飞思卡尔单片机原理
- 格式:ppt
- 大小:617.50 KB
- 文档页数:25
9S12 系列单片机的ECT (Enhanced Capture Timer Module)模块是在原68HC12 的 Standard Timer module 基础上加以增强功能形成的。
ECT 模块主要由以下几部分组成,参看图1:•一个带可编程预分频的16位向上计数的自由运行计数器•8个独立的定时器通道,每个通道具备输入捕捉/输出比较功能•4个8位脉冲累加器,也可设置成2个16位脉冲累加器•一个带可编程预分频的16位的向下计数的计数器•从上面示意图中可以就看出,ECT 模块相当的复杂,不是简单的几句话就能说明白的。
我也是通过很长时间的学习实践,才逐步掌握了ECT模块的使用。
本文将通过一系列的实例,从最简单的功能开始,逐步展开。
一步一步的展示ECT 模块的强大功能。
实验1:自由运行计数器(TCNT)与溢出中断自由运行计数器(TCNT)也称为自由运行主定时器,是一个16位的计数器,可以说是ECT的核心。
在系统复位时,这个自由运行计数器的初值为$0000。
当ECT 模块运行时,自由运行计数器从$0000~$FFFF 循环递增计数。
当计数器溢出复零时,会置位中断标志。
利用这个计数器,可以产生一个周期的中断信号。
TCNT 的输入时钟也是可以选择的,图2 给出了TCNT 的时钟源的示意图。
可以看出,TCNT的输入时钟可以来源于总线时钟、总线时钟经过预分频、外部引脚输入的脉冲、外部引脚输入脉冲经过脉冲累加器分频这四种选择。
当然,选择哪个时钟源其实就是在程序中设置一下相应的寄存器这么简单。
了解了上面的介绍,就可以开始本文的第一个例子了,这个例子非常简单,将BUS CLOCK 分频后作为TCNT 的输入时钟,使能TCNT 溢出中断。
在开始代码之前,还需要介绍几个程序中用到的寄存器。
TCNT寄存器(Timer Count Register)这个寄存器其实已经介绍过了,它是一个16 位的只读寄存器。
在每个时钟输入下计数值会自动加1,当计数值为0xFFFF 后下一个时钟脉冲会使计数器溢出为0x0000。
飞思卡尔ZigBee射频芯片MC13192的原理与应用ZigBee技术是一种低速率无线传输技术,它基于IEEE802.15.4标准,工作频率为868MHz、915MHz或2.4GHz,其中2.4GHz是一个开放的频率。
该技术的突出特点是应用简单、电池寿命长、组网能力强、可靠性高以及成本低。
与已经在市场上推广了很多年的蓝牙技术相比,ZigBee技术的传输速率要低一些(ZigBee的峰值速率为250kbps,蓝牙的峰值速率为750kbps),但ZigBee的待机功耗比蓝牙要低1到2个数量级(ZigBee为3~40μA,蓝牙为200μA)。
由于以上的优点,ZigBee技术在低成本、低速率、低功耗的无线传输方面有很大的发展前景,例如在工业或企业市场,需要感应式网路,提供感应辨识、灯光与安全控制等功能;而在未来的网络家庭中,像空调系统的温度控制器,灯光、窗帘的自动控制,老人与行动不便者的紧急呼叫器,电视与音响的万用遥控器,烟雾侦测器等这些应用,都非常需要和适合采用这种低成本、低速率、低功耗的无线传输技术。
MC13192是飞思卡尔公司提供的符合IEEE 802.15.4标准的带数据调制解调器的射频收发芯片。
该芯片性能稳定,功耗很低,采用经济高效的CMOS设计,几乎不需要外部组件。
更重要的是,该芯片和飞思卡尔其他的ZigBee产品组合在一起可以搭建成飞思卡尔ZigBee-Ready平台,利用该平台进行ZigBee相关方面的开发工作可以有效地缩短工程师的开发时间,降低开发成本。
主要特点MC13192符合IEEE 802.15.4标准,它选择的工作频率是2.405~2.480GHz,数据传输速率为250kbps,采用O-QPSK调试方式。
这种功能丰富的双向2.4GHz 收发器带有一个数据调制解调器,可以在ZigBee技术应用中使用,它还具有一个优化的数字核心,有助于降低MCU处理功率,缩短执行周期。
内部集成4个定时比较器,使其可以和性能较低、价格低廉的MCU配合使用以降低成本,广泛的中断维修服务使得MCU编程更为容易;芯片和MCU之间使用串行外围接口,使得在MCU选择上具有更大的余地。
