断裂强力。 2.相对强度 相对强度是应力指标,简称为强度,用纤维被拉断时单位横截面上承受的拉伸力来表示。根据采用的表征纤维截面积的指标不同,强度指标有以下几种: (1)断裂应力σ 又名强度极限,它是指纤维单位截面积上所能承受的最大拉伸力,单位为N /mm 2(即兆帕)。 (2)比强度tex P 指每特纤维所能承受的最大拉伸力,又称断裂强度,单位为N /tex 或cN/dtex 。 (3)断裂长度L 它是设想将纤维连续地悬吊起来,直到它因本身重力而断裂时的长度,也就是重力等于强力时的纤维长度,单位为千米。 3.伸长率与断裂伸长率 纤维拉伸时产生的伸长占原来长度的百分率称为伸长率或延伸率,拉伸至断裂时的伸长率称为断裂伸长率。它表示纤维承受拉伸变形的能力。其计算式为: (%)1000 0?-=L L L ε (%)1000 0?-=L L L p ε 式中的ε为纤维的伸长率(%),p ε为纤维的断裂仲长率(%),L 为拉伸后的纤维长度(mm ),L 0为拉伸前的纤维长度(mm ),L 0为断裂时的纤维长度(mm )。 4.断裂功、断裂比功和功系数 (1)断裂功 它是指拉断纤维所作的功,也就是纤维受拉伸到断裂时所吸收的能量。在强力-伸长曲线上,断裂功就是曲线下所包含的面积(图3-3)。 (2)断裂比功

纤维素的结构及性质

一.结构 纤维素是一种重要的多糖,它是植物细胞支撑物质的材料,是自然界最非丰富的生物质资源。在我们的提取对象-农作物秸秆中的含量达到450-460g/kg。纤维素的结构确定为β-D-葡萄糖单元经β-(1→4)苷键连接而成的直链多聚 体,其结构中没有分支。纤维素的化学式:C 6H 10 O 5 化学结构的实验分子式为 (C 6H 10 O 5 ) n 早在20世纪20年代,就证明了纤维素由纯的脱水D-葡萄糖的重复 单元所组成,也已证明重复单元是纤维二糖。纤维素中碳、氢、氧三种元素的比例是:碳含量为44.44%,氢含量为6.17%,氧含量为49.39%。一般认为纤维素分子约由8000~12000个左右的葡萄糖残基所构成。 O O O O O O O O O 1→4)苷键β-D-葡萄糖 纤维素分子的部分结构(碳上所连羟基和氢省略)二.天然纤维素的原料的特征 做为陆生植物的骨架材料,亿万年的长期历史进化使植物纤维具有非常强的自我保护功能。其三类主要成分-纤维素、半纤维素和木质素本身均为具有复杂空间结构的高分子化合物,它们相互结合形成复杂的超分子化合物,并进一步形成各种各样的植物细胞壁结构。纤维素分子规则排列、聚集成束,由此决定了细胞壁的构架,在纤丝构架之间充满了半纤维素和木质素。天然纤维素被有效利用的最大障碍是它被难以降解的木质素所包被。 纤维素和半纤维素或木质素分子之间的结合主要依赖于氢键,半纤维素和木质素之间除了氢键外还存在着化学健的结合,致使半纤维素和木质素之间的化学健结合主要在半纤维素分子支链上的半乳糖基和阿拉伯糖基与木质素之间。 表:植物细胞壁中纤维素、半纤维素、和木质素的结构和化学组成

第三章 纤维的力学性质(原文)讲解

第三章纤维的力学性质 第一节纤维的拉伸性质 纺织纤维在纺织加工和纺织品的使用过程中,会受到各种外力的作用,要求纺织纤维具有一定的抵抗外力作用的能力。纤维的强度也是纤维制品其他物理性能得以充分发挥的必要基础,因此,纤维的力学性质是最主要的性质,它具有重要的技术意义和实际意义。纺织纤维的长度比直径大1000倍以上,这种细长的柔性物体,轴向拉伸是受力的主要形式,其中,纤维的强伸性质是衡量其力学性能的重要指标。 一、拉伸曲线及拉伸性质指标 1.纤维的拉伸曲线特征 纤维的拉伸曲线由拉伸试验仪得到,图3-1是一试样长度为20cm,线密度为0.3 tex,密度为

1.5R/cm3的纤维在初始负荷为零开始一直拉伸至断裂时的一根典型的纤维拉伸曲线。它可以分成3个不同的区域:A为线性区(或近似线性区);B为屈服区,在B区负荷上升缓慢,伸长变形增加较快;C为强化区,伸长变形增加较慢,负荷上升较快,直至纤维断裂。

图3-1 纤维的拉伸曲线

纤维的拉伸曲线可以是负荷-伸长曲线,也可以将它转换成应力-应变曲线,图形完全相同,仅坐标标尺不同而已。纤维拉伸曲线3个不同区域的变形机理是不同的。当较小的外力作用于纤维时,纤维产生的伸长是由于分子链本身的伸长和无定形区中缚结分子链伸展时,分子链间横向次价键产生变形的结果。所以,A区的变形是由于分子链键长(包括横向次价键)和键角的改变所致。变形的大小正比于外力的大小,即应力-应变关系是线性的,服从虎克定律。当外力除去,纤维的分子链和横向连接键将回复到原来位置,是完全弹性回复。由于键的变形速度与原子热振动速率相近,回复时间的数量级是10-13s,因此,变形的时间依赖性是可以忽略的,即变形是瞬时的。 当施加的外力增大时,无定形区中有些横向连接键因受到较大的变形而不能承受施加于它们的力而发生键的断裂。这样,允许卷曲分子链伸直,接着分子链之间进行应力再分配,使其他的横向连接键受力增加而断裂,分子链进一步伸展。在这一阶段,纤维伸长变得较容易,而应力上升很缓慢。应力-应变曲线具有较小的斜率,这是B区产生的屈服现象。当外力除去后,变形的回复是不完全的。因为许多横向连接键已经断裂不能回到原来的位置,或者在新的位置上已经重新形成新的横向次价键变成较稳定的结构状态。

