统计学第3章统计数据分布特征的测度
- 格式:ppt
- 大小:370.50 KB
- 文档页数:25
第三章数据分布特征的描述一、填空题3.1.1 是指一组数据向其中心值靠拢的倾向。
3.1.2 加权算术平均数受两个重要因素的影响,一个是;另一个是各组变量值出现的。
3.1.3 计算比率的平均数时,如果已知比率及其基本计算式的分母资料,则采用。
3.1.4 计算比率的平均数时,如果已知比率及其基本计算式的分子资料,则采用。
3.1.5 是计算平均比率或平均发展速度最适用的一种方法。
3.1.6 是指一组数据中出现次数最多的变量值。
3.1.7 是指将按大小顺序排列的一组数据划分为四等分的三个变量值。
3.1.8 是指将按大小顺序排列的一组数据划分为10等分的9个变量值。
3.1.9 在数据分布呈时,算术平均数、众数和中位数三者相等。
3.1.10 是指非众数组的频数占总频数的比率。
3.1.11 上四分位数与下四分位数之差的简单算术平均数称为。
3.1.12 各个变量值与其算术平均数离差的绝对值的平均数称为。
3.1.13 总体方差是各个数据与其的离差平方的平均数,通常以2 表示。
3.1.14 皮尔逊测度法就是利用算术平均数与众数的关系来测度数据分布的一种方法。
3.1.15 是指用标准差的三次方除三阶中心矩计算偏态系数的一种方法。
二、单项选择题(在每小题的3个备选答案中选出1个正确答案,并将其字母填在题干后面的括号内。
)3.2.1 先将一组数据的变量值按一定顺序排列,然后取某一位置的变量值来反映这些数据的一般水平,把这个特殊位置上的数值看作是平均数,称为 ( )A .数值平均数B .位置平均数C .离散系数 3.2.2算术平均数反映的是数据分布的什么特征( )A .集中趋势B .离散趋势C .偏态趋势3.2.3 根据算术平均数的性质,下列表达式正确的是 ( )A .0)(=∑-f x xB .0x x f C .2()0x x f3.2.4 如果分布数列中各变量值呈几何级数变化或频率分布极不对称,计算平均数的常用方法是( )A .算术平均法B .几何平均法C .调和平均法3.2.5 用各组的组中值代表其实际数据计算算术平均数时,通常假定 ( )A .各组数据在组内是均匀分布的B .各组次数相等C .各组数据之间没有差异3.2.6 当数据分布为右偏分布时,算术平均数与中位数、众数的关系表现为 ( ) A .o e M M x << B .e o x M M << C .o e x M M <<3.2.7 离散程度测度指标中,受极端值影响最大的是 ( )A .平均差B .标准差C .全距3.2.8 平均差与标准差的主要区别在于 ( ) A .说明问题的角度不同 B .对离差的数学处理方法不同 C .计算对象不同 3.2.9标准差系数消除了( )A .总体单位数多少的影响B .平均数大小和计量单位的影响C .离散程度的影响3.2.10 直接使用标准差比较分析两个同类总体平均数的代表性,其前提条件是 ( )A.两个总体的标准差应该相等B.两个总体的平均数应该相等C.两个总体的离差平方和应该相等3.2.11 下列指标中,实际应用最广泛的离散程度测度指标是()A.平均差B.标准差C.离散系数3.2.12 皮尔逊测度法就是利用算术平均数与众数的关系来测度数据分布的()A.偏斜程度B.离散程度C.集中程度三、多项选择题(在下列4个备选答案中,至少有二个是正确的,请将其全部选出,并把字母填在题干后面的括号内。
《统计学》课后题答案第一章导论一、选择题1.C2.A3.C4.C5.C6.B7.A8.D9.C 10.D 11.A 12.C 13.C 14.A 15.B 16.A 17.C 18.B 19.D 20.A 21.D 22. D23.B 24.C 25.A 26.A 27.A 28.B 29.A 30.D 31.C 32.A 33.B第二章数据的收集一、选择题1.A2.B3.A4.D5.B6.C7.D8.D9.D 10.C 11.C 12.A 13.D 14.D 15.C 16.A 17.D 18.C 19.B 20.B 21.A 22.B 23.C 24.A 25.B 26.B 27.A 28.B 29.C 30.C (A)二、判断题1.∨2.∨3.