高中数学 椭圆及其标准方程教学案例
- 格式:doc
- 大小:61.50 KB
- 文档页数:6
可编辑修改精选全文完整版高二数学教案椭圆及其标准方程9篇椭圆及其标准方程 1教学目标1.把握椭圆的定义,把握椭圆标准方程的两种形式及其推导过程;2.能根据条件确定椭圆的标准方程,把握运用待定系数法求椭圆的标准方程;3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;4.通过椭圆的标准方程的推导,使学生进一步把握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;5.通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习爱好和创新意识.教学建议教材分析1. 知识结构2.重点难点分析重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是把握建立坐标系与根式化简的方法.椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先碰到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的.(1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解.另外要注重到定义中对“常数”的限定即常数要大于 .这样规定是为了避免出现两种非凡情况,即:“当常数等于时轨迹是一条线段;当常数小于时无轨迹”.这样有利于集中精力进一步研究椭圆的标准方程和几何性质.但讲解椭圆的定义时注重不要忽略这两种非凡情况,以保证对椭圆定义的准确性.(2)根据椭圆的定义求标准方程,应注重下面几点:①曲线的方程依靠于坐标系,建立适当的坐标系,是求曲线方程首先应该注重的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整洁和简洁.②设椭圆的焦距为 ,椭圆上任一点到两个焦点的距离为 ,令 ,这些措施,都是为了简化推导过程和最后得到的方程形式整洁、简洁,要让学生认真领会.③在方程的推导过程中碰到了无理方程的化简,这既是我们今后在求轨迹方程时经常碰到的问题,又是学生的难点.要注重说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程“而没有证实,”方程的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,对同学们不作要求.(3)两种标准方程的椭圆异同点中心在原点、焦点分别在轴上, 轴上的椭圆标准方程分别为: , .它们的相同点是:外形相同、大小相同,都有 , .不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同.椭圆的焦点在轴上标准方程中项的分母较大;椭圆的焦点在轴上标准方程中项的分母较大.另外,形如中,只要 , , 同号,就是椭圆方程,它可以化为 .(4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,假如求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆.教法建议(1)使学生了解圆锥曲线在生产和科学技术中的应用,激发学生的学习爱好.为激发学生学习圆锥曲线的爱好,体会圆锥曲线知识在实际生活中的作用,可由实际问题引入,从中提出圆锥曲线要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还可以启发学生寻找身边与圆锥曲线有关的例子。
“椭圆及其标准方程”教学案例一、案例背景“椭圆及其标准方程”是人教版普通高中课程标准实验教科书选修2-1 第二章第二节的内容。
本节课是我口常教学中普通的一节概念课,授课对象为塘沽一中理科班高二学生,针对学生理解力的特点,以及椭圆在解析几何中的承前启后的独特地位,我对本节课的概念引入给予了强化,目的是引领学生掌握概念的研究思路,为后续的双曲线及抛物线的概念引入作铺垫。
二、概念教学活动过程师:请同学们回忆圆的定义,你能说出定义中的关键要素是什么吗?生:平面内到定点的距离等于定长的点的轨迹。
关键要素:一个定点、定长。
师:这两个要素就可以吗?前提是什么?生:在平面内。
师:好的,那么,在平面内到两个定点的距离和等于定长的点的轨迹又是什么样呢?下面我们就来共同探究一下。
1.创设情境,引入概念。
(1)动画演示,利用几何画板描绘出椭圆轨迹图形,让学生直观感知椭圆的形状。
(2)实验演示,借助教具当堂演示,让学生近距离体会椭圆的形成过程。
师:为了更好地体会椭圆的形成,下面我们来亲手实践绘制椭圆。
实践中请大家思考:椭圆是满足什么条件的点的轨迹呢?2.实验探究,形成概念。
(1)动手实验:学生分组动手画出椭圆。
实验探究:保持绳长不变,固定一条细绳的两端,用笔尖将细绳拉紧并运动,在纸上绘制图形。
(2)概括椭圆定义:根据学生的实践操作以及演示实验引导学生概括椭圆定义。
椭圆定义:平面内与两个定点距离的和等于(大于)常数的点的轨迹叫椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
(关于大于的条件,学生会补充到位,课上教师不必急于补充。
)师:大家在绘制的过程中,还遇到什么问题了吗?无论怎样都能画出椭圆吗?有需要注意的吗?我们各组交流一下。
3 .小组合作,深化概念。
师:改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过“动手操作一独立思考一小组讨论一共同交流”的探究过程, 得出这样的结论:(1)平面内。
2。
2.1椭圆及其标准方程(一)教学目标1。
理解椭圆的定义;2.理解椭圆的标准方程的推导,在化简椭圆方程的过程中提高学生的运算能力;3.掌握椭圆的标准方程;会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标。
(二)教学重点与难点重点:掌握椭圆的标准方程难点:会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标。