纤维素总结

一:纤维素的结构分类及应用: 1)纤维素的结构: 2)纤维素的分类: 根据其在特定条件下的溶解度,可以分级为:α—纤维素,β-纤维素,γ-纤维素,α—纤维素指的是聚合度大于200的纤维素,β-纤维素是指聚合度为10一200的纤维素,γ-纤维素是指聚合度小于10的纤维素。 3)纤维素的应用: 纤维素是一多羟基葡萄糖聚合物,经过特定的物理或化学改性后,具有不同的功能特性,可以粉状,片状,膜,纤维以及溶液等不同形式出现,因此用纤维素开发的功能材料极具灵活性及应用的广泛性。 3.1 高性能纤维材料: 纤维素纤维是现代纺织业的重要原料之一,同时也是纤维素化工和造纸业的重要原料,当前,纸己经成为社会发展的必需品,不仅大量应用于印刷,日用品及包装物,还可以用于绝缘材料,过滤材料以及复合材料等领域,具有广泛而重要的用途。 3.2 可生物降解材料

纤维素能够作为可降解材料的基材使用,因为纤维素具有很多独特的优点:(1)纤维素本身能够被微生物完全降解;(2)维素大分子链上有许多轻基,具有较强的反应性能和相互作用性能,使得材料便于加工,成本低,而且无污染;(3)纤维素具有很强的生物相容性;(4)纤维素本身无毒,可广泛使用,由于纤维素分子间存在很强的氢键,而且取向度和结晶度都很高,使得纤维素不溶于一般溶剂,高温下分解而不融,所以无法直接用来制作生物降解材料,必须对其进行改性,纤维素改性的方法主要有醋化,醚化以及氧化成醛,酮,酸等。纤维素生物降解材料应用广泛,例如园艺品,农,林,水产用品,医药用品,包装材料及光电子化学品等,这里要特别提出的是纤维素在医学,光电子化学,精细化工等高新技术领域应用的更好西川橡胶工业公司研制开发的纤维素,壳聚糖系发泡材料存在很好的应用前景,其特点是重量轻,绝热性好,透气,吸水等,这些特点使其广泛应用于农业,渔业,工业,包装,医疗等各个领域。 3.3 纤维素液晶材料: 天然纤维素及其衍生物液晶是一类新颖的液晶高分子材料,和其它的纤维素衍生物液晶相比,新型的复合型纤维素衍生物液晶在纤维素大分子链中引入了刚性介晶基元,使得控制其液晶性质能够成为现实"这同时就为开发具有特殊性能的液晶高分子提供了新的研究领域,并且其相应的理论基础研究对探索高分子液晶的形成也有十分重要的指导意义,另外,由于天然纤维素是自然界取之不尽,用之不竭的可再生天然高分子,那么在石油及能源日益枯竭的今天,我们就很有必

纤维素纤维基本知识

纤维素纤维基本知识 一、概述 纤维素纤维如棉、苎麻、黄麻、大麻、蕉麻、剑麻、木棉及粘胶纤维、TENCEL纤维、铜氨纤维的主要组成物质为纤维素。除纤维素之外,还有各种伴生物质。 纤维素是一种多糖物质,主要是由很多葡萄糖剩基联结起来的线型大分子,分子式可写成(C6H10O5)n。通常认为纤维素是β-d-葡萄糖剩基彼此以1,4苷键联结而成的大分子,在结晶区内相邻的葡萄糖环相互倒置,糖环中的氢原子和羟基分布在糖环平面的两侧。纤维素的结构式中有以下几个特点: (1)纤维素分子中的葡萄糖剩基(不包括两端的)上有三个自由存在的羟基,其中2,3位上是两个仲醇基,6位上是一个伯醇基,它们具有一般醇基的特性; (2)在左端的葡萄糖剩基上都含有四个自由存在的羟基,但实际上在右端的剩基中含有一个潜在的醛基。按理纤维素也应具有还原性质,但是由于醛基数量甚少,所以还原性就不显著,然而会随着纤维素分子量的变小而逐渐明显起来。 二、纤维素的主要化学性质 人们在对纤维素分子结构有正确认识之前,由于广大劳动人民的实践,对纤维素的化学性质早已有了一定的了解,并能利用这些性能进行一些有关的加工。随着对纤维素分子结构,纤维的形态和超分子结构认识的不断加深,就更有利于人们自觉地去利用这些性能和掌握有关的加工过程。纤维的结构决定了纤维的性能,而纤维的性能则必然是纤维结构的反映,两者是紧密相联的。 1. 纤维素纤维进行化学反应的特征 从纤维素的分子结构来看,它至少可能进行下列两类化学反应:一类是与纤维素分子结构中联结葡萄糖剩基的苷键有关的化学反应。例如:强无机酸对纤维素的作用就属此类;另一类则是纤维素分子结构中葡萄糖剩基上的三个自由羟基有关的化学反应。例如对染料和水分的吸附、氧化、酯化、醚化、交链和接枝等。 从纤维素纤维的形态和超分子结构来看,在保持纤维状态下进行化学反应时,具有不均一的特征,染整加工中所进行的化学反应往往多属此类。产生这种反应不均一性的原因,除了由于纤维表面和内部与反应溶液接触先后不同以及试剂的扩散有关外,从根本上来说则是与纤维的形态和超分子结构的不均一性有关;其次则与反应介质的性能、试剂分子的大小和性能有关。纤维素分子在纤维中组成层、原纤、晶区和无定形区,或者说组成了侧序度高低不同区域,形成了特定的形态和超分子结构。不同的试剂在不同的介质中只能深入到纤维中某种侧序度以下的区域(称为可及区),而不能到达侧序度更高的区域(称为非可及区),以致造成各部分所发生的化学反应程度的不均一。 2. 吸湿和溶胀 在大气中,所谓干燥的纤维素纤维实际上并非绝对干燥的,而是吸附着一定的水分。纤维中水分的含量通常是采用吸湿率或回潮率以及含水率这两项指标表示的。若以D表示试样的绝对干燥重量,W为试样吸收水分的重量,则回潮率或吸湿率(R)和含水率(M)分别是纤维在大气中吸湿的多少,除了与纤维种类有关外,还与大气相对湿度和温度有关。例如棉纤维在相对湿度为65%,温度为20℃的标准状态下的吸湿率大约为7~8%。如果把比较干燥的纤维放置到比较潮湿的环境中去,经过一定时间后则纤维的吸湿率回增加到一定值,建立起动态平衡,这种现象称之为增湿;相反,把比较潮湿的纤维放置在比较干燥的环境中,则纤维的吸湿率会逐渐减小,直到建立起动态平衡,这种情况称之为脱湿滞后现象。纤维的增湿与脱湿的吸湿率并不相等,该现象称为吸湿滞后现象。 纤维的吸湿主要是发生在纤维的无定型区和晶区的表面。关于纤维的吸湿机理,通过研究,

