纤维素的化学性质
- 格式:ppt
- 大小:1.71 MB
- 文档页数:45
纤维素的大分子结构纤维素是一种由β-葡萄糖单体组成的天然聚合物大分子。
它是地球上最常见的有机化合物之一,在植物细胞壁中起着关键的结构和功能作用。
纤维素的大分子结构决定了它的物理性质和化学性质,对于理解纤维素的特性和应用至关重要。
纤维素的大分子结构是由若干个β-葡萄糖单体通过β-1,4-连接键连接而成的线性聚合物。
β-葡萄糖单体有两个C1和C4碳原子,它们通过氧原子形成1,4-葡萄糖醚键。
这种键的特殊性决定了纤维素的特殊性质,如生物降解性和高强度。
纤维素的结构中的OH基团没有被化学修饰,因此纤维素是一种天然的、无毒的高分子化合物。
纤维素在自然界中主要存在于植物细胞壁中。
在植物细胞中,纤维素通常以微纤的形式存在,形成了复杂的网状结构。
纤维素的微纤具有一定的直径和长度,纤维素纤维在纳米尺度上呈平行排列,形成了纤维素纤维束和纤维。
纤维素的大分子结构非常有序,这种有序结构使纤维素具有很高的拉伸强度和模量。
纤维素纤维的强度和模量远远超过钢铁,因此纤维素具有很高的生物力学性能。
纤维素还具有超强的吸水能力,纤维素纤维能够吸收大量的水分,使其体积增大,并形成高度结晶的纤维素水胶体。
在纤维素纤维中,纤维素链之间通过氢键和范德华力相互作用。
这种相互作用使纤维素具有相对稳定的二级结构。
纤维素链通常以平行排列的方式组织在一起,形成纤维素纤维束和纤维。
纤维素的线性结构和氢键相互作用决定了纤维素的高度结晶性和热稳定性。
纤维素还具有很高的生物降解性和可再生性。
纤维素是植物细胞壁中的主要组分,它在自然界中被微生物和酶降解。
纤维素的降解产物是水和二氧化碳,没有任何有害的副产物。
这种生物降解性使纤维素成为一个非常重要的可再生材料,可以广泛应用于纺织、造纸、食品、医药等领域。
总结来说,纤维素的大分子结构是由若干个β-葡萄糖单体通过β-1,4-连接键连接而成的线性聚合物。
纤维素以微纤的形式存在于植物细胞壁中,并且形成了复杂的网状结构。
纤维素的有序结构使其具有很高的拉伸强度和模量,而其生物降解性和可再生性使其成为一个重要的可持续发展材料。
简述纤维素的化学结构特征概述及解释说明1. 引言1.1 概述纤维素是一种广泛存在于植物细胞壁中的高分子化合物,具有重要的生态和经济意义。
它是由葡萄糖分子通过β-(1→4)型糖苷键连接而成的线性聚合物。
纤维素晶体具有高度的结晶性和机械强度,使其成为自然界最丰富和可再生的生物质。
1.2 文章结构本文将首先介绍纤维素的化学结构特征,包括其组成成分、分子结构以及化学键结构。
接着,将探讨纤维素的物理性质和化学性质,并介绍其在各个领域中的功能和应用。
然后,将阐述天然来源和工业提取方法以及生物技术提取方法中纤维素的提取过程。
最后得出本文的结论。
1.3 目的本文旨在全面了解纤维素的化学结构特征,深入探讨其性质与功能,并介绍不同来源和提取方法,从而为进一步研究和应用纤维素提供基础知识。
同时也旨在增加对纤维素的认识,促进可持续发展与环境保护的实现。
2. 纤维素的化学结构特征2.1 纤维素的组成成分纤维素是一种由多个葡萄糖分子通过β-1,4-糖苷键连接而成的聚合物。
它主要由纤维素链(纤维素微晶区)和非纤维素物质(如半纤维素和木质素)组成。
其中,纤维素链是由数百至数千个葡萄糖单体通过β-1,4-糖苷键连接而形成的线性链状结构。