(三)教学过程问题1:前面两节课,说一说所学习过的内容?1、曲线与方程的概念?2、求曲线的方程的步骤?引例1:1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长(说明椭圆在天文学和实际生产生活实践中的广泛应用,指出研究椭圆的重要性和必要性,从而导入本节课的主题)引例2:手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的21,F F 两点,当绳长大于两点间的距离时,用铅笔把绳子拉近,使笔尖在图板上慢慢移动,就可以画出一个椭圆 分析:(1)轨迹上的点是怎么来的?(2)在这个运动过程中,什么是不变的?答:两个定点,绳长即不论运动到何处,绳长不变(即轨迹上与两个定点距离之和不变) 点题:今天我们学习“椭圆及其标准方程” 活动二:师生交流、进入新知,(20分钟) 1、椭圆定义:平面内与两个定点21,F F 的距离之和等于常数(大于||21F F )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距即1212|PF |||||PF F F +>;焦点:12,F F ;焦距:12||F F注意:椭圆定义中容易遗漏的两处地方: (1)两个定点-—-两点间距离确定(2)绳长—-轨迹上任意点到两定点距离和确定思考:在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(→线段)在同样的绳长下,两定点间距离较短,则所画出的椭圆较圆(→圆)由此,椭圆的形状与两定点间距离、绳长有关(为下面离心率概念作铺垫)问题2:你能利用上一节学过的坐标法求出椭圆的方程吗? 取过焦点21,F F 的直线为x 轴,线段21F F 的垂直平分线为y 轴设),(y x P 为椭圆上的任意一点,椭圆的焦距是c 2(0>c ).则)0,(),0,(21c F c F -,又设M 与21,F F 距离之和等于a 2(c a 22>)(常数){}a PF PF P P 221=+=∴221)(y c x PF ++= 又,a y c x y c x 2)()(2222=+-+++∴,化简,得)()(22222222c a a y a x c a -=+-,由定义c a 22>,022>-∴c a令222b c a=-∴代入,得222222b a y a x b =+,两边同除22b a 得12222=+b y a x 此即为椭圆的标准方程它所表示的椭圆的焦点在x 轴上,焦点是)0,()0,(21c F c F -,中心在坐标原点的椭圆方程其中222b c a+=问题3:书本P39页思考? 问题4:书本P40页思考?注意若坐标系的选取不同,可得到椭圆的不同的方程如果椭圆的焦点在y 轴上(选取方式不同,调换y x ,轴)焦点则变成),0(),,0(21c F c F -,只要将方程12222=+b y a x 中的y x ,调换,即可得12222=+bxa y ,也是椭圆的标准方程2、椭圆标准方程:(1)焦点在焦点在x 轴上,焦点是)0,()0,(21c F c F -,中心在坐标原点的椭圆方程12222=+by a x其中222b c a+=(2)焦点在焦点在y 轴上,焦点是),0(),,0(21c F c F -,中心在坐标原点的椭圆方程12222=+bx a y其中222b c a+=(3)方程),0,0(122n m n m ny m x ≠>>=+就不能肯定焦点在哪个轴上;由于m n与的大小关系判断焦点在那个坐标轴上。
精品案例高中数学“椭圆的定义与标准方程”教学设计文|景朝英一、教材分析对于本课内容,新课标提出要引导学生经历具体情境,并从中抽象出椭圆产生过程,概括并理解椭圆定义,并掌握标准方程。
椭圆的定义与标准方程的研究方法和之后需要学习的双曲线、抛物线并没有什么区别,而且教材对椭圆研究也非常重视,所以本部分知识起着承上启下的作用。
此外,本节内容还涉及数形结合意识、转化思想等,因此教师在对这部分内容进行教学时需要将这些数学思想融入其中。
二、教学目标1.理解椭圆概念,掌握椭圆标准方程,能够运用坐标法解决几何问题。
2.用坐标法推导椭圆标准方程,锻炼发现、概括、认知规律以及解决实际问题的能力。
3.感受椭圆具有的对称美和简洁美,并增强数形结合思想。
4.培养直观想象、数学建模和数学运算等数学学科素养。
三、教学重点椭圆定义和椭圆两种形式标准方程的理解、掌握,能够运用坐标法解决几何问题。
四、教学难点引导学生经历椭圆标准方程推导过程,培养学生的直观想象、数学建模和数学运算等数学学科素养。
五、学情分析高二学生在之前的学习中已经接触过一些圆锥曲线概念,如圆、椭圆等,但他们的抽象思维能力和数形结合意识还不太强,而椭圆的定义与标准方程这部分内容涉及的概念较为抽象,需要学生具备较强的抽象思维能力,而且本章学习重点是数形结合,需要学生建立代数方程与椭圆之间的联系,所以在本节教学中教师一定要注意这一点。
根据教材内容、学生实际情况以及课本要求,本课教学可采用如下策略:1.用问题探索活动引起学生学习兴趣,促使学生主动思考。
2.借助实验探究活动让学生亲身感受椭圆画图过程,帮助学生更好地理解椭圆定义。
3.引导学生动手、动脑推导椭圆标准方程,帮助学生更深刻地理解概念,掌握其标准方程。
4.引导学生回忆圆方程求解步骤,通过知识迁移建立椭圆直角坐标系,通过列式运算推导出椭圆标准方程。
5.对典型求解椭圆标准方程例题进行变式,引导学生采用不同的求解方法和思路,帮助学生掌握这类习题本质。
《椭圆及其标准方程》教案一、教学目标1、知识与技能目标(1)理解椭圆的定义,掌握椭圆的标准方程。
(2)能根据椭圆的标准方程求出椭圆的焦点坐标、焦距等相关量。
2、过程与方法目标(1)通过动手操作,经历椭圆的形成过程,培养学生的动手能力和观察分析能力。
(2)通过椭圆标准方程的推导,培养学生的逻辑推理能力和数学运算能力。
3、情感态度与价值观目标(1)让学生感受数学的美,激发学生学习数学的兴趣。
(2)通过小组合作学习,培养学生的合作精神和创新意识。
二、教学重难点1、教学重点(1)椭圆的定义。
(2)椭圆的标准方程及其推导。
2、教学难点(1)椭圆标准方程的推导。
(2)椭圆标准方程中 a、b、c 的关系及应用。
三、教学方法讲授法、探究法、演示法、讨论法四、教学过程1、导入新课通过展示生活中常见的椭圆形状的物体,如椭圆形的镜子、椭圆形的赛道等,引出本节课的主题——椭圆。
2、椭圆的定义准备一根绳子,将其两端固定在黑板上的两点 F1、F2,用铅笔拉紧绳子,移动铅笔,画出一个封闭的曲线。