第三章纤维素纤维的结构和性能

第三章纤维素纤维的结构和性能 § 3.1纤维素纤维的形态结构 一棉纤维的形态结构 棉纤维是种子纤维,其主要成分为纤维素、果胶、蜡质、灰分、含氮物质。 外形:上端尖而封闭,下端粗而敞口,细长的扁平带子状,有螺旋状扭曲,截面 呈腰子 形,中间干瘪空腔。 「最外层:初生胞壁 从外到里分三层:-中 间:次生胞壁 *内部:胞腔 1初生胞壁 决定棉纤维的表面性质,它又分为三层,最外层为果胶物质和蜡质所组成的 皮层。因而具有拒水性,在棉生长过程中起保护作用。但在染整加工中不利。 2次生胞壁 纤维素沉积最后的一层,是构成纤维的主体部分,纤维素含量很高,其组成 和结构决定棉纤维的主要性能。 3胞腔 输送养料和水分的通道,蛋白质、色素等物质的残渣沉积胞壁上,胞腔是棉 纤维内最大的空隙,是染色和化学处理时重要的通道。 二麻纤维的形态结构 麻纤维主要有: 苎麻、亚麻 是属于韧皮纤维,以纤维束形式存在 单根纤维是一个厚壁、两端圭寸闭、内有狭窄胞壁的长细胞 苎麻两端呈锤头形或分支 亚麻两端稍细呈纺锤形 纵向有竖纹和横节 纤维素纤维 -天然纤维素纤维 再生纤维素纤维 (棉、麻) (粘胶纤维、铜氨纤维、醋酯纤

主要化学组成和棉纤维一样是纤维素,但含量低。

§ 3.2纤维素大分子的分子结构 纤维素是一种多糖物质,其大分子是由很多葡萄糖剩基连接而成,分子式为(C6H10O5) n复杂的同系物混合物,n为聚合度,棉聚合度为2500~ 10000,麻 聚合度为10000~ 15000,粘胶纤维聚合度为250~ 500 纤维素大分子的化学结构是由B -d-葡萄糖剩基彼此以1, 4-甙键连接而成,结构如下 n —聚合度 每隔两环有周期性重复,两环为一个基本链节,链节数为( n-2) /2,n为葡 萄糖剩基数,即纤维的聚合度,葡糖糖剩基上有三个自由存在的羟基,其中2, 3位上是仲羟基,6位上伯羟基 § 3.3 棉纤维的超分子结构 超分子结构也称为微结构,主要指棉纤维中次生胞壁纤维素大分子的聚集态结构,纤维素大分子的排列状态,排列方向,聚集紧密程度等。 一X 射线研究 1 棉纤维的X 射线研究结果 超分子结构中有晶体存在,有一定的取向度 2 棉纤维中纤维素的单元晶格单元晶格属于单斜晶系 3 纤维的结晶度与取向度 棉纤维的结晶度约为70%,麻纤维为90%,无张力丝光棉为50%,粘胶纤维为40% 二 电子显微镜的研究 1 棉纤维的电镜图 棉纤维中存在粗大的原纤,但原纤又是由更小的微原纤组成 2边缘(缨状)原纤模型及理论(见P43的图3-8 ) 纤维素大分子通过整齐排列组成微原纤,又由微原纤进行整齐排列形成原纤,原纤中少数

纤维力学性能

第七章纺织纤维和纱线的 力学性质 讨论纺织纤维与纱线的拉伸性质及其对时间依赖性、纤维基本力学模型,纤维弹性、动态力学性质及疲劳,以及纤维的弯曲、扭转、压缩等力学性能。 第一节纤维的拉伸性质 一、纤维的拉伸曲线与性能指标 1.拉伸曲线 纤维的拉伸曲线有两种形式,即负荷p-伸长△l 曲线和应力σ-应变ε曲线。 2.拉伸性能指标 (1)强伸性能指标 强伸性能是指纤维断裂时的强力或相对强度和伸长(率)或应变。 图7-1 纺织纤维的拉伸曲线 a.强力P :又称绝对强力、断裂强 b 力。它是指纤维能承受的最大拉伸外