2.2 纤维素的分子结构纤维素的分子结构具有高度有序性。
每个葡萄糖单体都与前后两个单体通过氢键相互连接,形成了平行排列且紧密堆积的微晶区域。
这种有序结构赋予了纤维素优异的力学性能和稳定性。
2.3 纤维素的化学键结构在纤维素中,葡萄糖单体之间通过β-1,4-糖苷键进行连接。
这种化学键结构使得纤维素链具有较高的强度和稳定性,并且不容易被水解。
此外,纤维素链中的羟基(OH)官能团也是一些化学反应和功能修饰的重要位点。
总的来说,纤维素的化学结构特征是由线性排列的葡萄糖单体通过β-1,4-糖苷键连接而成的聚合物。
其分子结构高度有序,具有微晶区域,并且具有较高的力学性能和稳定性。
这种特殊结构不仅赋予了纤维素独特的物理性质和化学性质,还为其在各个领域中的广泛应用提供了基础。
纤维素的化学修饰及性质研究随着人们对环境保护意识的逐渐加强,绿色化学在新材料领域愈加重要。
纤维素作为一种寻常的天然高分子材料,因其在产量、可再生性、生物可降解性等多个方面的优势,成为近年来生物质材料领域的研究热点。
然而,由于强极性和结晶性,纤维素在很多领域的应用存在着局限性。
因此,进行纤维素的化学修饰,将有助于扩大其应用范围和改善其性能。
1. 纤维素的化学修饰方法纤维素的化学修饰主要包括酯化、磺化、羟甲基化、硝化、烷基化和氧化等。
其中最为常用的是酯化和磺化。
酯化是指通过酸催化,把纤维素的羟基与脂肪酸或芳香酸的羧酸进行酯化反应。
酯化使纤维素的疏水性增强,长程结晶难度增大,改善了纤维素的加工性能。
同时,酯化还能提高纤维素的增塑性和热稳定性。
磺化是指用亚硫酸氢盐或二氧化硫气体将纤维素的羟基转化为磺酸基。
磺化提高了纤维素的水解度和阴离子交换能力,使其应用于催化剂载体、酵素固定化等领域。
除了以上两种方法,分别有羟乙基化、硝化、烷基化和氧化等方法也都是常见的纤维素化学修饰方法。
2. 纤维素化学修饰后的性质研究经过化学修饰后的纤维素具有与未修饰的纤维素不同的性质,这些性质与其修饰方式和修饰程度有关。
下面以酯化和磺化为例,介绍纤维素化学修饰后的性质变化。
(1)酯化修饰酯化修饰后的纤维素结晶度变低,所需结晶温度和结晶峰值也降低。
酯化降低了纤维素的丝屑感和力学性能,但也提高了其油墨吸附性、表面活性和流变性能,进而用于油墨、涂料、墙纸等领域。
(2)磺化修饰磺化对纤维素的羟基的取代程度和酸碱度等参数有较大影响。
磺化后的纤维素的水解性增加,表面电位变小,阴离子交换容量增大,因此具有广泛的应用前景。
例如,磺化纤维素用于生产洗涤剂、离子交换树脂等领域。
3. 纤维素的进一步应用纤维素化学修饰的研究已经打开了纤维素的广泛应用前景。
在未来,随着纤维素化学修饰的进一步研究,更多的应用领域将会被开拓。
下面介绍两个纤维素化学修饰的应用领域:(1)多孔纤维素材料多孔纤维素材料因其高比表面积和良好的吸附特性凭借着广泛的应用前景。
纤维的分⼦结构和化学性质要点第⼀节纤维的分⼦结构和化学性质成纤⾼分⼦:1)线性、长链的分⼦结构,即使有侧基或⽀链,也⽐较短、⼩。
2)以碳原⼦为主链的构成元素,因此⼤多数纤维⾼分⼦是有机⾼分⼦,即有机纤维。
3)分⼦链有⼀定长度,分⼦间可以达到⾼的相互作⽤⽽有强度。
染整关注:纤维⾼分⼦与⽔有⽆结合基团、与染料分⼦有⽆作⽤点、与整理剂等有⽆结合点,是共价键结合、离⼦键结合、氢键结合还是范得华作⽤⼒结合。