让学生观察这个曲线的形状,引出椭圆的定义:平面内与两个定点 F1、F2 的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距,记为 2c。
强调定义中的关键条件:(1)平面内。
(2)两个定点。
(3)距离之和为常数且大于焦距。
3、椭圆的标准方程(1)建系以经过椭圆两焦点 F1、F2 的直线为 x 轴,线段 F1F2 的垂直平分线为 y 轴,建立平面直角坐标系。
设椭圆的焦距为 2c(c>0),椭圆上任意一点 M 的坐标为(x,y),焦点 F1、F2 的坐标分别为(c,0)、(c,0)。
(2)推导方程根据椭圆的定义,|MF1| +|MF2| = 2a(2a > 2c),则:\(\sqrt{(x + c)^2 + y^2} +\sqrt{(x c)^2 + y^2} = 2a\)移项平方可得:\((\sqrt{(x + c)^2 + y^2})^2 =(2a \sqrt{(x c)^2+ y^2})^2\)展开并整理得:\(a^2 cx = a\sqrt{(x c)^2 + y^2}\)再平方并整理得:\((a^2 c^2)x^2 + a^2y^2 = a^2(a^2 c^2)\)因为\(b^2 = a^2 c^2\)(其中 b>0),所以方程可化为:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(a>b>0)这就是焦点在 x 轴上的椭圆的标准方程。
3.1.1 椭圆及其标准方程(第二课时)(人教A 版普通高中教科书数学选择性必修第一册第三章)一、教学目标1.巩固椭圆的定义和标准方程,掌握求点的轨迹方程的三种方法:定义法、直接法、代入法(相关点法);2.通过动点轨迹方程的求解过程,培养学生归纳、类比、迁移的能力,激发学生学习兴趣,提高学生的创新意识.二、教学重难点1.重点:求动点轨迹方程的三种方法.2.难点:结合条件选取恰当的方式求动点的轨迹方程.三、教学过程1.复习巩固,引入新课上节课我们学习了椭圆的定义并推导出了它的标准方程,那椭圆的定义是什么?标准方程有哪几种形式?【答案预设】(1)平面内到两个定点,的距离之和等于常数(大于)的点的轨迹叫做椭圆.其中,叫椭圆的焦点,叫椭圆的焦距.1F 2F 21F F 1F 2F 21F F(2)椭圆标准方程有两种形式:焦点在x轴上, 焦点在y 轴上, 其中【设计意图】加深对椭圆定义及其标准方程的理解,为求动点的轨迹方程做准备.2.自主探究,得出新知活动1:如图所示,已知动圆P 过定点A (-3,0),并且在定圆B :的内部与其内切,求动圆圆心P 的轨迹方程.【活动预设】经过分析,发现点P 的轨迹符合椭圆的定义,再根据椭圆的定义求出点P 满足的标准方程.)(12222>>=+b a by a x )0(12222>>=+b a bx a y 22c a b -=64)3(22=+-y x【设计意图】让学生掌握定义法求动点的轨迹方程.活动2:如图设A ,B 两点的坐标分别为(-5,0),(5,0). 直线AM ,BM 相交于点M ,且他们的斜率之积是,求点M 的轨迹方程.【活动预设】设动点M 的坐标为(x ,y),根据题目意思用含x ,y 的式子表示直线AM ,BM 的斜率,得到x ,y 的关系式,求出轨迹方程.写出的关系式若学生没有注明限制条件时,引导学生关注特殊点的要求.【设计意图】类比椭圆标准方程推导过程,利用直接法求动点的轨迹方程,并去除不符合条件的特殊点.活动3:如图,在圆上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?为什么?【活动预设】由点M 是线段PD 的中点得到点M 的坐标与点P 坐标之间的关系式,并由点P 坐标满足圆的方程代入得到点M 的坐标所满足的方程.94-422=+y x【设计意图】让学生体会椭圆生成的另一种方式,利用代入法(相关点法)求动点的轨迹方程.思考:由活动3我们发现,可以由圆通过“压缩”得到椭圆.想一想,能由圆通过“拉伸”得到椭圆吗?如何“拉伸”?由此你能发现椭圆与圆之间的关系吗?3.应用巩固,强化方法已知A(0,-1),B(0,1),三角形ABC的周长为6,求顶点C的轨迹方程.4.归纳小结,思维提升(1)回顾了椭圆的定义和标准方程,学习并体会了生成椭圆轨迹的几种方式,掌握了求轨迹方程的三种方法:①定义法②直接法③代入法(相关点法).(2)数学思想:数形结合、转化化归、类比归纳【设计意图】(1)梳理本节课学习的数学知识,体会探究过程中渗透的数学思想方法;(2)培养学生敢于思考,不断总结的思维习惯,提升学生的数学核心素养,鼓励学生积极攀登知识高峰,为进一步的数学学习做好准备.四、课外作业1. 课本109页,练习第3、4题;2. 课本115页,习题3.1 第6、8、9、10题.课后探究:课下与同学一起探究完成思考题,体会由圆得到椭圆的两种方式,并思考由圆得到的椭圆有哪些性质.【设计意图】(1)通过练习巩固本节课所学的内容和方法,让学生学会用知识解决问题;(2)分层布置作业,让学有余力的同学多思考,多花时间研究问题.。
《椭圆及其标准方程》教学设计(精选3篇)《椭圆及其标准方程》教学设计篇1一、教材内容分析本节是整个解析几何部分的重要基础学问。
这一节课是在《直线和圆的方程》的基础上,将讨论曲线的方法拓展到椭圆,又是连续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好预备。
它的学习方法对整个这一章具有导向和引领作用,所以椭圆是同学学习解析几何由浅入深的一个台阶,它在整章中具有承前起后的作用。
二、学情分析高中二班级同学正值身心进展的鼎盛时期,思维活跃,又有了相应学问基础,所以他们乐于探究、敢于探究。
但高中生的规律思维力量尚属阅历型,运算力量不是很强,有待于训练。
基于上述分析,我实行的是“创设问题情景-----自主探究讨论-----结论应用巩固”的一种讨论性教学方法,教学中采纳激发爱好、主动参加、乐观体验、自主探究的学习,形成师生互动的教学氛围。
使同学真正成为课堂的主体。
三、设计思想1、把章头图和引言用微机以影像、录音和图片的形式给出,生动体现出数学的有用性;2、进行分组试验,让同学亲自动手,体验学问的发生过程,并培育团队协作精神;3、利用《几何画板》进行动态演示,增加直观性;四、教学目标1、学问与技能目标:理解椭圆定义、把握标准方程及其推导。