力,或单根纤维受外力拉伸到断裂时所需要的力,单位为牛顿(N)。 b.断裂强度(相对强度) Pb:简称比强度或比应力,它是指每特(或每旦)纤维能承受的最大拉力,单位为N/tex,常用cN/dtex(或cN/d)。 c.断裂应力σb:为单位截面积上纤维能承受的最大拉力,标准单位为 N/m2(即帕)常用N/mm2(即兆帕Mpa)表示。 :纤维重力等于其断d.断裂长度L b 裂强力时的纤维长度,单位为km。 (2)初始模量 初始模量是指纤维拉伸曲线的起始部分直线段的应力与应变的比值,即σ- ε曲线在起始段的斜率。 (5-10) 初始模量的大小表示纤维在小负荷作用下变形的难易程度,即纤维的刚性。 (3)屈服应力与屈服伸长率 图7-2 纤维屈服点的确定 纤维在屈服以前产生的变形主要是纤维大分子链本身的键长、键角的伸长和分子链间次价键的剪切,所以基本上是可恢复的急弹性变形。而屈服点以后产生的变形中,有一部分是大分子链段间相互滑移而产生的不可恢复的塑性 变形。 (4)断裂功指标 a.断裂功W:是指拉伸纤维至断

纤维素结构

纤维素结构 structure of cellulose 包括纤维素的化学结构和物理结构。 纤维素的化学结构纤维素是由D-吡喃型葡萄糖基(失水葡萄糖)组成。简单分子式 为[kg2](C H10O);化学结构式可用下二式表示: 霍沃思式是由许多D-葡萄糖基(1-5结环),藉1-4,β-型联结连接起来的,而且连接在环上碳原子两端的OH和H位置不相同,所以具有不同的性质。式中为聚合度。在天然纤维素中,聚合度可达10000左右;再生纤维素的聚合度通常为200~800。在一个样品中,各个高分子的聚合度可以不同,具有多分散性。 [1045-05] 椅式由于内旋转作用,使分子中原子的几何排列不断发生变化,产生了各种内旋转异构体,称为分子链的构象。纤维素高分子中,6位上的碳-氧键绕5和6位之间的碳-碳键旋转时,相对于5位上的碳-氧键和5位与4位之间的碳-氧键可以有三种不同的构象。如以g表示旁式,t表示反式,则三种构象为gt、tg、和gg(图1[C(6位)上O H基团的 构象]H基团的构象" class=image>)。多数人认为,天然纤维素是gt构象,再生纤维素是tg构象。 [1045-06] 在纤维素分子链中,存在着氢键。这种氢键把链中的O(6位上的氧)与O2'以及O与

O5'连接起来使整个高分子链成为带状,从而使它具有较高的刚性。在砌入晶格以后, 一个高分子链的O与相邻高分子的O之间也能生成链间氢键(图2[纤维素高分子的链中 和链间氢键])。 纤维素的物理结构晶胞及其参数具有一定构象的纤维素高分子链按一定的秩序堆砌,便成为纤维素的微晶体,微晶体的组成单元称为晶胞。代表晶胞尺寸的参数可以从纤维素的宽角X射线图象(图3[纤维素的宽角X射线纤维图 象])直接算出。 在纤维素中存在着化学组成相同,而单元晶胞不同的同质多晶体(结晶变体),常见的结晶变体有四种,即纤维素Ⅰ、Ⅱ、Ⅲ、Ⅳ。四种结晶变体的晶胞参数见表[纤维素的各种结晶变体的晶胞参

第三章 纤维素纤维的结构和性能

第三章纤维素纤维的结构和性能 天然纤维素纤维(棉、麻) 纤维素纤维 再生纤维素纤维(粘胶纤维、铜氨纤维、醋酯纤维) §3.1纤维素纤维的形态结构 一棉纤维的形态结构 棉纤维是种子纤维,其主要成分为纤维素、果胶、蜡质、灰分、含氮物质。 外形:上端尖而封闭,下端粗而敞口,细长的扁平带子状,有螺旋状扭曲,截面呈腰子形,中间干瘪空腔。 最外层:初生胞壁 从外到里分三层:中间:次生胞壁 内部:胞腔 1 初生胞壁 决定棉纤维的表面性质,它又分为三层,最外层为果胶物质和蜡质所组成的皮层。因而具有拒水性,在棉生长过程中起保护作用。但在染整加工中不利。 2 次生胞壁 纤维素沉积最后的一层,是构成纤维的主体部分,纤维素含量很高,其组成和结构决定棉纤维的主要性能。 3 胞腔 输送养料和水分的通道,蛋白质、色素等物质的残渣沉积胞壁上,胞腔是棉纤维内最大的空隙,是染色和化学处理时重要的通道。 二麻纤维的形态结构 麻纤维主要有:苎麻、亚麻是属于韧皮纤维,以纤维束形式存在 单根纤维是一个厚壁、两端封闭、内有狭窄胞壁的长细胞 苎麻两端呈锤头形或分支亚麻两端稍细呈纺锤形纵向有竖纹和横节 主要化学组成和棉纤维一样是纤维素,但含量低。