例如:棉纤维⿇纤维聚⼄烯纤维聚丙烯纤维:分⼦结构差异⼤,左者所⽤染料和整理剂右者就⽆法使⽤。
⼀、纤维分类⼆、纤维素纤维的分⼦结构和化学性质纤维素分⼦结构式结构特点:1) 环上三个—OH,反应活性点2) 环间—O—,酸分解之,碱稳3) 链端:有⼀隐-CHO,M低还原性4) 链刚性,H-键多,强度⾼5)聚合度(⼆)纤维素分⼦化学性质1、与酸作⽤酸促使苷键⽔解:(反应式)酸作⽤情况酸使纤维素纤维织物初始⼿感变硬,然后强度严重下降。
纤维结构、酸的种类、作⽤时间、温度、纤维结构影响⽔解反应速率。
⽣产上应⽤:含氯漂⽩剂漂⽩后,稀酸处理,起进⼀步漂⽩作⽤;中和过剩碱;烂花、蝉翼等新颖印花处理。
⽤酸注意:稀酸、低温、洗净,避免带酸⼲燥。
2、与氧化剂作⽤纤维素氧化后分⼦断裂,基团氧化变化,织物强度损伤。
纤维素分⼦对不同氧化剂作⽤有不同的敏感程度。
强氧化剂完全分解纤维素。
中、低强度氧化剂在⼀定条件下氧化分解纤维素能⼒弱,可⽤来漂⽩织物。
注意:空⽓中O2在强碱、⾼温条件易氧化、脆损纤维素织物,应避免。
氧化反应:Cell-OH + [O] Cell-CHO, Cell-C=O, Cell-COOH氧化纤维素:还原型— -CHO,=C=O,潜在损伤酸型— -COOH注:纤维素分⼦对还原剂稳定。
常温稀碱中稳定,浓碱溶胀,⾼温稀碱有氧⽓易氧化、断裂苷键,强⼒下降。
浓碱溶胀:各向异性、不可逆。
径向溶胀⼤,纵向⼩反应:(酸性)纤维素分⼦与碱拟醇钠反应C2H5OH + NaOH=C2H5ONa + H2OCell-OH + NaOH=Cell-ONa+ H2O ;orCell-OH﹡NaOH反应可逆,⽔洗除碱,恢复纤维素分⼦,但纤维素纤维⾼层次结构被变化、不可逆---是棉织物丝光、碱缩处理理论根据。
第四节纤维素的化学性质纤维素是自然界中存在的一种主要的生物大分子,主要由葡萄糖分子组成,是植物细胞壁的主要成分之一。
它在生命科学、化学、材料科学等领域都有着广泛的应用。
其化学性质的研究可以为纤维素的生产和应用提供重要的理论依据和技术支持。
1. 纤维素的化学构成纤维素是一种高分子化合物,由多个葡萄糖分子通过β-1,4-糖苷键相连形成。
葡萄糖分子的空间排列方式决定了纤维素的各种性质。
葡萄糖分子中的羟基 (-OH) 可以被乙酰化,形成纤维素的乙酰基。
纤维素的结构中还存在少量的杂质,如木质素和半纤维素等,它们也对纤维素的物理和化学性质产生影响。
因此,在纤维素的研究中,除了对纤维素本身的性质进行研究外,还需要对其杂质的含量和性质进行分析和控制。
2. 纤维素的物理性质(1)纤维素的外观纤维素一般呈白色或米黄色粉末状,无味无臭,不溶于水和大部分有机溶剂,在浓硝酸中能溶解。
(2)纤维素的溶解性能由于纤维素的空间结构较为复杂,其溶解性能不佳。
纤维素在温和条件下只能在少量的有机溶剂中溶解,如 N,N-二甲基甲酰胺 (DMF)、N,N-二甲基乙酰胺 (DMAc) 等,也可在浓硝酸中溶解。
此外,纤维素的溶解性还与其结构和杂质的含量有关。
(3)纤维素的分子量纤维素的分子量较大,一般在数万到数百万之间。
分子量越大,其物理特性就越好,如强度、耐水化性、热稳定性等也更高。
分子量的高低也会影响纤维素的应用,例如在纤维素的医药领域中,低分子量的纤维素更具有生物相容性,适于制备口服药物。
(4)纤维素的热性质纤维素有较好的热稳定性,可在200℃ 以上的高温下稳定存在。