2、过程与方法目标:注意数形结合,把握解析法讨论几何问题的一般方法,注意探究力量的培育。
3、情感、态度和价值观目标:(1)探究方法激发同学的求知欲,培育深厚的学习爱好。
(2)进行数学美育的渗透,用哲学的观点指导学习。
五、教学的重点和难点教学重点:椭圆定义的理解及标准方程的推导。
教学难点:标准方程的推导。
四、说教学过程(一)、创设情景,导入新课。
(3分钟)1、利用微机放映“彗星运行”资料片,引入课题——椭圆及其标准方程。
2、提问:同学们在日常生活中都见过哪些带有椭圆外形的物体?对同学的回答进行筛选,并利用微机放映几个例子的图片。
设计意图:通过观看影音资料,一方面使同学简洁了解椭圆的实际应用,另一方面产生问题意识,对讨论椭圆产生心理期盼。
高中数学椭圆的方程教案
一、椭圆的定义和性质
1. 椭圆的定义:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
2. 椭圆的性质:椭圆的离心率0<e<1,长轴2a,短轴2b,焦点与中心之间的距离为c,满足关系式c^2 = a^2 - b^2。
二、标准方程
1. 椭圆的标准方程(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆的中心坐标,a为椭圆长轴的长度的一半,b为椭圆短轴的长度的一半。
2. 椭圆的标准方程x²/a² + y²/b² = 1,当椭圆的中心在坐标原点时成立。
三、椭圆的方程转化
1. 将椭圆的方程从标准方程转化为一般方程时,要注意保持等面积关系不变。
2. 将椭圆的一般方程转化为标准方程时,可以通过配方、合并同类项等方法进行推导。
四、椭圆的性质和应用
1. 椭圆是一个闭合的几何图形,具有对称性和周期性。
2. 椭圆在工程、建筑、设计等领域有着广泛的应用,如抛物线天线、椭圆形跑道等设计中
都能看到椭圆的影子。
五、例题演练
1. 已知椭圆的长轴长为6,短轴长为4,中心在原点,求其标准方程。
2. 设椭圆的中心坐标为(2,-3),长轴长为8,短轴长为6,求其标准方程。
六、作业
1. 椭圆的离心率e满足哪些条件?
2. 求椭圆的标准方程:中心坐标为(0,0),焦点距离为10,长轴长为8。
《椭圆及其标准方程》说课教案一、教材分析1. 版本:人教A版2. 章节:高中数学必修二第五章第一节3. 内容概述:本节主要介绍椭圆的定义、性质及标准方程的求法。
二、教学目标1. 知识与技能:(1)理解椭圆的定义及其几何性质;(2)掌握椭圆标准方程的求法及应用。
2. 过程与方法:(1)通过观察、分析、归纳,引导学生发现椭圆的性质;(2)培养学生运用椭圆性质解决实际问题的能力。
3. 情感、态度与价值观:(1)激发学生对数学学科的兴趣;(2)培养学生团结协作、勇于探索的精神。
三、教学重难点1. 重点:椭圆的定义、性质及标准方程的求法。
2. 难点:椭圆标准方程的求法及应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究;2. 利用多媒体辅助教学,直观展示椭圆的性质;3. 实例分析,让学生学会运用椭圆知识解决实际问题。
五、教学过程1. 导入新课(1)复习圆的定义及性质;(2)提问:在平面内,是否存在一种曲线,它的所有点到两个固定点的距离之和为定值?2. 自主探究(1)学生分组讨论,尝试给出椭圆的定义;3. 椭圆标准方程的求法(1)引导学生发现椭圆的标准方程;(2)讲解椭圆标准方程的求法及应用。
4. 实例分析(1)给出实际问题,让学生运用椭圆知识解决;5. 巩固练习(1)学生独立完成练习题;(2)教师点评并讲解答案。
6. 课堂小结(1)回顾本节课所学内容;(2)强调椭圆的性质及标准方程的应用。
7. 作业布置(1)课后习题;(2)探究性问题:如何求椭圆的面积?8. 板书设计椭圆及其标准方程椭圆的定义:平面内到两个定点F1、F2的距离之和为定值的点的轨迹。
椭圆的性质:1. 椭圆是闭合曲线;2. 椭圆的两个焦点到椭圆上任意一点的距离之和为定值(2a);3. 椭圆的半长轴a、半短轴b、焦距2c之间的关系:a²=b²+c²。
椭圆的标准方程:当焦点在x轴上时,椭圆的标准方程为:(x²/a²) + (y²/b²) = 1;当焦点在y轴上时,椭圆的标准方程为:(x²/b²) + (y²/a²) = 1。
椭圆及其标准方程(一)教学设计北京四中分校林科琳【教材分析】(一) 教学内容"椭圆及其标准方程"是高二《数学选修2-1》(选修)(人民教育出版社出版)第二章的第二节内容,分三课时完成. 第一课时讲解椭圆的定义及其标准方程;第二课时讲解运用椭圆的定义及其标准方程,巩固求曲线方程的两种基本方法,(待定系数法、定义法);第三课时讲解运用中间变量法求动点轨迹方程的基本思路. 现在说第一课时.(二) 教材的地位和作用本节内容是继学生学习了直线和圆的方程,对曲线的方程的概念有了一定了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线. 椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础. 因此这节课有承前启后的作用,是本章和本节的重点内容之一.【教学目标】一、教学知识点:1、圆锥曲线的概念;2、椭圆的定义、焦点、焦距;3、椭圆的标准方程.二、能力训练要求:1、通过本节课的学习,学生能够明确圆锥曲线的概念2、通过参与探讨能够理解椭圆的定义和基本量和标准方程的推导3、通过实际应用能够掌握根据椭圆的定义求基本量的方法4、通过对比学习能够体会对比法,化归法,数形结合在数学中的应用.三、德育渗透目标:1、学生能够认识并理解世间一切事物的运动都是有规律的2、进一步提高发现规律、寻求规律、认识规律并利用规律解决实际问题的能力3、通过运动规律,认清事物运动的本质,培养运动变化的感官认知【教学重点难点】一、重点:1、椭圆概念的发现2、椭圆标准方程的探求和应用二、难点:椭圆标准方程的推导思想,推导过程中复杂的根式化简【教学方法】探究启发、归纳与应用相结合【教学内容分析】在我们的现实生活中,存在着许多椭圆的例子,比如宇宙中,许多星球的形状及运行轨道都是椭圆,用一个不平行于圆柱底面的平面截圆柱得到的截面是椭圆形,拱形桥可近似地看作椭圆的一部分等,学生对椭圆形有粗浅的了解。
本节课将在学生对坐标法研究几何问题有初步认识的基础上,进一步学习用坐标法研究曲线,并从数学的“对称美”和“简洁美”的角度出发,结合必要的教具演示,使学生对本节内容好理解易接受。