§3.2纤维素大分子的分子结构 纤维素是一种多糖物质,其大分子是由很多葡萄糖剩基连接而成,分子式为(C6H10O5)n复杂的同系物混合物,n为聚合度,棉聚合度为2500~ 10000,麻聚合度为10000~ 15000,粘胶纤维聚合度为250~ 500 纤维素大分子的化学结构是由β-d-葡萄糖剩基彼此以1,4-甙键连接而成,结构如下 每隔两环有周期性重复,两环为一个基本链节,链节数为(n-2)/2,n为葡萄糖剩基数,即纤维的聚合度,葡糖糖剩基上有三个自由存在的羟基,其中2,3位上是仲羟基,6位上伯羟基

纤维素纤维性能表

纤维素纤维性能表 纤维来源纤维形态外观性能舒适性能耐用性与加工保养性能特点总结 棉纤维 (棉花的种子纤维,长绒棉/细绒棉/粗绒棉)呈细而长的扁平带状, 纵向有螺旋状的转曲; 截面为椭圆或腰圆形, 中间有中腔。 长10-40mm。 染色性较好,易于上染 各种颜色。 光泽较暗淡,风格自然 朴实。 弹性差,不挺括,穿着 时易起皱,起皱后不易 回复。 较柔软,手感温暖,吸 湿性好,穿着舒适,不 易产生静电。 延伸性较低,弹性差, 耐磨性不好。 耐碱不耐酸。 耐热性好。 易生霉。 遇水后的湿冷效应。 丝光、碱缩。 麻纤维 (由麻类植物茎杆上的韧皮加工制得, 亚麻/苎麻)纵向平直,有竖纹横节。 粗细不匀,截面不规则。 光泽较好,颜色为象牙 色、棕黄色、灰色等, 纤维之间存在色差。 不易漂白染色,较粗硬。 弹性差,易起皱且不易 消失。 吸湿性好,放湿快, 导热性好、挺爽、出汗 后不贴身。 不易产生静电。 强度高,延伸性差。 耐水洗、耐热性好。 耐碱不耐酸。 易生霉。 苎麻、亚麻区别: 性能相近,苎麻纤维更 粗长,强度更大、更脆 硬;染色性比亚麻好。 粘胶纤维 (以木材、棉短绒、干蔗渣、芦苇等为原料,经物理化学反应制成纺丝溶液,然后经喷丝孔喷射出来,凝固成纤维)纵向为平直的柱状体, 表面有细沟槽,截面为 锯齿形,有皮芯结构。 染色性好,色谱全,染 色鲜艳,色牢度好。 悬垂性好。 。 吸湿性好。 导热性好。 不易起静电和起毛其 球。 强度低、耐磨、耐疲劳 性较差。 弹性差,易起皱、不易 回复、保形性差。 耐碱不耐酸。 易生霉。 人造棉(短纤维)、 人造丝(长丝)。 预缩。

醋酯纤维 (用含纤维素的天然材料,经过一定的化学加工制得,主要成分为纤维素醋酸酯)纵向有1-2根沟槽,截 面为不规则的带状。 三醋纤具有较好的弹性 和回复性,弹性大于二 醋纤和纤维素纤维。 质量较轻,手感平滑柔 软。 吸湿性、舒适性较纤维 素纤维差,三醋纤易产 生静电。 耐用性、耐热性较差。 耐碱不耐酸。 二醋酯纤维 三醋酯纤维 表2蛋白质纤维性能表 纤维名称纤维形态外观性能舒适性能耐用性与加工保养性能特点总结 羊毛纤维 (绵羊毛,国际羊毛局)比棉纤维粗长,沿长度 方向有立体卷曲,表面 有鳞片,截面为圆形或 接近圆形,有些有毛髓。 弹性好,吸湿后下降。 保型性好、有身骨、不 易起皱。 染色性好。 手感柔糯,触感舒适。 吸湿性好,吸收相当的 水分不显潮湿。 保暖性好,适宜做秋冬 服装。 耐酸不耐碱,对氧化剂 较敏感。选用酸性或中 性洗涤剂洗涤。 易生霉、生虫。 缩绒性 毡合作用。 蚕丝 (蚕的腺分泌物凝固形成的线状长丝,桑蚕丝/ 柞蚕丝)纵向平直光滑,横断面 近似三角形。 闪光 富有光泽 触感柔软舒适。 吸湿性好。 不耐盐水侵蚀,耐酸不 耐碱。 耐光性差 垫布熨烫,防止烫黄和 水渍。 易被虫蛀、发霉。 丝鸣效应。

纺织纤维的力学性质

第四章纺织纤维的力学性质 ●一、名词解释 1. 断裂强力 2. 断裂强度 3. 断裂长度 4. 断裂伸长率 5. 初始模量 6. 弹性 7. 急弹性变形 8. 缓弹性变形 9. 塑性变形10. 蠕变11. 松弛12. 疲劳 ●二、填空题 1. 纺织纤维的力学性质包 括①、②、③、④、⑤、⑥、⑦等。 2. 纺织纤维初始模量小,表示纤维在小负荷作用下具有①等性能。 3. 影响纤维强伸度的因素分①、②两大类。 4. 纺织纤维受到拉伸力的作用后,其变形有①、② 和③三种。 5. 纺织工艺对纤维的摩擦抱合的要求是① 。 问答题 1. 影响纤维强伸度的内因是什么? 2. 影响纤维强伸度的外因是什么? 3. 测试束纤维强力时,修正系数0.675表示什么意思?为什么要修正? 4. 试述对纤维弯曲性能的要求。 答案: 第四章纺织纤维的力学性质 一、名词解释 1. 纺织材料断裂时,所能承受的最大外力,又称绝对强力。 2. 是指单位线密度纤维或纱线所能承受的绝对强力。 3. 重力等于强力时的纤维长度。 4. 伸长的长度占原来长度的百分率。 5. 表示纺织材料拉伸曲线起始段直线部分的斜率,用来描述纺织材料在较小外力作用下变形难易程度的指标。 6. 指纤维变形的恢复能力。 7. 加上拉伸力,几乎立即产生的伸长变形;除去拉伸力,几乎立即产生的回缩变形。 8. 是在拉伸力不变的情况下,纺织材料缓慢产生的伸长或回缩变形。 9. 材料受力时产生变形,除去外力后,材料的变形不能恢复的部分。