×4. ∨5. ×6. ×7. ∨8. ×9. ×10. ×第三章数据整理与显示一、选择题CABCD CBBAB BACBD DDBC第四章数据分布特征的测度一、选择题1.A2.C3.B4.C5.D6.D7.A8.B9.A 10.B 11.A 12.D 13.C 14.C 15.D 16.A 17.A 18.B 19.A 20.B 21.A 22.A 23.B 24.C 25.C 26.D 27.D 28.A 29.D 30.C 31.C 32.D二、判断题1. ×2. ∨3. ×4. ×5. ×6. ×7. ∨8. ×9. × 10. ∨ 11. ∨ 12. ×四、计算题1. 11399073.8954ki ii kii x fx f=====∑∑甲11.96σ===甲73.89100%100% 6.18%11.96x σν=⨯=⨯=甲73.8100%100%7.43%9.93x σν=⨯=⨯=乙甲的代表性强2. 10.2510.966ki ii kii x fx f====∑∑0.250.056σ==0.250.056100%100% 5.834%0.966xσν=⨯=⨯= 1114.534ki ii kii x fx f====∑∑10.1295σ==10.1295100%100% 2.857%4.534xσν=⨯=⨯=该教练的说法不成立。
统计学测量数据分布的测度描述包括以下几种常见的描述方法:
1.平均数:也称为均值,是指一组数据中所有数值的总和除以数
据个数的结果。
平均数可以用来描述一组数据的集中趋势。
2.中位数:也称为中值,是指一组数据中所有数值按大小排序后,
位于中间的那个数值,如果数据个数为偶数,则中位数为中间两个数的平均数。
中位数可以用来描述一组数据的集中趋势。
3.众数:也称为模数,是指一组数据中出现次数最多的数值。
众
数可以用来描述一组数据的集中趋势,特别是对于呈现多峰分布的数据。
4.极差:是指一组数据中最大值与最小值的差值。
极差可以用来
描述一组数据的离散程度。
5.方差:是指一组数据中每个数值与平均数的差的平方和除以数
据个数的结果。
方差可以用来描述一组数据的离散程度。
6.标准差:是指方差的正平方根。
标准差可以用来描述一组数据
的离散程度,同时也可以用来进行数据的比较。
7.百分位数:是指一组数据中某个百分比的数值。
例如,50%的百
分位数就是中位数。
百分位数可以用来描述一组数据的分布情况,比如数据的偏态和尾重程度。
这些测度描述可以帮助我们更好地理解和分析一组数据的特征和分布情况。
第一套一、填空1. 统计数据的直接来源主要有两个渠道:一是;二是。
2.统计的含义包括三个方面,它们是。
3.按照计量层次分类,统计数据可以分为:。
4.按照时间状况分类,统计数据可以分为:。
5.按照收集方法分类,统计数据可以分为:。
6.8、9、12、7、11、13、9、11、8、10以上10个数据的平均数是,中位数是,方差是。
7.在大样本的检验方法中,当总体方差2σ未知时,可以用样本方差2s 来近似代替总体方差,此时总体均值检验的统计量为:。
8.判定系数2R =(请用SSR SSE SST 、、表示)。
9.一般将时间序列的构成要素分成四种,即。
10.已知11p q 为报告期的销售额,10/p p 是对个体的价格指数,则价格指数的加权平均调和形式的计算公式为:。
二、单项选择1.下列数据属于品质数据的是()A.顺序数据B.截面数据C.观测数据D.实验数据 2.对一批小麦种子进行发芽率试验,这时总体是() A 该批小麦种子 B 该批小麦的发芽率 C 该批小麦中发芽的种子 D 该批小麦的发芽率3.已知均值为μ,方差为2σ的总体中,抽取容量为n 的随机样本,当n 充分大时,样本的均值和方差近似等于() A.2n nμσ B.2nμσ C. 2μσ D. 2nσμ4.下列散点图中表示非线性相关的图为( )A BC D5.在右侧检验中,利用P 值进行检验时,拒绝原假设的条件是( ) A. P α>值 B. P β>值 C. P α<值 D. P β<值三、判断题1.分层抽样除了可以对总体进行估计外,还可以对各层的子总体进行估计。
2.平均指标反映了现象总体的规模和一般水平,但掩盖了总体各单位的差异情况,因此通过平均指标不能全面认识总体的特征。
()3.总体分布为非正态分布而样本均值可能为正态分布。
