高中数学选修2-3排列数公式(ppt)名师课件
- 格式:ppt
- 大小:1.26 MB
- 文档页数:11
排列与排列数公式【応识梃理】1.排列的定义从n个不同元素中取出个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.排列数及排列数公式【纟考飯型】排列的有关概念X/[例1]下列问题是排列问题吗?⑴从1,2,3,4四个数字中,任选两个做加法,其结果有多少种不同的可能?(2)从1,2,3,4四个数字中,任选两个做除法有多少种不同的可能?(3)会场有50个座位,要求选出3个座位有多少种方法?若选出3个座位安排3位客人入座,又有多少种方法?[解]⑴不是,(2)是;(3)第一问不是,第二问是.理由是: 由于加法运算满足交换律,所以选出的两个元素做加法求结果时,与两个元素的位置无关,但列除法算式时,两个元素谁作除数,谁作被除数不一样,此时与位置有关.“入座”问题同 "排队”,与顺序有关,故选3个座位安排3位客人入座是排列问题.[类题通法]判断是不是排列问题,要抓住排列的本质特征:①取出的元素无重复,②取出的元素必须按顺序排列.元素有序还是无序是判断是否是排列问题的关键.[对点训练]判断下列问题是否为排列问题.(1)北京、上海、天津三个民航站之间的直达航线的飞机票价格(假设来回的票价相同);(2)选3个人分别担任班长、学习委员、生活委员;(3)某班40名学生在假期相互通信.解:(1)票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题.(3)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.题型二用列举法解决排列问题[例2]写岀下列问题的所有排列:(1)从1,2,3,4四个数字中任取两个数字组成两位数,共有多少个不同的两位数?(2)由1,2,3,4四个数字能组成多少个没有重复数字的四题型二用列举法解决排列问题位数?试全部列出.[解]⑴所有两位数是12,21,13,31,14,41,23,32,24,42,34,43, 共有12个不同的两位数.(2)画出树形图,如图所示・由上面的树形图知,所有的四位数为:1 234,1 243,1 324,1 342J 423,1 432,2 134,2 143, 2 314, 2 341,2 413,2 431,3 124,3 142,3 214,3 241,3 412,3 421,4 123,4 132,4 213,4 231,4 312,4 321,共24个没有重复数字的四位数.[类题通法]在排列个数不多的情况下,树形图是一种比较有效的表示方式.在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,在每一类中再按余下的元素在前面元素不变的情况下确定第二个元素,再按此元素分类, 依次进行,直到完成一个排列,这样能不重不漏,然后按树形图写出排列.[对点训练]同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有()A. 6种B. 9种C. 11 种D. 23 种解析:法一:设四张贺卡分别为A, B, C, D由题意知,某人(不妨设为A卡的供卡人)取卡的情况有3种,据此将卡的不同分配方式分为三类,对于每一类,其他人依次取卡分步进行.用树状图表示,如图.共有9种不同的分配方式.法二:让A, B, C,。