10. 纺织材料在一定拉伸条件下,变形随时间而变化的现象。 11. 拉伸变形保持一定,材料内应力随时间延续而减小的现象。 12. 纺织材料在较小外力长时间反复作用下,塑性变形不断积累,当积累的塑性变形值达到断裂伸长时,材料最后出现整体破坏的现象。 二、填空题 1. ①拉伸②压缩③弯曲④扭转⑤摩擦⑥磨损⑦疲劳 2. ①容易变形,刚性较差,其制品比较柔软。 3. ①内因②外因 4. ①急弹性变形②缓弹性变形③塑性变形 5. ①纤维相互间抱合性能要好,但摩擦系数不能太大。 三、问答题 1. ⑴大分子结构:当聚合度高,纤维强度高伸长小⑵超分子结构:当结晶度、取向度高,纤维强度高伸长小⑶纤维形态结构:大分子内裂缝和孔洞多,纤维强度下降。 2. ⑴温湿度高,大分子热动能增加,分子间结合力下降,纤维强度降低,伸长增加。 ⑵试验条件有:试样长度、束纤维根数、拉伸速度。 3. 束纤维强力换算成单纤维强力的修正系数,用束纤维法测强力由于纤维断裂的不一致性和测定时的其它因素,束纤维强力小于单纤维强力总和,使求得的单纤维强力偏小。 4. 要求纤维具有良好的弯曲性能,一方面要耐弯曲而不被破坏;另一方面要求具有一定的抗弯钢度。弯曲钢度小的纤维制成的织物柔软贴身,软糯舒适,但织物容易起球;抗弯钢度大的纤维制成的织物比较挺爽。

常用纺织纤维性能

纺织品染整工艺学教案服装与纺织工程系 勇金华

常用纺织纤维的结构和主要性能 教学目标: 知识目标:1、理解并掌握棉纤维的生长、制取及形态结构特点。 2、棉纤维的制取及初加工。 3、麻纤维的生长、制取及形态结构特点。 能力目标:培养学生提出问题、解决问题的能力。 情感目标:培养学生坚持不懈的学习态度。 教学重点:棉、麻的结构特点 教学难点:结构特点 教学方法:讲授法 教学过程: 一、组织教学 二、复习导入 上一学期,大家已经学习了纺织材料学,已经对纺织纤维的生长、结构特点有了一个初步的了解,这学期我们进一步学习纺织品染整加工。首先进一步学习一下各种常用的纤维材料的生长及结构特点、性能特点。 三、新授 常用纤维: 天然纤维:棉、麻(纤维素纤维)、丝、毛(蛋白质纤维) 化学纤维:粘胶(再生纤维)涤纶、锦纶、(合成纤维) (一)棉纤维的生长、制取及形态结构特点 1、棉纤维:由胚珠的表皮细胞经过伸长和加厚而形成 单细胞纤维。上端尖而封闭,下端粗而敞口,整根 纤维为细长的扁平带状(ribbon like shaped), 纵向有螺旋形天然扭曲(convolution),横截面 呈腰圆形(kidney shaped)。 (1)长度:23~45 mm;细度:0.15~0.2tex ;扭曲数:60~120个/cm. (2)单细胞纤维的化学成分:纤维素94% wt.,蜡状物0.6%wt.,灰分1.2%wt.,果胶物0.9%,含氮物等。 (3)结构与性质: *初生胞壁(primary wall)---层厚0.1~0.2 μm,决定棉纤维表面性质。外层由果胶物质和蜡状物组成(角皮层),内二层是纤维素网状结构,横缠竖绕。拒水性,影响染整,前处理的去除对象。 *次生胞壁(second wall) ---层厚约4μm ,占90%wt.,共生杂质少,决定棉纤维性质。层中很多同心日轮,同心轮按走向 S、Z、S分三层,纤维走向与轴向夹角20~30度,走向变化,内层直。 *胞腔(medulla,lumen) ---中空,占横截面1/10,含蛋白质和色素,决定棉纤维颜色。染料和化学处理剂通道。