纤维素在高温下也可脱水分解,产生热解产物,如木质素和多糖等。
3. 纤维素的化学性质(1)纤维素的乙酰化反应纤维素中的羟基可被乙酰化,形成乙酰纤维素,可用作各种工业化学品和生物材料的原料。
乙酰化反应的原料为醋酸酐,反应条件为常温下在无水的有机溶剂中进行。
对于纤维素基质杂质较多的原料,在乙酰化反应前需要进行纤维素的纯化或富化操作。
淀粉和纤维素结构上的异同淀粉和纤维素是两种常见的碳水化合物,它们在植物中起着重要的结构和能量储存作用。
虽然它们在结构上有一些相似之处,但也存在一些明显的差异。
本文将从分子结构、化学性质和生物功能三个方面进行比较,以探讨淀粉和纤维素的异同之处。
一、分子结构:淀粉和纤维素都是由葡萄糖分子组成的多糖,但它们的连接方式不同。
淀粉主要由α-葡萄糖分子组成,通过α-1,4-糖苷键连接成线性链状结构,同时部分分子间还通过α-1,6-糖苷键形成支链结构。
而纤维素则由β-葡萄糖分子组成,通过β-1,4-糖苷键连接成直链结构。
这种连接方式使得纤维素的分子链更为直接坚固,比淀粉更难被生物体内的酶类降解。
二、化学性质:淀粉和纤维素在化学性质上也有一些显著的差异。
由于淀粉分子中含有α-糖苷键,这种连接方式使得淀粉在一定条件下易被淀粉酶降解,产生葡萄糖分子。
这也是为什么淀粉是植物主要的能量储存形式之一。
而纤维素分子中的β-糖苷键则使得纤维素难以被生物体内的酶类降解,因此纤维素在人体内无法被消化吸收,起到了促进肠道蠕动、维持肠道健康的作用。
三、生物功能:淀粉和纤维素在生物功能上也存在明显差异。
淀粉作为植物的主要能量储存形式,能够提供植物生长发育所需的能量。
而纤维素虽然不能为生物体提供能量,但具有重要的结构作用。
纤维素组成了植物细胞壁的主要成分,赋予植物细胞坚韧的结构,使植物能够保持立体形态并抵抗外界环境的压力。
淀粉和纤维素在结构、化学性质和生物功能等方面存在着一些显著的差异。
淀粉主要以α-葡萄糖分子为基础,可被酶类降解产生能量;而纤维素则以β-葡萄糖分子为基础,难以被降解,起到维持植物细胞结构的作用。
这些差异使得淀粉和纤维素在植物生长和人类消化吸收等方面发挥着不同的重要作用。
对于人类来说,适当摄入淀粉和纤维素可以维持人体正常的能量供给和肠道健康。
因此,了解淀粉和纤维素的异同有助于我们更好地选择合理的饮食结构,保持身体健康。
高一化学纤维素知识点总结高一化学:纤维素知识点总结化学作为一门重要的科学学科,贯穿了我们日常生活的各个方面。
在高中化学学习中,我们需要了解并掌握许多基础的知识点。
本文将为您总结高一化学中的一个重要知识点——纤维素,并探讨其相关特性和应用。
一、纤维素的定义和组成纤维素是一种复杂的有机化合物,主要存在于植物细胞壁中,是植物体内最丰富的碳水化合物之一。
纤维素的主要组成部分是由β-葡萄糖分子通过β-(1→4)糖苷键连接而成的多糖。
二、纤维素的性质1. 物理性质纤维素是一种无色或白色的粉末状物质,无臭,无味。
它不溶于水和大部分有机溶剂。
然而,在浓硫酸等强酸条件下,纤维素可以部分溶解。
2. 化学性质纤维素能与浓硫酸发生酯化反应,形成纤维素硝酸酯,广泛用于制备硝化纤维素等材料。
此外,纤维素经过醇解反应也可以生成纤维素醚,应用在造纸、纺织、染料工业等领域。
三、纤维素在生活中的应用1. 纺织行业纤维素作为天然纤维的主要成分,被广泛用于纺织行业,制作各种面料、纱线和纤维制品。