( )4.抽样误差由于事先可以进行控制或计算的,所以这类误差通常是可以消除的。
( )5.在单独求一组数据计算标准差时,公式下方虚线处应为1n -四、简答题1. 河南大学数学院为了增加学生们的学习积极性,推行了一套新的制度,通过一学期的试行,由最终的成绩决定是否继续执行。
1.“统计”一词有哪些含义?什么是统计学?(1)统计工作或统计实践活动:对现象的数量进行搜集、整理和分析的活动过程(2)统计资料:通过统计实践活动取得的说明对象某种数量特征的数据(3)统计学:是关于数据的一门科学统计学是一门收集、整理、显示和分析统计数据的科学,其目的是探索数据内在的数量规律性。
2.一组数据的分布特征可以从哪几个方面进行测度?一组数据的分布特征可以从以下三个方面进行测度:集中趋势的测度(众数、中位数、分位数、均值、几何平均数、切尾均值)离散程度测度(极差、内距、方差和标准差、离散系数)偏态与峰度测度(偏态及其测度、峰度及其测度)3.分布集中趋势的测度指标有哪些?众数、中位数、分位数、均值、几何平均数、切尾均值4.简述众数、中位数和均值的特点和应用场合。
众数最容易计算,但不是永远存在,它不受极端值影响、具有不惟一性、作为集中趋势代表值应用的场合较少,数据分布偏斜程度较大时应用,在编制物价指数时,农贸市场上某种商品的价格常以很多摊位报价的中数值为代表。
中位数很容易理解、很直观,它不受极端值的影响,这既是它有价值的方面,也是它数据信息利用不够充分的地方;均值是对所有数据平均后计算的一般水平代表值,数据信息提取的最充分,数据对称分布或接近对称分布时应用,它在整个统计方法中应用最广,对经济管理和工程等实际工作也是最重要的代表值和统计量。
5.分布离散程度的测度指标有哪些?极差、内距、方差和标准差、离散系数6、常用的概率抽样方法有哪些?各自的含义如何?(1)简单随机抽样:从总体N个单位中随机地抽取n个单位作为样本,使得每一个总体单位都有相同的机会(概率)被抽中,这样的抽样方式称为简单随机抽样。
(2)分层抽样:在抽样之前先将总体的单位按某种特征或某种规则划分为不同的层,然后从不同的层中抽取一定数量的单位组成一个样本,这样的抽样方式称为分层抽样。
(3)系统抽样:在抽样中先将总体各单位按某种顺序排列,并按某种规则确定一个随机起点,每隔一定的间隔抽取一个单位,直至抽取n个单位形成一个样本。
统计学基础复习提纲复习内容:第一章:统计数据;第二章;数据搜集;第四章:数据分布特征的测度;第五章:抽样与参数估计;第六章:假设检验;第七章:相关与回归分析;第八章:时间序列分析和预测:第九章:指数。
重点内容:第一章统计和数据(1)统计的概念和应用(2)统计数据类型:分类数据、顺序数据、数值型数据;观测数据和实验数据;截面和时间序列数据。
(3)统计中的基本概念:总体与样本;参数与统计量;变量。
第二章数据搜集(1)数据来源:直接来源和间接来源(2)调查设计:调查方案设计和调查问卷设计(3)统计数据质量第四章数据分布特征的测度(1)集中趋势的测度:平均数;中位数和分位数;众数(2)离散程度的度量:极差和四分位差;平均差;方程和标准差;离散系数(3)偏态与峰态度量:偏态系数;峰态系数第五、六章参数估计与假设检验(1)参数估计的基本原理:点估计与区间估计(2)总体均值的区间估计和总体比率的区间估计(3)样本容量的确定(4)假设检验的基本原理:原假设与备择假设;两类错误与显著性水平;检验统计量与拒绝域。
(5)总体均值的检验:大样本检验方法;小样本检验方法。
第七章相关与回归分析(1)变量间关系度量:相关关系的描述和测度;散点图与离散系数。
(2)一元线性回归:一元线性回归模型;参数的最小二乘估计;回归方程的拟合优度;显著性检验。
(3)利用回归房产进行估计和预测第八章时间序列分析与预测(1)时间序列的分解和描述:图形描述;增长率分析(2)预测方法的选择和估计(3)平稳序列的预测:移动平均法;指数平滑法(4)趋势序列的预测:线性趋势预测;非线性趋势预测平均数:x 二2 4 10 11| 14 151096 9.610(2-9.6)2(4-9.6)2 川(15-9.6)2n -110-12、一家公司在招收职员时,首先要进行两项能力测试。
在A 测试中,其平均分数是100分, 标准差是15分;在B 项测试中,其平均数是 400分,标准分数是50分。