纤维素的大分子结构

第三节棉纤维的结构 棉纤维的结构一般包括大分子结构、超分子结构和形态结构。棉纤维的性能基本上由这些结构所决定。因此,了解棉纤维结构可为检验棉花品质提供理论基础。 一、棉纤维的大分子结构 成熟的棉纤维绝大部分由纤维素组成。纤维素是天然高分子化合物,其分子式为(C6H10O5),大分子结构式如图1-3所示。 图1-3 纤维素大分子结构式 纤维素是一种多糖物质,每个纤维大分子都是由n个葡萄糖剩基,彼此以1-4苷键联结而形成的。所以,纤维素大分子的基本链节是葡萄糖剩基,在大分子结构式中为不对称的六环形结构,也称“氧六环”。相邻两个氧六环彼此的位置扭转180°,依靠苷键连成一个重复单元,即大分子单元结构是纤维素双糖,长度为1.03nm,是纤维素大分子结构的恒等周期。纤维素大分子的空间结构,如图1-4所示。 图1-4 纤维素大分子空间结构示意图 纤维素大分子的官能团是羟基和苷链。羟基是亲水性基团,使棉纤维具有一定的吸湿能力;而苷键对酸敏感,所以棉纤维比较耐碱而不耐酸。此外,纤维素大分子中氧六环之间距离较短,大分子之间羟基的作用又较多,所以纤维素大分子的柔曲性较差,是属于较僵硬的线型大分子,棉纤维表现为比较刚硬,初始模量较高,回弹性质有限。 二、棉纤维的超分子结构 超分子结构是指大于分子范围的结构,又称“聚焦态结构”。 (一)大分子间的结合力 棉纤维中大分子之间是依靠分子引力(又称“范德华力”)和氢键结合的。 1.分子引力 分子引力是永远存在分子间的一种作用力,是由偶极分子之间的静电引力、相邻分子之间诱导电动势引起的诱导力以及相邻原子上电子云旋转引起瞬间偶极矩产生的色散力综合组成。它的强度比共价键的强度小得多,而且与分子间的距离有关,作用距离约为0.3-0.5nm,当分子间距离大于0.5nm时,这种作用力可忽略不计。 2.氢键 氢键是大分子侧基上(或部分主链上)极性基团之间的静电引力。它的结合力略大于分子引力,在作用距离约0.23-0.32nm条件下能使相邻分子较稳定地结合。 (二)结晶态和非结晶态 纤维中大分子的排列是比较复杂的,一般存在两种状态,即某些局部区域呈结晶态,另一些局部区域呈非结晶态。纤维中大分子在规律地整齐排列的状态都叫“结晶态”,纤维中呈现结晶态的区域叫“结晶区”。在纤维的结晶区中,由于大分子排列比较整齐密实,缝隙孔洞较少,分子之间互相接近的各个基团的结合力互相饱和,因而纤维的吸湿较困难,强度较高,变形较小。棉纤维结晶区内结晶结构的最小单元,即单元晶格是由五个平行排列的纤维素大分子在两个氧六环链节长的一段上组成,中间的一个大分子与棱边的四个大分子是倒向的。不同种类的纤维素纤维其晶胞尺寸是不相同的。棉纤维和麻纤维单元晶格的尺寸为a=0.835nm,b=1.03nm,c=0.795nm,?=84°,称为“纤维素Ⅰ晶胞”,如图1-5所示。粘胶

纤维的分子结构和化学性质要点

第一节纤维的分子结构和化学性质 成纤高分子:1)线性、长链的分子结构,即使有侧基或支链,也比较短、小。 2)以碳原子为主链的构成元素,因此大多数纤维高分子是有机高分子,即有机纤维。 3)分子链有一定长度,分子间可以达到高的相互作用而有强度。 染整关注:纤维高分子与水有无结合基团、与染料分子有无作用点、与整理剂等有无结合点,是共价键结合、离子键结合、氢键结合还是范得华作用力结合。 例如: 棉纤维麻纤维聚乙烯纤维聚丙烯纤维: 分子结构差异大,左者所用染料和整理剂右者就无法使用。 一、纤维分类 二、纤维素纤维的分子结构和化学性质纤维素分子结构式

结构特点: 1) 环上三个—OH,反应活性点 2) 环间—O—,酸分解之,碱稳 3) 链端:有一隐-CHO,M低还原性 4) 链刚性,H-键多,强度高 5)聚合度 (二)纤维素分子化学性质 1、与酸作用 酸促使苷键水解:(反应式) 酸作用情况 酸使纤维素纤维织物初始手感变硬,然后强度严重下降。 纤维结构、酸的种类、作用时间、温度、纤维结构影响水解反应速率。 生产上应用:含氯漂白剂漂白后,稀酸处理,起进一步漂白作用;中和过剩碱;烂花、蝉翼等新颖印花处理。 用酸注意:稀酸、低温、洗净,避免带酸干燥。 2、与氧化剂作用 纤维素氧化后分子断裂,基团氧化变化,织物强度损伤。 纤维素分子对不同氧化剂作用有不同的敏感程度。 强氧化剂完全分解纤维素。中、低强度氧化剂在一定条件下氧化分解纤维素能力弱,可用来漂白织物。注意:空气中O2在强碱、高温条件易氧化、脆损纤维素织物,应避免。 氧化反应:Cell-OH + [O] Cell-CHO, Cell-C=O, Cell-COOH

纤维素结构

包括纤维素的化学结构和物理结构。 纤维素的化学结构纤维素是由D-吡喃型葡萄糖基(失水葡萄糖)组成。简单分子式为(C6H10O5)n;化学结构式可用下二式表示: 霍沃思式是由许多D-葡萄糖基(1-5结环),藉1-4,β-型联结连接起来的,而且连接在环上碳原子两端的OH和H位置不相同,所以具有不同的性质。式中n为聚合度。在天然纤维素中,聚合度可达10000左右;再生纤维素的聚合度通常为200~800。在一个样品中,各个高分子的聚合度可以不同,具有多分散性。 椅式由于内旋转作用,使分子中原子的几何排列不断发生变化,产生了各种内旋转异构体,称为分子链的构象。纤维素高分子中,6位上的碳-氧键绕5和6位之间的碳-碳键旋转时,相对于5位上的碳-氧键和5位与4位之间的碳-氧键可以有三种不同的构象。如以g表示旁式,t表示反式,则三种构象为gt、tg、和gg(图1)。多数人认为,天然纤维素是gt构象,再生纤维素是tg构象。 在纤维素分子链中,存在着氢键。这种氢键把链中的O6(6位上的氧)与O2'以及O3与O5'连接起来使整个高分子链成为带状,从而使它具有较高的刚性。在砌入晶格以后, 一个高分子链的O6与相邻高分子的O3之间也能生成链间氢键(图2)。 纤维素结构纤维素结构 纤维素的物理结构晶胞及其参数具有一定构象的纤维素高分子链按一定的秩序堆砌,便成为纤维素的微晶体,微晶体的组成单元称为晶胞。代表晶胞尺寸的参数可以从纤维素的宽角X射线图象(图3)直接算出。 在纤维素中存在着化学组成相同,而单元晶胞不同的同质多晶体(结晶变体),常见的结晶变体有四种,即纤维素Ⅰ、Ⅱ、Ⅲ、Ⅳ。四种结晶变体的晶胞参数见表。