例如,棉花和麻织物都是以纤维素为主要组成部分的。
2. 食品工业纤维素对人体的消化系统有益,因此经常被加入食品中作为膳食纤维补充剂。
蔬菜、水果和全谷物食品中含有丰富的天然纤维素。
3. 能源领域纤维素也是生物质能源的重要原料。
通过纤维素的生物转化和化学转化,可以提取出生物柴油、生物乙醇等燃料,用于替代传统的能源资源。
四、纤维素的环境意义纤维素是植物自然界中广泛存在的有机物质,对于土壤结构的维持和水分的保持具有重要作用。
纤维素的降解过程也是生态系统中有机物循环的重要环节。
五、纤维素的挑战与发展纤维素的利用和加工一直是科学家们关注的热点之一。
目前,纤维素的高效提取技术和转化技术仍然具有挑战性。
科学家们在寻找新的纤维素利用途径,如纤维素纳米材料和生物降解塑料等方面进行了众多研究。
综上所述,纤维素是一种重要的有机化合物,具有丰富的应用价值。
了解纤维素的性质和应用,有助于我们更好地理解植物体内的生物化学过程和实际应用中的科学原理。
纤维素与半纤维素共同存在于大多数植物细胞壁中。
纤维素全部由葡萄糖单位聚合而成,而半纤维素是一种杂聚多糖,常含有木糖,甘露糖,半乳糖,鼠李糖,阿拉伯糖等单糖单位。
在酸性环境下半纤维素远较纤维素易于水解。
半纤维素比纤维素的分子要小,大约含有500到3000个单糖单位,后者大约含有7000到15000个。
半纤维素是分支的聚糖,而纤维素是不分支的。
半纤维素具有亲水性能,可以造成细胞壁的润胀,赋予纤维弹性。
一般木材中,纤维素占40~50%,还有10~30%的半纤维素和20~30%的木质素。
纤维素学号:97 姓名:邱艺娟摘要:纤维素(cellulose)是天然高分子化合物,由多个β-D-吡喃葡萄糖基彼此以1,4-β苷键连接而成的线型高分子,其化学式为C6H10O5,化学结构的实验分子式为(C6H10O5)n (n为聚合度),由质量分数分别为%、%、%的碳、氢、氧3种元素组成。
纤维素是一多羟基葡萄糖聚合物,经过特定的物理或化学改性后,具有不同的功能特性,可以粉状、片状、膜、纤维以及溶液等不同形式出现,因此用纤维素开发的功能材料极具灵活性及应用的广泛性。
关键字:性质结构;来源;功能化方法;功能材料;应用;展望一、纤维素的性质结构纤维素的化学结构是由D一吡喃葡萄糖环经β-1,4-糖苷键,以C1椅式构象联结而组成的线形高分子直链多糖。
由于纤维素大分子上存在着很多强反应性的-OH,在其分子内部,分子之间以及纤维素与水分子之间均可以形成氢键。
而氢键使纤维素具有结晶性、吸水性、自组装性、化学活性以及形成原纤结构等多种特殊性能。
纤维素的结构可以分为3层:单分子层,纤维素单分子聚合物;超分子层,自组装结晶的纤维素晶体;原纤结构层,纤维素晶体与无定形纤维素分子组成的基元继续白组装而形成更大的纤维结构及各种微孔等。
二、纤维素来源纤维素一般是从是棉花、木材、禾草类,麻类韧皮等植物中得来的。
除了植物以外,细菌和动物也可以产生纤维素。
例如,木醋杆菌能够合成细菌纤维素;核囊纲的一些物种可以合成动物纤维。
现如今,人工合成纤维素的科研方面进展突飞猛进,人工合成纤维素的聚合度可以达到为20-50,并且具有较高纯度,较高结晶度,及不含有木质素等杂质的优点。
三、纤维素功能化方法纤维素是一种直链多糖,分子结构中大量羟基的存在,使其在分子链之间和分子链内部形成了广泛的氢键,这种羟基覆盖结构影响了其反应活性。