高中数学《椭圆及其标准方程》教案作为一名专为他人授业解惑的人民教师,就难以避免地要准备教案,教案是备课向课堂教学转化的关节点。
教案要怎么写呢?下面是小编精心整理的高中数学《椭圆及其标准方程》教案,欢迎阅读与收藏。
高中数学《椭圆及其标准方程》教案篇1一、教材分析1、教材的地位及作用圆锥曲线是高考重点考查内容。
“椭圆及其标准方程”是《圆锥曲线与方程》第一节内容,是继学习圆以后运用“曲线和方程”理论解决具体的二次曲线的又一实例。
从知识上说,它是运用坐标法研究曲线的几何性质的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,它为后面研究双曲线、抛物线提供了基本模式;所以,无论从教材内容,还是从教学方法上都起着承上启下的作用,它是学好本章内容的关键。
因此搞好这一节的教学,具有非常重要的意义。
2、教学目标根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)、知识目标:掌握椭圆的定义及其标准方程,通过对椭圆标准方程的探求,熟悉求曲线方程的一般方法。
(2)、能力目标:让学生通过自我探究、合作学习等,提高学生实际动手、合作学习以及运用知识解决实际问题的能力。
(3)、情感目标:在教学中充分揭示“数”与“形”的内在联系,体会数与形的统一,激发学生学习数学的兴趣,培养学生勇于探索,勇于钻研的精神。
3、教学重点、难点教学重点:椭圆的定义及椭圆的标准方程。
教学难点:椭圆标准方程的建立和推导。
在学习本课前,学生已学习了直线与圆的方程,对曲线和方程的概念有了一些了解与运用的经验,用坐标法研究几何问题也有了初步的认识。
但由于学生学习解析几何时间还不长、学习程度也较浅,对坐标法解决几何问题掌握还不够。
另外,学生对含有两个根式之和(差)等式化简的运算生疏,去根式的策略选择不当等是导致“标准方程的推导”成为学习难点的直接原因。
据以上对教材及学情的分析,确定椭圆的定义及其标准方程为本课的教学重点;椭圆标准方程的推导为本课的难点。
可编辑修改精选全文完整版椭圆及其标准方程一、教学目标(一)知识目标1、使学生理解椭圆的定义,掌握椭圆的标准方程及推导;2、掌握焦点、焦点位置与方程关系、焦距;(二)能力目标通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力;(三)学科渗透目标通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力二、教材分析1.重点:椭圆的定义和椭圆的标准方程.(解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.)2.难点:椭圆的标准方程的推导.(解决办法:推导分4步完成,每步讲解,关键步骤加以补充说明.)3.疑点:椭圆的定义中常数加以限制的原因.(解决办法:分三种情况说明动点的轨迹.)三、教学过程(一)创设情境,引入概念1、动画演示,描绘出椭圆轨迹图形。
2、实验演示。
思考:椭圆是满足什么条件的点的轨迹呢?(二)实验探究,形成概念1、动手实验:学生分组动手画出椭圆。
实验探究:保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?2、概括椭圆定义引导学生概括椭圆定义椭圆定义:平面内与两个定点21,F F 距离的和等于常数(大于21F F )的点的轨迹叫椭圆. 教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。
思考:焦点为21,F F 的椭圆上任一点M ,有什么性质? 令椭圆上任一点M ,则有)22(22121F F c a a MF MF =>=+ (三)研讨探究,推导方程1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?2、研讨探究问题:如图已知焦点为21,F F 的椭圆,且21F F =2c,对椭圆上任一点M ,有a MF MF 221=+,尝试推导椭圆的方程。
思考:如何建立坐标系,使求出的方程更为简单?将各组学生的讨论方案归纳起来评议,选定以下两种方案,由各组学生自己完成设点、列式、化简。
《椭圆及其标准方程》教案(通用4篇)《椭圆及其标准方程》篇1教学目标:(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力.(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.教学重点:椭圆的定义和椭圆的标准方程.教学难点:椭圆标准方程的推导.教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.教具准备:多媒体和自制教具:绘图板、图钉、细绳.教学过程:(一)设置情景,引出课题问题:XX年10月12日上午9时,“神州六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州六号”飞船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片.(二)启发诱导,推陈出新复习旧知识:圆的定义是什么?圆的标准方程是什么形式?提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?引出课题:椭圆及其标准方程(三)小组合作,形成概念动画演示椭圆形成过程.提问:点m运动时,f1、f2移动了吗?点m按照什么条件运动形成的轨迹是椭圆?下面请同学们在绘图板上作图,思考绘图板上提出的问题:1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3.当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:椭圆线段不存在并归纳出椭圆的定义:平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.(四)椭圆标准方程的推导:1.回顾:求曲线方程的一般步骤:建系、设点、列式、化简.2.提问:如何建系,使求出的方程最简?由各小组讨论,请小组代表汇报研讨结果.各组分别选定一种方案:(以下过程按照第一种方案)①建系:以所在直线为x轴,以线段的垂直平分线为y轴,建立直角坐标系。