Width Modulation)原理:PulseWidth一、PWM(脉冲宽度调制Pulse脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。
图1所示为脉冲宽度调制系统的原理框图和波形图。
该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。
语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。
因此,从图1中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。
通过图1b的分析可以看出,生成的矩形脉冲的宽度取决于脉冲下降沿时刻t k时的语音信号幅度值。
因而,采样值之间的时间间隔是非均匀的。
在系统的输入端插入一个采样保持电路可以得到均匀的采样信号,但是对于实际中tk-kTs<<Ts的情况,均匀采样和非均匀采样差异非常小。
如果假定采样为均匀采样,第k个矩形脉冲可以表示为:(1)其中,x{t}是离散化的语音信号;Ts是采样周期;是未调制宽度;m是调制指数。
然而,如果对矩形脉冲作如下近似:脉冲幅度为A,中心在t=k Ts处,在相邻脉冲间变化缓慢,则脉冲宽度调制波x p(t)可以表示为:(2)其中,。
无需作频谱分析,由式(2)可以看出脉冲宽度信号由语音信号x(t)加上一个直流成分以及相位调制波构成。
当时,相位调制部分引起的信号交迭可以忽略,因此,脉冲宽度调制波可以直接通过低通滤波器进行解调。
二、数字脉冲宽度调制器的实现:实现数字脉冲宽度调制器的基本思想参看图2。
图中,在时钟脉冲的作用下,循环计数器的5位输出逐次增大。
5位数字调制信号用一个寄存器来控制,不断于循环计数器的输出进行比较,当调制信号大于循环计数器的输出时,比较器输出高电平,否则输出低电平。
循环计数器循环一个周期后,向寄存器发出一个使能信号EN,寄存器送入下一组数据。
在每一个计数器计数周期,由于输入的调制信号的大小不同,比较器输出端输出的高电平个数不一样,因而产生出占空比不同的脉冲宽度调制波。
图3为了使矩形脉冲的中心近似在t=kTs处,计数器所产生的数字码不是由小到大或由大到小顺序变化,而是将数据分成偶数序列和奇数序列,在一个计数周期,偶数序列由小变大,直到最大值,然后变为对奇数序列计数,变化为由大到小。
引言概述飞思卡尔单片机中断是指在特定的条件下,单片机的运行被打断,转而执行特定的处理程序。
在飞思卡尔单片机的开发中,中断是非常重要的一部分,它可以提高系统的响应速度和实时性。
本文将详细介绍飞思卡尔单片机中断的相关知识。
正文内容一、中断的基本概念和原理1. 中断的定义:中断是指在特定的条件下,程序的执行被打断,转而执行事先定义好的处理程序。
2. 中断的分类:外部中断和内部中断。
外部中断是由外部设备引发的,例如按键、定时器等;内部中断是由单片机内部的某个事件引发的,例如指令执行完成、通信完成等。
3. 中断的触发方式:电平触发和边沿触发。
电平触发是指当外部信号保持一定电平时触发中断;边沿触发是指在信号的上升沿或下降沿触发中断。
二、飞思卡尔单片机中断的使用方法1. 中断的初始化:对中断控制寄存器进行设置,使能相应的中断源。
2. 中断的优先级设置:多个中断源同时触发时,可以通过设置优先级来确定执行顺序。
3. 中断服务程序的编写:根据不同的中断源,编写相应的中断服务程序,完成特定的处理。
4. 中断的开启和关闭:根据需要,可以在程序中开启或关闭特定的中断。
三、飞思卡尔单片机中断优化技巧1. 中断嵌套:可以在一个中断中触发另一个中断,提高系统的实时性和处理效率。
2. 临界区保护:在关键代码段加入关中断代码,保护临界区避免竞态条件的发生。
3. 中断延时处理:在某些特定情况下,需要延时处理中断,可以使用延时函数或软件延时方式实现。
四、飞思卡尔单片机中断的常见问题和解决方法1. 中断误触发问题:可能是由于外部干扰、软件错误等原因导致中断被误触发,可以通过加入滤波电路、改进软件设计等方式解决。
2. 中断处理时间过长问题:中断处理程序执行时间过长会导致系统响应变慢,可以通过优化中断程序、减少中断次数等方式解决。
3. 中断嵌套问题:如果中断嵌套层次太多,可能会导致系统死锁或无法预测的结果,可以通过合理设计中断嵌套层次、减少中断嵌套次数来解决。