因此天然纤维素的吸附(如吸水、吸油、吸重金属等)能力并不很强,而且吸附容量小,选择性低,必须通过改性才能成为性能良好的吸附性材料。
纤维素的结构与性质纤维素是一种重要的生物大分子,主要由葡萄糖分子构成,是植物细胞壁的主要成分之一。
它具有极高的化学稳定性和生物降解性,因此在工业和生物学领域得到了广泛的应用。
本文将讨论纤维素的基本结构与性质。
纤维素的结构纤维素是一种多糖,由大量的葡萄糖分子通过β-1,4-糖苷键连接而成。
纤维素基本结构由两部分组成:纤维素微丝和纤维素骨架。
纤维素微丝是指由数百个纤维素分子有序排列形成的长链,其直径约为3-5nm。
纤维素骨架则是指由微丝互相交叉形成的一种三维网络结构,其作用是确保细胞壁的刚性和弹性。
纤维素微丝的形成与结构是由纤维素合酶(cellulose synthase)催化完成的。
这是一种特殊的酶,可以将 UDP-葡萄糖转化为葡萄糖聚合体(glucan),并通过特殊的酶切方式,将聚合体转化为纤维素微丝。
纤维素微丝的形成是由一种称为路径限制的机制控制的。
这种机制可以确保细胞壁中的纤维素微丝仅能按照特定的方向(通常为胞壁垂直方向)扩展,从而确保最终细胞壁的机械强度和稳定性。
纤维素的性质纤维素具有很高的化学稳定性和生物降解性,这是由其特殊结构所决定的。
由于β-1,4-糖苷键的特殊结构,纤维素具有非常高的链形聚合度和晶体度。
在水中,纤维素微丝可以形成极稳定的纤维素纳米晶体,这些晶体在大分子量的有机溶剂中也具有非常稳定的热化学性质。
此外,纤维素的生物降解性也非常强。
具有特定酶的微生物可以通过分解β-1,4-糖苷键来降解纤维素,将其转化为更简单的糖类分子,进而用于自身代谢。
这种生物降解性质使得纤维素可以在自然界中得到高效的循环利用。
纤维素在工业应用中也具有重要的作用。
由于其极高的结构稳定性和化学稳定性,纤维素在造纸、纺织、建筑以及食品工业等方面得到了广泛应用。
同时,由于纤维素的生物降解性质,它也可以用于制备环保材料、生物源性能源以及生物医学材料等领域,这些都是纤维素广泛应用所具有的重要意义。
总结纤维素是一种极为重要的生物大分子,具有优异的结构稳定性和化学稳定性,同时也具有高度的生物降解性和循环利用性。
一.结构纤维素是一种重要的多糖,它是植物细胞支撑物质的材料,是自然界最非丰富的生物质资源。
在我们的提取对象-农作物秸秆中的含量达到450-460g/kg。
纤维素的结构确定为β—D-葡萄糖单元经β-(1→4)苷键连接而成的直链多聚体,其结构中没有分支。
纤维素的化学式:C6H10O5化学结构的实验分子式为(C6H10O5)n早在20世纪20年代,就证明了纤维素由纯的脱水D-葡萄糖的重复单元所组成,也已证明重复单元是纤维二糖。
纤维素中碳、氢、氧三种元素的比例是:碳含量为44。
44%,氢含量为6.17%,氧含量为49.39%。
一般认为纤维素分子约由8000~12000个左右的葡萄糖残基所构成.O OOOOOOOO1→4)苷键β-D-葡萄糖纤维素分子的部分结构(碳上所连羟基和氢省略)二.天然纤维素的原料的特征做为陆生植物的骨架材料,亿万年的长期历史进化使植物纤维具有非常强的自我保护功能。
其三类主要成分-纤维素、半纤维素和木质素本身均为具有复杂空间结构的高分子化合物,它们相互结合形成复杂的超分子化合物,并进一步形成各种各样的植物细胞壁结构。