椭圆及其标准方程讲课教案一、教学目标1. 让学生理解椭圆的定义及其性质。
2. 引导学生掌握椭圆的标准方程及其求法。
3. 培养学生的数学思维能力和解决问题的能力。
二、教学内容1. 椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的轨迹。
2. 椭圆的性质:(1) 椭圆的两个焦点在x 轴上,且距离为2c。
(2) 椭圆的长轴为2a,短轴为2b。
(3) 椭圆的离心率e = c/a,其中0 < e < 1。
3. 椭圆的标准方程:(1) 当椭圆的焦点在x 轴上时,标准方程为x^2/a^2 + y^2/b^2 = 1。
(2) 当椭圆的焦点在y 轴上时,标准方程为y^2/a^2 + x^2/b^2 = 1。
三、教学重点与难点1. 教学重点:椭圆的定义、性质及标准方程。
2. 教学难点:椭圆标准方程的求法及应用。
四、教学方法1. 采用问题驱动法,引导学生探究椭圆的定义和性质。
2. 利用数形结合法,让学生直观地理解椭圆的标准方程。
3. 运用实例分析法,训练学生解决实际问题的能力。
五、教学过程1. 导入:通过展示椭圆模型,引导学生思考椭圆的定义。
2. 新课讲解:讲解椭圆的性质,引导学生发现椭圆的标准方程。
3. 例题解析:分析求解椭圆标准方程的实例,让学生掌握求解方法。
4. 课堂练习:布置练习题,让学生巩固所学知识。
6. 课后作业:布置作业,让学生进一步巩固椭圆及其标准方程的知识。
六、教学评价1. 评价方式:课堂表现、练习题、课后作业。
2. 评价内容:(1) 学生对椭圆定义的理解程度。
(2) 学生对椭圆性质的掌握情况。
(3) 学生对椭圆标准方程的求解能力。
(4) 学生运用椭圆知识解决实际问题的能力。
七、教学反思1. 反思教学内容:根据学生的反馈,调整教学内容,使之更符合学生的认知规律。
2. 反思教学方法:根据学生的接受程度,调整教学方法,提高教学效果。
3. 反思练习题和课后作业:根据学生的完成情况,调整练习题和课后作业的难度,使之更具针对性。
《椭圆定义及其标准方程》教学案例一、背景介绍解读大纲,结合新一轮课程改革的精神,我们不难发现数学教学“不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探索,动手实践、合作交流、阅读自学等学习数学的方式,使学生的学习过程成为教师引导下的‘再创造’过程,要设立‘数学探索’教学建模等学习活动,让学生体验数学发现和创造的历程。
”二、教学过程1、创设情景,引出课题——椭圆定义及其标准方程。
教师:我们以前学习过圆,请同学们回忆一下圆的定义。
学生1:平面上到定点的距离等于定长的点的轨迹。
教师:我们是怎么画圆的呢?(课前要求学生每人准备一块硬纸板,两颗图钉及一根定长绳子)谁上黑板来演示呢?学生2:(上黑板来演示)教师:“圆是动点P到定点O的距离为常数的点的轨迹”说成“圆是动点P到定点O的来回距离之和为常数的点的轨迹”,行吗?学生:(齐声地)行。
教师:现在把这根绳子的两端分别系在两颗图钉上,并分开固定在两个点F1、F2上,并保持拉紧状态移动铅笔,请你们再画一画会是什么样的曲线?学生:(动手画椭圆)教师:(演示几位学生所画的椭圆)我们看到这个曲线的形状正是一个压扁了的圆,我们称为椭圆。
(黑板上写出课题:椭圆定义及其标准方程)大家看,椭圆是一个很美的图形,生活中你在哪里见过椭圆的这种曲线,能否举例呢?学生:地球运动轨迹,……等等。
2、通过实验,自主探究,椭圆的定义以及椭圆的扁圆与焦距定线段长之间的关系。
教师:刚才大家对椭圆有了形象上的认识,我们不仅作出了椭圆这个曲线,而且还在生活实践中找到它的应用,下面我们能否给出它的定义呢?学生3:椭圆是平面上到两个定点的距离之和为常数的点的轨迹。
(教师在黑板上写出学生总结的椭圆定义)教师:很好。
(教师拿起两个学生所画的椭圆展示)同学们画椭圆时,线段是一样长的,为什么我们所画出的椭圆不一样,有扁有圆呢?学生4:这与两定点F1、F2的位置有关。
教师:很好。
我们改变一下F1、F2的位置,大家画一画椭圆,看一看到底有何关系?学生5:F1、F2位置越近椭圆愈圆,F1、F2位置越远椭圆愈扁。
椭圆及其标准方程教学设计共3篇椭圆的标准方程教学设计下面是分享的椭圆及其标准方程教学设计共3篇椭圆的标准方程教学设计,供大家品鉴。
椭圆及其标准方程教学设计共1《椭圆及其标准方程》教学设计山西省太原师范学院附属中学薛翠萍一、教学内容解析椭圆的定义是一种发生性定义,教学内容属概念性知识,是通过描述椭圆形成过程进行定义的作为椭圆本质属性的揭示和椭圆方程建立的基石,理应作为本堂课的教学重点同时,椭圆的标准方程作为今后研究椭圆性质的根本依据,自然成为本节课的另一教学重点学生对“曲线与方程”的内在联系(数形结合思想的具体表现)仅在“圆的方程”一节中有过一次感性认识但由于学生比较了解圆的性质,从“曲线与方程”的内在联系角度来看,学生并未真正有所感受所以,椭圆定义和椭圆标准方程的联系成为了本堂课的教学难点圆锥曲线是平面解析几何研究的主要对象圆锥曲线的有关知识不仅在生产、日常生活和科学技术中有着广泛的应用,而且是今后进一步数学的基础教科书以椭圆为学习圆锥曲线的开始和重点,并以之来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,可见本节内容所处的重要地位通过本节学习,学生一方面认识到一般椭圆与圆的区别与联系,另一方面也为后面利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础学习过程启发学生能够发现问题和提出问题,善于思考,学会分析问题和创造地解决问题;培养学生抽象概括能力和逻辑思维能力二、教学目标设置:1.知识与技能目标(1)学生能掌握椭圆的定义明确焦点、焦距的概念.(2)学生能推导并掌握椭圆的标准方程.(3)学生在学习过程中进一步感受曲线方程的概念,体会建立曲线方程的基本方法,运用数形结合的数学思想方法解决问题.2.过程与方法目标:(1)学生通过经历椭圆形成的情境感知椭圆的定义并亲自参与归纳.培养学生发现规律、认识规律的能力.(2)学生类比圆的方程的推导过程尝试推导椭圆标准方程,培养学生利用已知方法解决实际问题的能力.(3)在椭圆定义的获得和其标准方程的推导过程中进一步渗透数形结合等价转化等数学思想方法.3.情感态度与价值观目标:(1)通过椭圆定义的获得让学生感知数学知识与实际生活的密切联系培养学生探索数学知识的兴趣并感受数学美的熏陶.