各类纤维材料物理力学性能--修正

一、PE纤维 PE纤维是超高分子量聚乙烯纤维(ultra-high molecular weight polyethylene fiber DOYENTRONTEX Fiber)的简称,是世界上最坚韧的纤维。 ①强度达2.2~3.5Gpa,具有很好的耐疲劳性和耐摩擦性,耐冲击性能强于芳纶、碳纤维、聚酯等,仅小于尼龙,在高强纤维中,是最高的; ②优良的耐化学腐蚀性和耐光性,熔点144℃; ③密度较小,一般为0.97g/cm3,断裂伸长为3%~6%, 国外超高分子量聚乙烯性能 二、碳纤维 碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。PAN基碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。 碳纤维有如下的优良特性:①比重轻、密度小;②超高强力与模量;③纤维细而柔软;④耐磨、耐疲劳、减振吸能等物理机械性能优异;⑤耐酸、碱和盐腐蚀,可形成多孔、表面活性、吸附性强的活性碳纤维;⑥热膨胀系数小,导热率高,不出现蓄能和过热;高温下尺寸稳定性好,不燃,热分解温度800℃,极限氧指数55;⑦导电性、X射线透过性及电磁波遮蔽性良好;⑧具有润滑性,不沾润在熔融金属中,可使其复合材料磨损率降低; ⑨生物相容性好,生理适应性强。 碳纤维有通用型(GP)、高强型(HT)、高模型(HM)、高强高模(HP)等多种规格,其性能指标见下表。

高中化学第四章基本营养物质高分子重难点六纤维素的性质和用途人教版选修5

重难点六纤维素的性质和用途 【要点解读】 (1)多糖:由许多个单糖分子按照一定的方式,通过分子间脱水缩聚而成的高分子化合物.淀粉和纤维素是最重要的多糖. (2)高分子化合物;即相对分子质量很大的化合物.从结构上来说,高分子化合物通过加聚或缩聚而成.判断是否为高分子化合物的方法是看其化学式中是否有n值(叫做聚合度),如聚乙烯、淀粉(C6H10O5)n等都是高分子化合物.通过人工合成的高分子化合物属于合成高分子化合物,而淀粉、纤维素等则属于天然高分子化合物. (3)淀粉和纤维素的比较. 淀粉(C6H10O5)n] 纤维素(C6H10O5)n] 结构特征由葡萄糖单元构成的天然高分子化合 物,n值小于纤维素 由葡萄糖单元构成的天然高分子化合物,每 个葡萄糖单元中含三个-OH 物理性质白色粉末,不溶于冷水,在热水中部 分溶解 白色、无味的固体,不溶于水和有机溶剂 化学性质①无还原性,为非还原糖 ②水解的最终产物为葡萄糖: (C6H10O5)n+nH2O→nC6H1206 (淀粉)(葡萄 糖) ③遇淀粉变蓝色 ①无还原性,为非还原糖 ②能水解,但比淀粉难, (C6H10O5)n+nH2O→nC6H1206 (纤维素)(葡萄 糖) ③能发生酯化反应:与HNO3、乙酸反应分别 生成硝酸酯、乙酸酯 存在植物种子、块根、谷类中棉花、木材中 用途 制造葡萄糖和酒精:造纸,制造硝酸纤维(火棉、胶棉)、醋酸纤 维、人造丝、人造棉、炸药等 注意点淀粉、纤维素的分子式都是C6H10O5)n,但两者的n值不同,所以不是同分异构体(4)判断淀粉水解程度的实验方法.

实验内容 结论 加入碘水银镜反应实验 变蓝色无银镜生成尚未水解 变蓝色有银镜生成部分水解 不变蓝色有银镜生成已完全水解 说明在用稀H2SO4作催化剂使蔗糖、淀粉或纤维素水解而进行银镜反应实验前,必须加入适量的NaOH溶液中和稀H2SO4,使溶液呈碱性,才能再加入银氨溶液并水浴加热. 【重难点指数】★★ 【重难点考向一】纤维素的性质 【例1】纤维素可表示为C6H7O2(OH)3],以下叙述不正确的是( ) A.滴加浓硫酸碳化变黑 B.能与硝酸反应生成纤维素三硝酸酯 C.能水解生成葡萄糖 D.与淀粉互为同分异构体 【答案】D 【名师点睛】考查纤维素的性质,注意淀粉(C6H10O5)和纤维素的分子式都是(C6H10O5)n,但n值不同,具体分析:纤维素结构中含有羟基,是多糖,能发生水解;同分异构体是分子式相同结构式不同的化合物。 【重难点考向二】纤维素的应用 【例2】蔬菜、水果中富含纤维素,纤维素被食入人体后在作用是( ) A.为人体内的化学反应提供原料 B.为维持人体生命活动提供能量 C.加强胃肠蠕动,具有通便功能

相关主题
文本预览
相关文档 最新文档