纤维素分子规则排列、聚集成束,由此决定了细胞壁的构架,在纤丝构架之间充满了半纤维素和木质素。
天然纤维素被有效利用的最大障碍是它被难以降解的木质素所包被。
纤维素和半纤维素或木质素分子之间的结合主要依赖于氢键,半纤维素和木质素之间除了氢键外还存在着化学健的结合,致使半纤维素和木质素之间的化学健结合主要在半纤维素分子支链上的半乳糖基和阿拉伯糖基与木质素之间。
表:植物细胞壁中纤维素、半纤维素、和木质素的结构和化学组成项目纤维素木质素半纤维素结构单元吡喃型D-葡萄糖基G、S、H D-木糖、苷露糖、L-阿拉伯糖、半乳糖、葡萄糖醛酸结构单元间连接键β—1,4—糖苷键多种醚键和C—C键,主要是β-O-4型醚键主链大多为β-1,4-糖苷键、支链为β-1,2-糖苷键、β-1,3—糖苷键、β-1,6-糖苷键聚合度几百到几万4000 200以下聚合物β—1,4-葡聚糖G木质素、GS木质素、GSH木质素木聚糖类、半乳糖葡萄糖苷露聚糖、葡萄糖甘露聚糖结构由结晶区和无定型区两相组成立体线性分子α不定型的、非均一的、非线性的三维立体聚合物有少量结晶区的空间结构不均一的分子,大多为无定型三类成分之间的连接氢键与半纤维素之间有化学健作用与木质素之间有化学健作用天然纤维素原料除上述三大类组分外,尚含有少量的果胶、含氮化合物和无机物成分。
纤维素的组成元素1.纤维素含有C、H、O元素,纤维素是由葡萄糖组成的大分子多糖。
不溶于水及一般有机溶剂。
是植物细胞壁的主要成分。
纤维素是自然界中分布最广、含量最多的一种多糖,占植物界碳含量的50%以上。
棉花的纤维素含量接近100%,为天然的最纯纤维素来源。
2.纤维素的性质:纤维素是D-葡萄糖以β-1,4糖苷键组成的大分子多糖,分子量约50000~2500000,相当于300~15000个葡萄糖基。
分子式可写作(C6H10O5)n。
是维管束植物、地衣植物以及一部分藻类细胞壁的主要成分。
醋酸菌(Acetobaeter)的荚膜,以及尾索类动物的被囊中也发现有纤维素的存在,棉的种子毛是高纯度(98%的纤维素。
所谓α-纤维素(α-cellulose)这一名称系指从原来细胞壁的完全纤维素标准样品用17.5%NaOH不能提取的部分。
β-纤维素(β-cellulose)、γ-纤维素(γ-cellulose)是相应于半纤维素的纤维素。
虽然,α-纤维素通常大部分是结晶性纤维素,β-纤维素,γ-纤维素在化学上除含有纤维素以外,还含有各种多糖类。
细胞壁的纤维素形成微纤维。
宽度为10—30毫微米,长度有的达数微米。
应用X线衍射和负染色法(negative染色法),根据电子显微镜观察,链状分子平行排列的结晶性部分组成宽为3—4毫微米的基本微纤维。
推测这些基本微纤维集合起来就构成了微纤维。
纤维素能溶于Schwitzer试剂或浓硫酸。
虽然不易用酸水解,但是稀酸或纤维素酶可使纤维素生成D-葡萄糖、纤维二糖和寡糖。
在醋酸菌中有从UDP葡萄糖引子(primer)转移糖苷合成纤维素的酶(cellulose synthase(UDPformingEC2.4.1.12)。
在高等植物中已得到具有同样活性的颗粒性酶的标准样品。
此酶通常是利用GDP葡萄糖(cellulose synthase (GDP forming) EC2.4.1.29),在由UDP葡萄糖转移的情况下,发生β-1,3键的混合。