(2)通过标准方程的推导培养学生观察,运算能力和求简意识并能懂得欣赏数学的“简洁美”.(3)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.三、学生学情分析1.能力分析①学生已初步掌握用坐标法研究直线和圆的方程,②对含有两个根式方程的化简能力薄弱.2.认知分析①学生已初步熟悉求曲线方程的基本步骤,②学生已经掌握直线和圆的方程,对曲线的方程的概念有一定的了解,③学生已经初步掌握研究直线和圆的基本方法.3.情感分析学生具有积极的学习态度,强烈的探究欲望,能主动参与研究.四、教学策略分析教学中通过创设情境,充分调动学生已有的学习经验,让学生经历“创设情境——总结概括——启发引导——探究完善——实际应用” 的过程,发现新的知识,又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质.课堂教学中创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生思维品质,这是本节课的教学原则.根据这样的原则及所要完成的教学目标,我采用如下的教学方法和手段:1.引导发现法:用课件演示动点的轨迹,启发学生归纳、概括椭圆定义.2.探索讨论法:由学生通过联想、归纳把原有的求轨迹方法迁移到新情况中,有利于学生对知识进行主动建构;有利于突出重点,突破难点,发挥其创造性.这两种方法是适应新课程体系的一种全新教学模式,它能更好地体现学生的主体性,实现师生、生生交流,体现课堂的开放性与公平性.在教学中适当利用多媒体课件辅助教学,增强动感及直观感,增大教学容量,提高教学质量.五、教学过程:(一)复习引入1.说一说你对生活中椭圆的认识.伴随图片展示使同学们感到椭圆就在我们身边.意图:(1)、从学生所关心的实际问题引入,使学生了解数学来源于实际.(2)、使学生更直观、形象地了解后面要学的内容;2.手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上同一定点,套上笔拉紧绳子,移动笔尖画出的轨迹是圆.再将这一条定长的细绳的两端固定在画图板上的两定点,当绳长大于两点间的距离时,用铅笔把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆随后动画呈现.意图:(1)通过画图给学生提供一个动手操作、合作学习的机会;调动学生学习的积极性(2)多媒体演示向学生说明椭圆的具体画法,更直观形象.(二)讲解新课由学生画图及教师演示椭圆的形成过程,引导学生归纳定义.1 椭圆定义:平面内与两个定点的距离之和等于常数2a的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距练习1:已知两个定点坐标分别是(-4,0)、(4,0),动点P到两定点的距离之和等于8,则P点的轨迹是练习2:已知两个定点坐标分别是(-4,0)、(4,0),动点P到两定点的距离之和等于6,则P点的轨迹是通过两个练习思考:椭圆定义需要注意什么(2a大于意图:让学生通过练习反思画图,归纳定义,理解定义,突破了重点.(1)、当2a|F1F2|时,是椭圆;(2)、当2a=|F1F2|时,是线段;(3)、当2a)2.根据定义推导椭圆标准方程:要求(1)学生在画板上建立适当的坐标系,(2)根据定义推导椭圆的标准方程.同时引导学生类比圆回顾解析几何研究问题的特点及求轨迹方程步骤意图:让学生自己去建系推导椭圆的标准方程,给学生较多的思考问题的时间和空间,变“被动”为“主动”,变“灌输简洁美”为“发现简洁美”.教师结合猜想加以引导.化简无理方程为难点通过发现问题解决问题突破难点.正确推导过程如下:解:取过焦点设则,又设M与距离之和等于()(常数)为椭圆上的任意一点,椭圆的焦距是().的直线为轴,线段的垂直平分线为轴,,化简,得由定义义)令代入,得,,(学生通过自己画图建系的过程找到的几何意,两边同除得此即为椭圆的一个标准方程它所表示的椭圆的焦点在轴上,焦点是程学生思考:若坐标系的选取不同,可得到椭圆的不同的方程如果椭圆的焦点在轴上(选取方式不同,调换轴)焦点则变成,中心在坐标原点的椭圆方,只要将方程中的调换,即可得,也是椭圆的标准方程请学生观察归纳两个方程的特征,从而区别焦点在不同坐标轴上的椭圆标方程;过程中要渗透数学对称美教学.理解:所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在个轴上即看与这两个标准方程中,都有分母的大小的要求,因而焦点在哪3.精心设计课堂练习使学生在实际应用中进一步巩固知识,运用知识突破重难点:(1)判断下列方程是否表上椭圆,若是,求出的值① ;②;③;④意图:学生感悟椭圆标准方程的结构特点.(2)椭圆上一点P到一个焦点的距离为5,则P到另一个焦点的距离为)A.5B.6 C.4D.10意图:学生理解椭圆定义与标准方程关系.(3)椭圆的焦点坐标是()A.(±5,0)B.(0,±5) C.(0,±12)意图:学生感悟椭圆标准方程中焦点位置以及a,b,c的关系.(4)化简方程:意图:培养学生运用知识解决问题的能力..(±12,0) (D椭圆及其标准方程教学设计共2椭圆及其标准方程教学反思椭圆及其标准方程这节分为两课时,第一课时主要讲解椭圆定义及标准方程的推导;第二课时主要介绍椭圆定义及其标准方程的应用。
椭圆及其标准方程
教学目标:理解椭圆的定义,掌握椭圆的标准方程,以及a,b,c三者的关系
教学重点:椭圆的定义及标准方程
教学难点:标准方程的推导
教学过程:
一、引入
我们上两节课学习了方程与曲线的关系,一条曲线满足某个方程,我们就知道满足这个方程的点一定在这条曲线上,这条曲线上的点一定能满足这个方程,我们同时还学习了求一条曲线的方程一般步骤:建系,写出点的坐标的集合,建立方程,化简方程,检验。
曲线在我们是生活中到处可见,其中有不少都是非常有规则的,具有一些特殊性质的曲线,今天我们将要学习一种特殊的曲线,在学习之前我们先来看一段小视频。
这个是我们神六飞行的一些片段,通过这个视频同学们可以看到神六绕地飞行的轨迹是一个椭圆,我们知道除了神六,我们太阳系里的行星绕太阳飞行的轨迹也是椭圆,椭圆在我们的生活中也是随处可见。
既然椭圆在生活中是如此的常见,人们是怎么准确的画出椭圆的呢?在画椭圆之前同学们回忆一下我们是怎样画圆的?定出圆心,半径长,绕着圆心画一圈就可以了,对比圆,椭圆会不会有相似的画法呢?
把细绳两端拉开一段距离,固定,拉紧绳子,移动笔尖,同学们想想,在这个过程中什么是不变的?(绳子长)
椭圆定义:
平面内到两个定点的F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。
问:为什么这个常数要大于|F1F2|?如果没有这个限制会出现什么样的情况呢?
然后让学生来演示,我们可以看到当等于|F1F2|是轨迹是线段F1F2,当小于|F1F2|时,这样的M点不存在。
F1,F2两个点叫做椭圆的焦点,而这两点的距离叫做是椭圆的焦距。
为了书写方便我们规定|F1F2|=2c,MF1+MF2=2a,
椭圆也是一条曲线,他有没有方程呢?再回忆一下求曲线方程的一般步骤。
请学生回答求曲线方程的步骤
现在我们要求椭圆的方程,第一步就是要建系,我们应该怎样来建立坐标系呢?
让同学们讨论,最后得出
以F1,F2所在直线为x轴,线段F1F2的中点为原点建立直角坐标系,最后选定方案,如图2-27,推导出方程.
以F1,F2所在直线为y轴,线段F1F2的中点为原点建立直角坐标系,如图2-26;
我们选择方案一来推导椭圆的方程
解1)建系:以F1,F2所在直线为x轴,线段F1F2的中点为原点建立直角坐标系,并设椭圆上任意一点的坐标为M(x,y),
设两定点坐标为:
F1(-c,0),F2(c,0),
2)则M满足:|MF1|+|MF2|=2a,
4)化简.
我们要化简方程就是要化去方程中的根式,你学过什么办法?
化去方程中的根式应该用移项平方、再移项再平方的办法.
下面我们就一起来完成这部分计算.(师生共同完成)
a4-2a2cx+c2x2=a2x2-2a2cx+a2c2+a2y2,整理得:
(a2-c2)x2+a2y2=a2(a2-c2).
师:到此我们已经推导出了椭圆的方程,但此形式还不够简洁,且x,y的系数形式不一致,为了使方程形式和谐且便于记忆和使用,我们应该如何将方程进行变形呢?
学生此时可能还不理解,教师可启发学生观察图形如图2-28,看看a与c 的关系如何?
请结合图形找出方程中a、c的关系.
根据椭圆定义知道a2>c2,且如图所示,a与c可以看成Rt△MOF2的斜边和直角边.
那我们不妨令b2=a2-c2,则方程就变形为b2x2+a2y2=a2b2,如果再化简,你会得到什么形式的方程呢?
其中a与b的关系如何?为什么?
a>b>0,因为a与b分别是Rt△MOF2的斜边、直角边.
教师指出(*)式就是焦点在x轴上的椭圆的标准方程,最后说明:
1)方程中条件a>b>0不可缺少(结合图形),当a=b>0时,就化成圆心在原点的圆的方程
2)b的选取虽然是为了方程形式简洁与和谐,但也有实际的几何意义,即:b2=a2-c2;
3)请学生猜想:若用方案二(即焦点在y轴上),得到的方程形式又如何呢?
如果此处学生不能给出,教师将自行给出
师:请同学们课后进行推导验证.
师:此时方程中a与b的关系又如何?(结合图形请学生将条件a>b>0补上.)
师:像这种焦点在坐标轴上建立起来的椭圆的方程,我们称之为椭圆的标准方程。
师:下面我们来对比一下,椭圆两个标准方程的异同
定义|MF1|+|MF2|=2a(2a>2c>0)
图形
方程
焦点
a,b,c之间的关系
结论:
教师引导学生得出:(1)在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.
(2)在两种标准方程中,都有a>b>0
(3)椭圆的焦点总在长轴上,如焦点在X轴上,则焦点坐标为(c,0),(-c,0) ;如焦点在Y轴上,则焦点坐标为 (0,c),(0,-c)
(4)a,b,c始终满足关系式a2-b2=c2
例题与练习
例1:平面内两定点的距离是8,写出到这两定点的距离的和是10的点的轨迹的方程.
分析:先根据题意判断轨迹,再建立直角坐标系,采用待定系数法得出轨迹方程.解:这个轨迹是一个椭圆,两个定点是焦点,用F1、F2表示.取过点F1和F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系.∵2a=10,2c=8.
∴a=5,c=4,b2=a2-c2=52-45=9.∴b=3
因此,这个椭圆的标准方程是
请大家再想一想,焦点F1、F2放在y轴上,线段F1F2的垂直平分
练习1 下列各组两个椭圆中,其焦点相同的是
[ ]
由学生口答,答案为D.
例2:已知椭圆的两个焦点坐标分别为(-2,0)(2,0),且过点(5/2,3/2),求它的标准方程
练习2:写出适合下列条件的椭圆的标准方程
(1)a=4,b=1,焦点在X轴上
(2)a=4,c=3,焦点y轴上
(四)小结
1.定义:椭圆是平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹.。